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Abstract: Accurate prediction of crop production is essential in effectively managing the food security
and economic resilience of agricultural countries. This study evaluates the performance of statistical
and machine learning-based methods for large-scale crop production forecasting. We predict the
quarterly production of 325 crops (including fruits, vegetables, cereals, non-food, and industrial
crops) across 83 provinces in the Philippines. Using a comprehensive dataset of 10,949 time series
over 13 years, we demonstrate that a global forecasting approach using a state-of-the-art deep
learning architecture, the transformer, significantly outperforms popular tree-based machine learning
techniques and traditional local forecasting approaches built on statistical and baseline methods. Our
results show a significant 84.93%, 80.69%, and 79.54% improvement in normalized root mean squared
error (NRMSE), normalized deviation (ND), and modified symmetric mean absolute percentage error
(msMAPE), respectively, over the next-best methods. By leveraging cross-series information, our
proposed method is scalable and works well even with time series that are short, sparse, intermittent,
or exhibit structural breaks/regime shifts. The results of this study further advance the field of
applied forecasting in agricultural production and provide a practical and effective decision-support
tool for policymakers that oversee crop production and the agriculture sector on a national scale.

Keywords: crop production; agricultural production; time series forecasting; artificial intelligence;
machine learning; deep learning; transformer

1. Introduction

Agriculture is a vital component of the Philippine economy, contributing about 9.1%
of the gross domestic product (GDP) and employing about 24% of the labor force [1,2].
However, the sector, and crop production in particular, has been experiencing a decline
in output due to the impacts of the COVID-19 pandemic and several typhoons that hit
the country in 2020 and 2021 [3]. These challenges pose serious threats to the Philippine
agriculture sector’s food security and economic resilience. To optimize planning and
improve decision making, more robust forecasting methodologies that leverage the latest
developments in artificial intelligence (AI) and machine learning (ML) should be adopted
and integrated into the frameworks of policymakers and stakeholders in the sector.

A literature review reveals that much work has been done in applying traditional
statistical and process-based models to the problem of forecasting crop production. Liu
et al. examine the effects of climate change on crop failure, yield, and soil organic carbon
on winter wheat and maize using the SPACSYS model in China [4]. Nazir et al. apply a
phenology-based algorithm with linear regression to improve rice yield prediction using
satellite data [5]. Florence et al. apply linear regression and Gaussian process regression
(GPR) to predict winter wheat yield using crop canopy properties (e.g., leaf area index
or LAI, leaf chlorophyll content) [6]. These works demonstrate how careful analysis of
exogenous variables and feature engineering can enhance model performance in yield
prediction problems while shedding light on their potential positive or negative effects
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on crop yield. Additionally, some work has been carried out in applying grey systems
theory to the problem of forecasting agricultural products. Quartey-Papafio et al. compare
a GM(1, 1), non-homogenous discrete grey model (NDGM) and autoregressive integrated
moving average (ARIMA) model in the case of forecasting the cocoa bean production of
six major cocoa-producing countries [7]. Chen et al. use the grey seasonal model (GSM)
to predict the output values for agriculture, forestry, animal husbandry, and fishery in
China [8]. In general, we find that the previously mentioned studies either did not include
a comparison with ML models or found that ML approaches did not perform well, often
tending to overfit the data.

With the emergence of larger datasets, machine learning has become the more preva-
lent approach to prediction problems. Research on ML-based techniques has increased
across a wide variety of critical economic fields, such as energy demand prediction [9,10],
water resource management [11–13], and multinational trade forecasting [14,15]. In agricul-
ture, ML has also been explored in crop yield forecasting applications. Nosratabadi et al.
compare the performance of an adaptive network-based fuzzy inference system (ANFIS)
and multilayer perceptron (MLP) in predicting livestock and agricultural production in
Iran [16]. Kamath et al. use data mining techniques and a random forest (RF) model to
predict crop production in India [17]. Das et al. apply a hybrid ML method using multi-
variate adaptive regression spline (MARS) coupled with support vector regression (SVR)
and artificial neural networks (ANN) to predict lentil grain yield in Kanpur, India [18].

Several works also specifically examine the use of ML models with vegetation and
various meteorological data (e.g., temperature, rainfall). Sadenova et al. propose an
ensemble ML algorithm combining traditional ML regressors (e.g., linear regression, SVR,
RF) and a neural network (NN) to predict the yields of cereals, legumes, oilseeds, and
forage crops in Kazakhstan using the normalized difference vegetation index (NDVI) and
meteorological data [19]. Sun et al. compare RF models and multiple linear regression
(MLR) to estimate winter wheat yield in China using meteorological and geographic
information [20]. Onwuchekwa-Henry et al. uses a generalized additive model (GAM)
to predict rice yield in Cambodia using NDVI and meteorological data [21]. Research
in the field points to the strengths of ML models in effectively incorporating exogenous
variables from a wide variety of sources. While the above works compare some subsets of
ML methods against each other, we find that many studies lack comparisons to traditional
statistical methods or naïve baselines. Recent research has shown that classic time series
models such as ARIMA and exponential smoothing (ETS) methods are still state of the art
in some forecasting benchmarks [22].

