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Abstract: Pea (Pisum sativum) stands out as one of the most significant and productive cool-season
pulse crops cultivated worldwide. Dealing with biotic stresses remains a critical challenge in fully
harnessing pea’s potential productivity. As such, dedicated research and developmental efforts are
necessary to make use of omic resources and advanced breeding techniques. These approaches are
crucial in facilitating the rapid and timely development of high-yielding varieties that can tolerate and
resist multiple stresses. The availability of advanced genomic tools, such as comprehensive genetic
maps and reliable DNA markers, holds immense promise for integrating resistance genes from
diverse sources. This integration helps accelerate genetic gains in pea crops. This review provides
an overview of recent accomplishments in the genetic and genomic resource development of peas.
It also covers the inheritance of genes controlling various biotic stress responses, genes that control
pathogenesis in disease-causing organisms, the mapping of genes/QTLs, as well as transcriptomic
and proteomic advancements. By combining conventional and modern omics-enabled breeding
strategies, genetic gains can be significantly enhanced.
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1. Introduction

Pea (Pisum sativum) is a cool season annual legume crop cultivated throughout the
world. Depending on their uses, three major types of peas are recognized, each with
differing quality requirements. These types are dry or field peas, vegetable or green peas,
and forage peas. Pea usage ranges from dry seeds used for animal feed, dehulled/split
seeds and meal for the food industry, immature seeds or pods for food, to whole plants for
silage or grazing [1]. Dry and forage peas are typically grown under low input conditions,
unlike vegetable peas, which require more intensive irrigation and fertilization. As a result,
although all pea types are prone to the same pests and diseases, variations in cropping
practices might influence their severity. Resistances are equally useful in resistance breeding
for all types of peas [2].

In 2021, dry peas were cultivated on 7.0 Mha worldwide. It was mainly grown as a
low-input crop, with an average yield of 1837 kg/ha over the last 10 years, resulting in
a production of 12.4 MT [3]. The main dry pea producer countries in 2021 were Russia
(3.2 MT), followed by Canada (2.3 MT), China (1.5 MT), India (0.9 MT), Ukraine (0.6 MT),
and France (0.6 MT). Historically, France was the largest worldwide producer from 1988
until 1998, when it was surpassed by Canada, and in 2008, it was also surpassed by Russia,
China, and India (Figure 1).

A completely different trend for vegetable peas can be observed. Despite being grown
on a smaller acreage (2.6 Mha in 2021), green pea achieves higher production (20.5 MT)
thanks to a higher world average yield that reaches 7752 kg/ha. World production has
increased markedly since 1990, mainly due to increased production in China. The main
vegetable pea producers in 2021 were China (11.5 MT), India (5.8 MT), Pakistan (0.5 MT),
and France (0.3 MT) (Figure 2).
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kg/ha. However, this yield gain is lower than the one achieved for soybean (27.8 kg/ha) or 

wheat (40 kg/ha), indicating lower attention paid to pea research compared to those crops. 

One of the main reasons for this relatively low yield is the susceptibility of peas to 

biotic stresses. Pea is highly susceptible to many root and aerial diseases (such as powdery 

mildews, rusts, mildews, wilts, and root rots) and pests, which constantly reduce its yield 

(from about 20% to 100% locally in case of acute infection) and product quality [1] (Table 

1). In all cases, introducing durable resistance is recognized as the most efficient and en-

vironmentally friendly control measure. Some level of resistance has been identified 

against most pea diseases and pests [1]. Histological and biochemical studies showed that 

resistance was due to a wide range of defense mechanisms, including cell wall strength-

ening, papilla formation, hypersensitive response, and accumulation of phenolic com-

pounds such as pisatin, PR proteins, and reactive oxygen species, among others [1]. This 

review provides a concise overview of recent accomplishments in the genetic and genomic 

resource development of peas. It also covers the inheritance of genes controlling the most 

important biotic stress responses in peas. 
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Figure 1. Trend (1961–2021) of dry pea production globally and in the five largest producing countries.
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Figure 2. Trend (1961–2021) of vegetable pea production globally and in the five largest
producing countries.

The average yield of dry pea has doubled globally, from approximately 1000 kg/ha in
1961 to the current approximately 2000 kg/ha, resulting in an annual yield gain of 16.4 kg/ha.
However, this yield gain is lower than the one achieved for soybean (27.8 kg/ha)or wheat
(40 kg/ha), indicating lower attention paid to pea research compared to those crops.

One of the main reasons for this relatively low yield is the susceptibility of peas to
biotic stresses. Pea is highly susceptible to many root and aerial diseases (such as pow-
dery mildews, rusts, mildews, wilts, and root rots) and pests, which constantly reduce its
yield (from about 20% to 100% locally in case of acute infection) and product quality [1]
(Table 1). In all cases, introducing durable resistance is recognized as the most efficient
and environmentally friendly control measure. Some level of resistance has been identified
against most pea diseases and pests [1]. Histological and biochemical studies showed that
resistance was due to a wide range of defense mechanisms, including cell wall strengthen-
ing, papilla formation, hypersensitive response, and accumulation of phenolic compounds
such as pisatin, PR proteins, and reactive oxygen species, among others [1]. This review
provides a concise overview of recent accomplishments in the genetic and genomic resource
development of peas. It also covers the inheritance of genes controlling the most important
biotic stress responses in peas.
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Table 1. Characteristics of the most important biotic stresses of pea crop.

Biotic Stress Pathogen Species Source of Infection Organ Distribution

Aerial fungi

Ascochyta blight
complex Ascochyta pisi Lib.

Infected crop debris,
seedborne, ascospores,

and conidia

Leaves, stems, pods,
and seeds

Europe and North
America

A. pinodes Berk. and
Blox.

Infected crop debris,
seedborne, ascospores,

and conidia

Leaves, stems, pods,
and seeds Worldwide

Phoma medicaginis var.
pinodella (L.K. Jones)

Boerema

Infected crop debris,
seedborne, ascospores,

and conidia

Leaves, stems, pods,
and seeds Worldwide

P. koolunga Davidson
Infected crop debris,

seedborne, ascospores,
and conidia

Leaves, stems, pods,
and seeds Australia

P. glomerata [(Corda)
(Wollenw. and

Hochapfel)]

Infected crop debris,
seedborne, ascospores,

and conidia

Leaves, stems, pods,
and seeds Australia

Powdery mildew Erysiphe pisi (DC.) Infected crop debris
and conidia

Leaves, stems, and
pods

Worldwide climates
with warm, dry days

and cool nights

E. trifolii (Grev.) Infected crop debris
and conidia

Leaves, stems, and
pods

USA, India, Spain, and
Tunisia

Downy mildew
Peronospora viciae

(Berk.) Caspary f.sp.
pisi Sidow.

Infected crop debris,
oospores, and conidia

Leaves