Deep learning approaches have also been explored in the literature. Tende et al. use
a long short-term memory (LSTM) neural network to predict district-level end-of-season
maize yields in Tanzania using NDVI and meteorological data [23]. Wang et al. apply
LSTM neural networks using LAI as input data to improve winter wheat yield prediction
in Henan, China [24]. Aside from recurrent neural networks (RNN), convolutional neural
networks (CNN) have also been investigated. Wolanin et al. use explainable deep learning
and convolutional neural networks (CNNs) to predict wheat yield in the Indian Wheat
Belt using vegetation and meteorological data [25]. Bharadiya et al. compare a variety
of deep learning architectures (e.g., CNN, LSTM, etc.) and traditional ML models (e.g.,
gradient boosted trees, SVR, k-nearest neighbors, etc.) in forecasting crop yield via remote
sensing [26]. Gavahi et al. propose DeepYield, a ConvLSTM-based deep learning architec-
ture, to forecast the yield of soybean [27], the performance of which was compared against
decision trees (DT), CNN + Gaussian process (GP), and a simpler CNN-LSTM. In general,
neural networks have been identified as critical in building effective decision-making sup-
port tools in agriculture by helping stakeholders forecast production, classify the quality
of harvested crops, and optimize storage and transport processes [28]. While CNNs and
RNNs have been widely employed in this domain, exploring attention-based architectures,
like the transformer, remains relatively uncharted.
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Most studies in the literature (including the works mentioned above) focus on fore-
casting the production of one or even a few crops of interest. In practice, stakeholders in
the agriculture sector may monitor the yields of many crops across several regions (e.g.,
national government agencies). Related to this, the work of Paudel et al. applies machine
learning to predict the regional-level yield of five crops in three countries (the Netherlands,
Germany, and France) [29]. This line of investigation was continued in [30], where the
authors expanded the analysis to 35 case studies, including nine European countries that
are major producers of six crops: soft wheat, spring barley, sunflower, grain maize, sugar
beet, and potatoes. Both studies examine the performance of ridge regression, k-nearest
neighbors (KNN) regression, SVR, and gradient boosted trees (GBT). These works, however,
do not include comparisons against deep learning-based methods, such as RNNs, CNNs,
or transformers.

In this work, we further push this line of research by substantially increasing the
number of time series of interest. We propose a scalable method for predicting the quarterly
production volume of 325 crops across 83 provinces in the Philippines. Using a total of
10,949 time series spanning 13 years, we show that a global forecasting approach using
a state-of-the-art deep learning architecture, the transformer, significantly outperforms
the traditional local forecasting approaches built on statistical and baseline techniques, as
well as popular tree-based machine learning models. Based on our review of the literature,
we also identify gaps in the comparison of methods. Thus, we explicitly include a naïve
baseline, a traditional statistical method, as well as a variety of machine learning algorithms,
as benchmark comparisons alongside our proposed global deep learning-based approach.
We summarize the contributions of our work below:

• To the best of our knowledge, this is the first work that focuses on collectively forecast-
ing large-scale disaggregated crop production across an entire country, comprising of
thousands of time series from a diverse group of crops, including fruits, vegetables,
cereals, root and tuber crops, non-food crops, and industrial crops.

• We demonstrate that a time series transformer trained via a global approach can
achieve superior forecast accuracy when compared against tree-based machine learn-
ing models and traditional local forecasting approaches. Empirical results show a
significant 84.93%, 80.69%, and 79.54% improvement in normalized root mean squared
error (NRMSE), normalized deviation (ND), and modified symmetric mean absolute
percentage error (msMAPE), respectively, over the next-best methods.

• Since only a single deep global model is optimized and trained, our proposed method
scales more efficiently with respect to the number of time series being predicted and
to the number of covariates and exogenous features being included.

• By leveraging cross-series information and learning patterns from a large pool of time
series, our proposed method performs well even on time series that exhibit multiplica-
tive seasonality, intermittent behavior, sparsity, or structural breaks/regime shifts.

• While the global transformer model shows impressive performance, our analysis of
the model’s errors also reveals insights that can be used to further improve model
performance, as well as provide directions for future work.

• Our work also has practical implications beyond academic research, as we envision
this framework being used by stakeholders in the agriculture sector that manage crop
production at a national scale. Our results suggest that closer collaboration between
domain experts (e.g., crop scientists, farmers) and other data-collecting government
agencies (e.g., meteorological and climate agencies, statistical agencies) is vital to
improving data-driven frameworks such as ours.

2. Materials and Methods
2.1. Study Area

The Philippines is an archipelagic country in Southeast Asia with more than 7000 is-
lands. It has a rich and diverse agriculture sector, producing a wide variety of crops for
domestic consumption and export. The country has a total land area of about 300,000 square
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kilometers, of which about 42.5% is devoted to agriculture [31]. The country’s tropical and
maritime climate is characterized by abundant rainfall, coupled with high temperatures
and high humidity. The country has three major seasons: the wet season from June to
November, the dry season from December to May, and the cool dry season from December
to February [32]. The topography is also diverse, ranging from mountainous regions to
plateaus, lowlands, coastal areas, and islands. These factors create a wide array of ecological
zones that influence the types of crops that can be grown in each region.

2.2. Data Description

The data used in this study are taken from OpenSTAT and can be accessed through the
following link: https://openstat.psa.gov.ph/ (accessed on 8 April 2023). OpenSTAT is an
open data platform under the Philippine Statistics Authority (PSA), the primary statistical
arm of the Philippine government. We use a compilation of data from three surveys:
the Palay Production Survey (PPS), the Corn Production Survey (CPS), and the Crops
Production Survey (CrPS). These surveys report quarterly production statistics for palay
(the local term for rice before husking), corn, and other crops at the national and sub-national
levels (i.e., regional and provincial).

A total of 325 crops spread across 83 provinces are examined. The crops are broadly
classified into four commodity groupings: Cereals, Fruit Crops, Vegetables and Root Crops, and
Non-Food and Industrial Crops. Figure 1 illustrates the time series of some of the top-produced
crops in the Philippines. In this figure, palay and corn represent the top-produced cereals
in the country. Bananas, pineapple, and mango represent some of the most produced fruit
crops. Kamote (sweet potato) and eggplant represent some of the top-produced vegetables
and root crops, while sugarcane and coconut represent some of the top-produced non-food
and industrial crops. The complete lists of crops, provinces, and regions are provided in
Tables A1 and A2 under Appendix A.
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Figure 1. Nine time series representing some of the top-produced crops in the Philippines covering the
period from 2010 to 2022 with the crop name, province, and region listed, respectively. Observations
are the quarterly production volume measured in metric tons. Palay and corn represent the top-
produced cereals. Banana, pineapple, and mango represent some of the top-produced fruit crops.
Kamote (sweet potato) and eggplant represent some of the top-produced vegetables and root crops.
Sugarcane and coconut represent some of the top-produced non-food and industrial crops.

At the most disaggregated level (i.e., crops crossed with provinces), our dataset con-
sists of 10,949 time series covering a 13-year period from 2010 to 2022. This is less than the
full 325 × 83 since each province only grows a certain subset of crops. Data on the volume
of production (measured in metric tons) is collected quarterly, with each time series having
52 observations. For illustration, a sample of nine time series is shown in Figure 2. We
note that the dataset consists of a large group of time series that capture a wide variety
of dynamics and scales. While most time series show strong quarterly seasonality, some

https://openstat.psa.gov.ph/
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series also exhibit multiplicative seasonality, intermittent behavior, sparsity, or structural
breaks/regime shifts. The combination of these dynamics makes using traditional ap-
proaches to time series modeling a challenging process, as each time series would have to
be modeled individually or some level of aggregation would need to be performed, both
of which are not ideal. The former requires careful and meticulous feature engineering
and model selection at a very large scale, while in the latter, information is sacrificed for
computational efficiency. We discuss the main approach to solving this in Section 2.3.3.
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Figure 2. Nine sample time series covering the period from 2010 to 2022 with the crop name, province,
and region listed, respectively. Observations are the quarterly production volume measured in metric
tons. The dataset consists of a large group of time series that capture a wide variety of dynamics
and scales. While most time series show strong quarterly seasonality, some series also exhibit
multiplicative seasonality, intermittent behavior, sparsity, or structural breaks/regime shifts.

Each time series is also accompanied by a set of covariates (summarized in Table 1) of
which there are two types: static covariates and time features. Static covariates are integer-
encoded categorical features consisting of identifiers for a time series’ crop type, province,
and region. Time features are a type of dynamic covariate that explicitly captures temporal
information (e.g., calendar information such as month of the year, day of the week, hour of
the day). In this work, we include a Quarter variable to represent calendar seasonality and a
monotonically increasing Age variable that measures the distance to the first observation in
a time series. While our method can incorporate other exogenous variables (e.g., meteoro-
logical data, fertilization level data, etc.), they are not readily available in a form suitable for
modeling and require more meticulous data collection from multiple government agencies
and additional preprocessing.

Table 1. List of input features used in this study.

Feature Type Training Period Test Period

Volume target

Q1 2010
to

Q4 2021

Q1 2022
to

Q4 2022

Crop ID static covariate
Province ID static covariate
Region ID static covariate
Quarter time feature

Age time feature

2.3. Forecasting Methods

In this section, we introduce the statistical and machine learning models used in
this study and describe how their hyperparameters are tuned and selected. All methods
described below are implemented in Python (v3.10.12) using the NumPy (v1.23.5), Pandas
(v2.0.3), and Matplotlib (v3.7.2) libraries, as well as the PyTorch (v2.0.1) [33], Hugging Face
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Transformers (v4.31.0) [34], GluonTS (v.0.13.4) [35], MLForecast (v0.9.1) [36], and Stats-
Forecast (v.0.14.0) [37] packages for the time series, machine learning, and deep learning
methods. The code used in this study will be made publicly available upon publication.

2.3.1. Baseline and Statistical Methods

For our baseline and statistical techniques, we look at two approaches: a seasonal
naïve forecast and ARIMA.

The seasonal naïve method constructs a forecast by repeating the observed values
from the same “season” of the previous year [38],

ŷt+h = yt+h−m(k+1) (1)

where ŷt+h is the forecasted value h-steps into the future, m is the seasonal period, and
k is the integer part of (h− 1)/m. In this study, we set m = 4 since the data consists of
quarterly time series. Simply put, a seasonal naïve forecast for the test period is generated
by repeating the observations in 2021 (i.e., we assume that next year is the same as the
previous year). This type of naïve forecast is a common benchmark used in forecasting
competitions [39,40], especially when time series exhibit strong seasonality.

For the statistical method, we use the autoregressive integrated moving average
(ARIMA) model, a class of time series method used to model non-stationary stochastic
processes. The AR term specifies that the current value of a time series is linearly dependent
on its previous values, the I term defines the number of one-step differencing needed to
eliminate the non-stationary behavior of the series, and the MA term specifies that the
current value of the series is linearly dependent on previous values of the error term,

yt = c +
p

∑
i=1

φiyt−i +
q

∑
i=1

θiεt−i + εt (2)

where yt is the I-differenced series, φi are the autoregressive parameters up to lag p, θi
are the moving average parameters up to lag q, and εt is the error term assumed to be
normally distributed. In this study, we use the AutoARIMA algorithm by Hyndman and
Khandakar [41] which selects the best ARIMA model based on a series of statistical tests.
ARIMA models are also similarly used as a benchmark for comparison against ML models,
such as in [22,39,40].

2.3.2. Machine Learning Models

To represent the class of traditional ML techniques, we choose three popular tree-based
methods: decision trees, random forest, and gradient boosting machines.

Decision trees (DT) are a supervised learning algorithm that is represented as a hi-
erarchical tree-like structure, where nodes represent if-then rules that are used to predict
the target variable. The tree is built by recursively partitioning the data into smaller and
smaller subsets. At each node of the tree, the algorithm chooses an attribute from the
feature space that best splits the data based on some criterion (e.g., Gini index or entropy
for classification trees). In the case of regression trees, one can use the squared error loss
(L2) or absolute error loss (L1) to measure the quality of a split. Building on this concept,
ensemble techniques have also been developed to address the limitations of simple DTs.

Random forests (RF) are an ensemble learning method that constructs a multitude of
decision trees at training time. Each tree is trained using a random subset of the training
data and a random subset of the features. This helps reduce the variance of the model and
prevents it from overfitting.

Gradient boosting machines (GBM) are another tree-based ensemble technique that
builds multiple decision trees in a sequential manner. Each tree is trained on the residual
errors of the previous trees, resulting in improved generalization. In this work, we use the
popular LightGBM implementation [42], notable for its fast training speed and efficiency.
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2.3.3. Deep Learning and the Transformer

Deep learning (DL) is a sub-field of machine learning that combines the concepts of
deep neural networks (DNNs) and representation learning. In this work, we focus on a
seminal architecture, the transformer by Vaswani et al. [43]. Transformer models show state-
of-the-art performance in several domains such as natural language processing [44–46],
computer vision [47,48], audio signal processing [49,50], and, recently, in time series fore-
casting [51–54].

The transformer (shown in Figure 3) is a neural network model that uses a self-
attention mechanism to capture long-range dependencies and non-linear interactions in
sequence data (e.g., text, time series). It consists of an encoder and a decoder network, each
composed of stacked layers of multi-head attention blocks and feed-forward blocks with
residual connections and layer normalization submodules.
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In the context of time series modeling, the encoder takes the historical observations of
the target time series as input and produces a learned embedding or latent representation.
The decoder then generates a forecast of the target series by attending to the encoder’s
output and its own previous outputs in an autoregressive fashion. The transformer also
incorporates other contextual information, including static covariates (e.g., categorical
identifiers) and dynamic covariates (e.g., related time series, calendar information). In the
time series paradigm, the time features (e.g., month of the year, day of the week, hour of
the day) are processed as positional encodings, which allows the transformer to explicitly
capture information related to the sequence of the observations.
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In this work, we use a time series transformer, a probabilistic neural network that
closely follows the original transformer architecture adapted for time series data. Since the
range of the time series values is continuous, the time series transformer uses a swappable
distribution head as its final layer (i.e., the model outputs the parameters of a continuous
distribution) and is trained by minimizing its corresponding negative log-likelihood loss. At
inference time, we can estimate the joint distribution of a multi-step forecast via ancestral
sampling. We generate multiple sample paths by autoregressively sampling from the
decoder over the forecast horizon. We can then calculate the median at every time step
along the forecast horizon to create a point forecast from the collection of sample paths.

Our time series transformer model’s hyperparameters were tuned manually and sum-
marized in Table 2. The forecast horizon describes the number of time steps to forecast.
The lookback window indicates the conditioning length (i.e., how many lags are used to
input the encoder). The embedding dimension refers to the size of the learned embedding
for each categorical feature. The transformer layer size describes the dimensionality of
the learned embeddings inside each transformer layer. The number of transformer layers
indicates how many transformer blocks are stacked in the encoder/decoder. The atten-
tion heads parameter refers to the number of heads inside each transformer layer. The
transformer activation describes the activation function used inside each transformer layer.
The dropout indicates the dropout probability used inside each transformer layer. For the
output probability distribution, we use a Student’s t distribution. For the optimizer, we use
the AdamW optimizer [55] with a 1 × 10−4 learning rate. We set the batch size to 256 and
trained the model for 500 epochs. Finally, we use data from 2010 to 2021 for training and
hold-out data in 2022 for testing.

Table 2. Summary of model hyperparameters and training settings.

Hyperparameter Value

Forecast Horizon 4
Lookback Window 12

Embedding Dimension [4, 4, 4]
Transformer Layer Size 32
No. Transformer Layers 4

Attention Heads 2
Transformer Activation GELU

Dropout 0.1
Distribution Output Student’s t

Loss Negative log-likelihood
Optimizer AdamW

Learning Rate 1 × 10−4

Batch Size 256
Epochs 500

2.3.4. The Global Forecasting Approach

In the case of forecasting a group of time series, the traditional and parsimonious
approach would be to assume that each time series comes from a different data-generating
process. In effect, the modeling task would be broken down into individual univariate
forecasting problems (i.e., each time series would have its own model). This is called the
local forecasting approach.

In contrast to this, recent research in the field of time series forecasting has shown
that it is possible to fit a single model to a group of time series and achieve superior fore-
cast accuracy. This is referred to as global forecasting [56] (also called the cross-learning
approach [57]). Several important works in the forecasting literature have demonstrated
the efficacy of such an approach. Notably, the top performers in the M4 forecasting
competition [39], specifically the ES-RNN method of Smyl [57] and FFORMA method of
Montero-Manso et al. [58], use a form of global forecasting via partial pooling with hybrid
statistical-ML models. In this competition, contenders were tasked to forecast a group of
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100,000 time series from various domains including business, finance, and economics. In re-
sponse to this, the pure DL-based N-BEATS model of Oreshkin et al. [59], which uses a fully
global approach, was shown to have improved accuracy compared to the top M4 winners.
Following these results, many of the entrants in the M5 forecasting competition used both
full and partial global approaches to modeling 42,840 time series of retail sales data [40].
Many of the winners utilized tree-based methods based on LightGBM [60] and recurrent
neural network models [61]. In essence, empirical results show that globally trained ML
and DL models have improved forecasting performance and better generalization.

We note that global forecasting in this context is still a univariate forecasting method
(i.e., the model produces forecasts for each series one at a time) and is separate from
multivariate forecasting, where we are interested in simultaneously predicting all time
series of interest.

Global forecasting has become more relevant in big data, where there are often thou-
sands or millions of time series to forecast. It has several advantages over traditional
local forecasting approaches which fit a separate model for each time series. First, global
forecasting methods tend to be much more scalable, as they only require training and
maintaining one model instead of many. Second, global forecasting methods can leverage
information across different time series, such as common trends, seasonality, or other
patterns. Third, global forecasting methods can handle short and sparse time series better
than local methods, as they can use information from other similar series that are longer or
more complete. Lastly, global forecasting can even be used with heterogeneous time series
with different characteristics or data-generating processes [62,63].

In this work, we train a time series transformer model using a global forecasting
approach. A single time series transformer is trained on all 10,949 time series and is used
to produce forecasts for each series by conditioning on historically observed values, the
related static identifiers, and the relevant time features.

2.4. Evaluating Model Performance

Since we are interested in forecasting a large group of time series with varying scales,
we use three scale-independent error metrics to evaluate accuracy: modified symmetric
mean absolute percentage error (msMAPE) [64], normalized root mean squared error
(NRMSE) [65], and normalized deviation (ND) [65]. These are defined as

msMAPE =
1
n

n

∑
i=1

200|yi − ŷi|
max(|yi|+ |ŷi|+ ε, 0.5 + ε)

(3)

NRMSE =

√
1
n ∑n

i=1(yi − ŷi)
2

1
n ∑n

i=1|yi|
(4)

ND =
∑n

i=1|yi − ŷi|
∑n

i=1|yi|
(5)

where yi is the true value, ŷi is the forecasted value, ε is a smoothing parameter, and n is
the number of data points being forecasted.

We note that when evaluating forecasts of time series that may have intermittent
characteristics, one needs to be careful about which metrics are used [64]. Metrics that
optimize for the median (e.g., mean absolute error or MAE) are problematic since a naïve
forecast of all zeros is often considered the “best”. Additionally, metrics with per-step
scaling based on actual values (e.g., mean absolute percentage error or MAPE) or benchmark
errors (e.g., mean absolute scaled error or MASE) can also be problematic because of
potential divisions by zero.
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3. Results and Discussion

In this work, we compare the performance of a time series transformer trained via
a global forecasting approach against popular tree-based machine learning models and
statistical and baseline techniques that use a traditional local forecasting approach. Ob-
servations from 2010 to 2021 are used as training data for all methods. Each method then
generates a four-step forecast for each time series, covering the hold-out testing period of
2022. Effectively, this amounts to 10,949 × 4 = 43,796 point forecasts per method. Error
metrics are then calculated for each method using the equations defined in the previous
section. The training time for each method is also recorded. For reference, all models were
trained on a desktop computer with an AMD Ryzen 7 5800X CPU, 32 GB RAM, and an
NVIDIA RTX 3090 with 24 GB VRAM.

The AutoARIMA algorithm is applied individually for every time series for the local
ARIMA approach. That is, the optimal parameters for an ARIMA model are selected for
each time series. For the seasonal naïve method, the observations for each time series in
2021 are repeated and used to forecast the testing period (i.e., the method assumes that
2022 is the same as 2021).

All time series are pooled and used for the global forecasting approach for fitting a
single model. This strategy is applied for all machine learning and deep learning models:
DT, RF, LightGBM, and the time series transformer.

Again, the time series transformer is a probabilistic neural network model. That is,
the model’s output corresponds to the parameters of a target distribution, in this case the
student’s t distribution. At inference time, the joint distribution of the four-step forecast
is estimated via autoregressively sampling paths (i.e., at each time step, a prediction is
sampled from the output distribution of the model, which is then fed back into the model
to generate the conditional distribution of the next time step). For each time series, we
sample 500 paths at test time and take the median to be the point forecast of the global
transformer model.

3.1. Analysis of Forecast Accuracy

We summarize the forecast accuracy of each method in Table 3. Overall, our results
establish that the global time series transformer has significantly better forecast accuracy
across all metrics compared to the local forecasting methods and the machine learning
models. In particular, the transformer model presents a substantial 84.93% and 80.69%
improvement in NRMSE and ND, respectively, over the next-best model, the locally trained
and optimized ARIMA models. Similarly, the transformer shows a marked 79.54% im-
provement in msMAPE compared with the next-best method, the seasonal naïve forecast.
While the time series transformer model takes the longest to train (about five times longer
than the LightGBM), the accuracy gains are an order of magnitude better. For illustration,
Figure 4 depicts nine sample time series and each method’s corresponding one-year ahead
forecasts (four-steps). Additional plots for aggregated crop forecasts (i.e., forecasts for each
crop aggregated over all provinces) are provided in Appendix A.

Table 3. Recorded msMAPE, NRMSE, and ND metrics on the test set. The best metric is highlighted
in boldface, while the next-best metric is underlined. The training time in seconds is shown for each
method in the last column. Lower is better.

Model msMAPE NRMSE ND Training Time

Seasonal Naïve 13.5092 5.7848 0.1480 -
ARIMA 17.5130 4.8592 0.1450 280 s

DT 18.3116 7.6188 0.2235 21 s
RF 14.7366 5.7692 0.1598 182 s

LightGBM 15.1735 5.7227 0.1562 320 s
Transformer 2.7639 0.7325 0.0280 1529 s
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generate the best forecast. In cases like this, simple naïve methods such as the seasonal 
naïve forecast can become difficult to beat. A deeper examination of this is provided in the 
next section. For the moment, this also motivates us to dig further into model performance 
by investigating the distribution of error measures across methods. We focus specifically 
on the msMAPE metric and provide information about its distribution in Figure 5 and 
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Figure 4. Nine sample time series covering the period from 2019 to 2022 with the crop name, province,
and region listed, respectively. Observations are the quarterly production volume measured in metric
tons. A one-year forecast (four-steps) was generated for each series, with the Seasonal Naïve in
green, ARIMA in purple, DT in yellow, RF in brown, LightGBM in orange, and Transformer in blue.
While the global time series transformer showed the highest accuracy across all metrics, it does not
necessarily exhibit the best performance for all series, as shown in the bottom three plots.

The bottom three plots of Figure 4 show that the transformer model does not always
generate the best forecast. In cases like this, simple naïve methods such as the seasonal
naïve forecast can become difficult to beat. A deeper examination of this is provided in the
next section. For the moment, this also motivates us to dig further into model performance
by investigating the distribution of error measures across methods. We focus specifically on
the msMAPE metric and provide information about its distribution in Figure 5 and Table 4.
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Figure 5. A density plot representing the distribution of msMAPE values for each forecasting method.
Visually, we see that the distribution of msMAPE values for the global time series transformer is
significantly less skewed compared with both the local and machine learning methods, indicating
that superior forecast accuracy is achieved across most of the dataset.
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Table 4. Summary statistics of the distribution of msMAPE values for each forecasting method. We
see that across all quartiles and the maximum, the global time series transformer shows a substantial
improvement in forecast accuracy compared with both the local and machine learning methods. The
best metric is highlighted in boldface, while the next-best metric is underlined. Lower is better.

Model Mean Stdev Min 25% 50% 75% Max

Seasonal Naïve 11.66 15.35 0.00 2.94 6.83 14.13 181.07
ARIMA 13.91 18.25 0.00 3.51 7.88 16.55 199.95

DT 18.31 18.95 0.00 6.06 12.27 23.40 163.16
RF 14.74 17.88 0.00 4.31 9.04 17.82 180.17

LightGBM 15.17 18.29 0.19 4.50 9.18 18.08 184.31
Transformer 2.76 2.38 0.05 1.25 2.14 3.56 40.53

Figure 5 depicts a density plot representing the distribution of the msMAPE values
for each forecasting method. A visual inspection reveals that the distribution of msMAPE
values for the global time series transformer is significantly less skewed when compared
with both the local and ML methods. This would indicate that the transformer model
achieves better forecast accuracy across most of the dataset. A similar inference can be
drawn from Table 4, which summarizes the summary statistics of the msMAPE distribution.
The transformer model exhibits substantially lower msMAPE values, with improvements
of 57.48%, 68.67%, 74.81%, and 77.62% for each quartile and the maximum when compared
with the next-best method. These results further solidify our conclusion that a global time
series transformer is superior to traditional local forecasting approaches.

Interestingly, we observe in Table 3 that a seasonal naïve forecast achieves better
average performance compared with the locally optimized ARIMA models and the ML
methods in terms of msMAPE. This can also be seen in Figure 5 and Table 4, where the
ARIMA and tree-based ML models show worse performance across the quartiles of the
msMAPE distribution. This seemingly benign result highlights the importance of including
naïve and traditional statistical baselines when evaluating the model performance of ML
and DL-based techniques. While our proposed global deep learning method exhibits
excellent performance, many works in the crop yield forecasting literature neglect to
include such baseline methods (including the studies mentioned in our review of the
literature) and thus fail to properly contextualize the accuracy improvements (or even
the validity) of a proposed method. This concern was also raised during an analysis of
the results of the M5 forecasting competition, where a staggering 64.2% and 92.5% of the
2666 participating teams were unable to outperform a simple seasonal naïve forecast and
the exponential smoothing benchmark (a classic statistical method), respectively [40]. We
hope that our inclusion of naïve and statistical benchmarks will encourage future works to
incorporate them as well.

3.2. Performance Analysis of the Time Series Transformer

To further enrich our analysis, we also examine the performance of the time series
transformer across several dimensions. While the transformer model demonstrates impres-
sive performance, it is equally imperative to investigate its areas of weakness. An analysis
of the model’s limitations can help forecasters and researchers enhance model performance
and provide directions for future work.

First, we examine model forecast performance across regions. Table 5 summarizes the
recorded msMAPE values for the seasonal naïve and transformer methods calculated on
the test set, aggregated by region. Notably, Region XIII (CARAGA) and the MIMAROPA
region show the worst performance across both methods, with msMAPE values exceeding
3.0 in the case of the transformer. A significant drop in accuracy in the seasonal naïve
method indicates that a regime shift in the set of time series for those regions may have
occurred between 2021 and 2022. Upon investigation, CARAGA region’s agricultural sector
exhibited a contraction in overall production in 2022 [66]. This is attributed to major weather
disturbances (primarily Typhoon Odette, also known as Typhoon Rai internationally)
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causing a prolonged impact on agricultural production in the region. The same typhoon
also caused similar damage to the agricultural sector of the MIMAROPA region [67]. This
finding highlights the potential benefits of integrating information regarding catastrophic
meteorological events, such as typhoons, into our forecasting model. It underscores the
significance of undertaking additional efforts in collecting and processing of meteorological
data (e.g., typhoon intensity, wind speed, rainfall), geospatial information (e.g., typhoon
paths and affected areas), and assessment reports of economic and infrastructure damage. In
the deploying of this framework for nationwide agricultural management, key stakeholders,
including policymakers and those responsible for crop production oversight, benefit greatly
from these insights. As a practical strategy, partnering with pertinent government bodies
to acquire relevant data surfaces is a logical step forward.

Table 5. Recorded msMAPE metrics for the S. Naïve and Transformer methods on the test set,
aggregated by region. Lower is better. The number of time series contained in each region is also
shown in the last column. Notably, Region XIII (CARAGA) and the MIMAROPA Region show
the worst performance across both methods, with msMAPE values exceeding 3.0 in the case of the
transformer model.

Region Seasonal
Naïve Transformer Number of

Time Series

REGION I (ILOCOS REGION) 6.0892 2.7566 574
REGION II (CAGAYAN VALLEY) 9.1292 2.8928 759
REGION III (CENTRAL LUZON) 10.8197 2.9276 730
REGION IV-A (CALABARZON) 10.5602 2.9033 596
REGION V (BICOL REGION) 15.6347 2.9834 641
REGION VI (WESTERN VISAYAS) 9.8261 2.4728 938
REGION VII (CENTRAL VISAYAS) 19.9428 2.8230 582
REGION VIII (EASTERN VISAYAS) 14.1325 2.5938 852
REGION IX
(ZAMBOANGA PENINSULA) 9.2573 2.3377 603

REGION X
(NORTHERN MINDANAO) 10.3724 2.6443 888

REGION XI (DAVAO REGION) 6.3099 2.5301 909
REGION XII (SOCCSKSARGEN) 13.5562 2.6834 763
REGION XIII (CARAGA) 20.1935 3.4582 625
BANGSAMORO AUTONOMOUS
REGION IN MUSLIM MINDANAO
(BARMM)

6.3572 2.4596 424

CORDILLERA ADMINISTRATIVE
REGION (CAR) 9.5863 2.8841 520

MIMAROPA REGION 16.4558 3.1619 545

We also investigate model performance as a function of the time series’ scale, repre-
sented by its average annual production. This is illustrated in Figure 6 as a scatterplot,
where the y-axis refers to the time series transformer’s msMAPE, and the x-axis refers
to the average annual production in the log scale. Overall, the time series transformer
encounters challenges in forecasting crops with lower production levels. The overall higher
error values and the prevalence of outliers on the left side of the chart indicate this.
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In light of the observed challenges in predicting crops with lower production lev-
els, several recommendations emerge for forecasters and stakeholders engaged in crop
management:

1. Careful attention to data quality becomes paramount. Rigorous data collection ef-
forts should be directed towards crops exhibiting lower production, ensuring the
availability of accurate and comprehensive datasets.

2. The exploration of data augmentation techniques is one avenue that can be explored
to mitigate the scarcity of information for these crops. Some work has been done in
exploring data augmentation techniques in the context of global forecasting models,
such as GRATIS, moving block bootstrap, and dynamic time-warping barycentric
averaging [68].

3. Developing and integrating features specific to lower-production crops’ growth pat-
terns and characteristics could yield valuable insights for improved predictions. Closer
collaboration with agricultural experts and crop scientists is vital, as their domain
knowledge can further inform model refinement strategies and provide insights into
the unique challenges faced by crops with lower production.

4. Integrating partial pooling and ensemble approaches also hold potential [61,69]. In
this case, partial pooling can be achieved by partitioning time series into subgroups
(e.g., by crop type, region, or dynamics) and fitting a global model on each subgroup.
The criteria and overall methodology for clustering or partitioning groups constitutes
its own body of research, which we leave for future work. Additionally, leveraging the
predictive power of multiple models via ensembling might alleviate the limitations
associated with predicting crops with lower production.

These recommendations offer ways to enhance the model’s performance in predicting
yields with lower production levels and possible avenues for future research.

4. Conclusions

This study proposes using a global forecasting approach for large-scale prediction
of crop production volume using time series transformers. To the best of our knowledge,
this is the first work that focuses on collectively forecasting large-scale disaggregated crop
production across an entire country, with a dataset comprising thousands of time series
from a diverse group of crops.
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We extensively compare model performance, evaluating a diverse range of popular
forecasting techniques. We establish that our approach significantly improves forecast
accuracy across a range of metrics compared with popular tree-based machine learning
models, as well as traditional local forecasting approaches based on statistical and baseline
methods. Our empirical results show a significant 84.93%, 80.69%, and 79.54% improve-
ment in NRMSE, ND, and msMAPE metrics, respectively, over the next-best methods.
By harnessing cross-series information and learning patterns from a large pool of time
series, our proposed method performs well even on time series that exhibit multiplicative
seasonality, intermittent behavior, sparsity, or structural breaks/regime shifts.

Our investigation into the performance of the time series transformer also revealed that
regime shifts due to major weather disturbances, such as typhoons, can cause degradation of
forecast accuracy. This highlights the importance of including information on catastrophic
meteorological events in the modeling process. Incorporating other more general exogenous
variables such as meteorological and climate data (e.g., rainfall, El Niño, and La Niña
climate indices) is not only expected to improve forecast accuracy; it can also be used to
perform more extensive counterfactual or what-if analysis. Unfortunately, such information
is not readily available in a form suitable for modeling and requires meticulous data
collection and processing. As such, we leave this as research for future work. Additionally,
we find that crops with lower production levels are more challenging to predict. This again
highlights the importance of thorough data collection for crops with lower production. This
ensures the presence of precise and complete datasets. From a more technical modeling
perspective, data augmentation techniques and partial pooling and ensembling approaches
also warrant investigation for future research.

As larger datasets become more commonplace, we envision that methods such as ours
will become more vital in augmenting the decision-making process of policymakers and
stakeholders in the agriculture sector. This is especially important for organizations that
operate and oversee large parts of the sector. National government agencies managing food
security and the non-food, industrial, and commercial crop economy would greatly benefit
from large-scale prediction models. Practically speaking, ML-based global forecasting
methods can provide stakeholders with high-quality, disaggregated predictions that allow
for granular planning in both long-term and short-term use cases. It gives a better overall
vision of the country’s crop supply, which is crucial in effectively managing the health of
the agriculture sector. Our results also suggest that close cooperation between other data-
collecting government agencies (e.g., weather and climate agencies, statistical agencies) is
crucial in building robust data-driven frameworks such as our proposed methodology.

While our analysis focuses on the Philippines as a case study, we also identify the
potential for applying our proposed method to data from other countries. Thus, we
conclude that the results of this study further advance the field of applied forecasting in
agricultural production and have practical implications beyond academic research. We see
our method as a practical and effective decision-support tool for policymakers who oversee
crop production in the agriculture sector on a national scale.
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Appendix A

Table A1. List of crops used in this study.

Crops

Abaca Carnation Golden Melon Marang Samsamping
Abaca Leafsheath Carrots Gotocola Mayana San Francisco
Abiu Cashew Granada Melon—Honeydew Basil—Sangig

African Palm Leaves Cassava—Industrial
Use Grapes—Green Melon—Muskmelon Santan

Agitway Cassava—Food Grapes—Red Mini Pineapple Santol
Alugbati Cassava Tops Ubi Mint Sayung-sayong
Alubihod Castor Beans Green Corn Stalk Mongo Serial (Unclear)
Alucon Cauliflower Papaya, Green Mushroom Sesame
Ampalaya Fruit Celery Guava—Guaple Mustard Sineguelas
Ampalaya Leaves Chayote Fruit Guava—Native Napier Grass Sarali (Unclear)
Anonas Chayote Tops Guinea Grass Ngalug Snap Beans

Anthurium Chai Sim Guyabano Nipa Leaves Dracaena—Song of
Korea

Apat-apat Garbansos Halib-on Nipa Sap/Wine Sorghum

Apatot Chico Hanlilika Oil Palm—Fresh Fruit
Bunch Soybeans

Ariwat Siling Labuyo Heliconia Onion Leeks Spinach
Arrowroot Chinese Malunggay Hevi Onion—Bermuda Spraymum
Achuete Chives Ikmo Onion—Native Sibuyas
Asparagus Chrysanthemum Ilang-Ilang Orange Squash Fruit
Aster Coconut Leaves Ipil-Ipil Leaves Oregano Squash Tops
Atis Coconut—Mature Jackfruit—Young Pahid Starapple
Avocado Coconut Sap Jackfruit—Ripe Palm Ornamentals Statice
Azucena Coconut—Young Jatropha Palong Manok Strawberry
Baby’s Breath Coconut Pith Jute Mallow Pandan Fiber Sitao

Bagbagkong Flower Coffee—Dried
Berries—Arabica Kamias Pandan-Mabango Sugarcane—

Basi/Vinegar

Bagbagkong Fruit Coffee—Green
Beans—Arabica Kaong Pangi

Sugarcane—
Centrifugal
Sugar

Bago Leaves Coffee—Dried
Berries—Excelsa Kaong Sap Pansit-Pansitan Sugarcane—Chewing

Balimbing Coffee—Green
Beans—Excelsa Kapok Pao Galiang Sugarcane—Ethanol

Ballaiba Coffee—Dried
Berries—Liberica Karamay Papait Sugarcane—

Panocha/Muscovado

Bamboo Shoots Coffee—Green
Beans—Liberica Katuray Papaya—Hawaiian Sugod-sugod

Banaba Coffee—Dried
Berries—Robusta Kentucky Beans Papaya—Native Kangkong

Banana Male Bud Coffee—Green
Beans—Robusta Kidney Beans—Red Papaya—Solo Sweet Peas

Banana—Bungulan Cogon Kidney Beans—White Parsley Kamote
Banana—Cavendish Coir Kinchay Passion Fruit Tabon-tabon
Banana—Lakatan Coriander Kondol Patola Talinum
Banana—Latundan Cotton Kulibangbang Peanut Sampalok
Banana Leaves Cowpea—Dry Kulitis Pears Tamarind Flower
Banana—Others Cowpea—Green Labig Leaves Pechay—Chinese Tambis
Banana—Saba Cowpea Tops Okra Pechay—Native Gabi
Banana Pith Cucumber Lagundi Pepper Chili Leaves Tawri

Bariw Fiber Dracaena—Marginata
Color Lanzones Pepper—Bell Tiger Grass
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Table A1. Cont.

Crops

Basil Dracaena—
Sanderiana—White Laurel Pepper—Finger Tikog

Batwan Dracaena—
Sanderiana—Yellow Tambo/Laza Persimmon Tobacco—Native

Basil—Bawing Sulasi Dahlia Leatherleaf Fern Pigeon Pea Tobacco—Others
Beets Daisy Lemon Pili Nut Tobacco—Virginia
Betel Nut Dawa Lemon Grass Pineapple Tomato
Bignay Orchids—Dendrobium Lipote Pineapple Fiber Tugi
Black Beans Dracaena Lettuce Suha Turmeric
Black Pepper Dragon Fruit Likway Potato Singkamas
Blue Grass Duhat Patani Puto-Puto Orchids—Vanda
Upo Durian Lime Labanos Water Lily
Breadfruit Pako Longans Radish Pods Watercress
Broccoli Eggplant Sago Palm Pith Rambutan Watermelon
Bromeliad Euphorbia Lumbia Leaves Rattan Fruits Sigarilyas
Cabbage Fishtail Palm Lupo Rattan Pith Wonder Beans
Cacao Flemingia Mabolo Red Beans Yacon

Cactus Dracaena—Florida
Beauty Maguey Rensoni Yam Beans

Calachuci Taro Leaves with Stem Makopa Rice Hay Yellow Bell
Calamansi Gabi Runner Malunggay Fruit Romblon Yerba Buena
Kalumpit Garden Pea Malunggay Leaves Roses Young Corn
Kamangeg Garlic—Dried Bulb Mandarin Labog Sapote
Kamansi Garlic Leeks Mango—Carabao Rubber Zucchini
Camachile Gerbera Mango—Others Sabidokong Irrigated Palay
Sweet Potato Tops Ginger Mango—Piko Salago Rainfed Palay
Canistel Ginseng Mangosteen Saluyot White Corn
Carabao Grass Gladiola Manzanita Sampaguita Yellow Corn

Table A2. List of regions and provinces.

Region Province

REGION I (ILOCOS REGION)

Ilocos Norte
Pangasinan
Ilocos Sur
La Union

REGION II (CAGAYAN VALLEY)

Batanes
Cagayan
Isabela
Nueva Vizcaya
Quirino

REGION III (CENTRAL LUZON)

Aurora
Nueva Ecija
Pampanga
Zambales
Bulacan
Bataan
Tarlac

REGION IV-A (CALABARZON)

Rizal
Quezon
Laguna
Batangas
Cavite
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Table A2. Cont.

Region Province

REGION IX (ZAMBOANGA PENINSULA)

Zamboanga Sibugay
Zamboanga del Sur
City of Zamboanga
Zamboanga del Norte

REGION V (BICOL REGION)

Masbate
Sorsogon
Albay
Catanduanes
Camarines Sur
Camarines Norte

REGION VI (WESTERN VISAYAS)

Aklan
Antique
Capiz
Negros Occidental
Iloilo
Guimaras

REGION VII (CENTRAL VISAYAS)

Cebu
Negros Oriental
Bohol
Siquijor

REGION VIII (EASTERN VISAYAS)

Eastern Samar
Southern Leyte
Northern Samar
Samar
Biliran
Leyte

REGION X (NORTHERN MINDANAO)

Lanao del Norte
Misamis Occidental
Misamis Oriental
Camiguin
Bukidnon

REGION XI (DAVAO REGION)

Davao del Norte
Davao Occidental
Davao Oriental
Davao de Oro
Davao del Sur
City of Davao

REGION XII (SOCCSKSARGEN)

Cotabato
South Cotabato
Sarangani
Sultan Kudarat

REGION XIII (CARAGA)

Dinagat Islands
Surigao del Sur
Surigao del Norte
Agusan del Sur
Agusan del Norte

BANGSAMORO AUTONOMOUS REGION IN
MUSLIM MINDANAO (BARMM)

Tawi-tawi
Maguindanao
Lanao del Sur
Sulu
Basilan
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Table A2. Cont.

Region Province

CORDILLERA ADMINISTRATIVE REGION
(CAR)

Benguet
Kalinga
Abra
Apayao
Mountain Province
Ifugao

MIMAROPA REGION

Occidental Mindoro
Palawan
Oriental Mindoro
Romblon
Marinduque
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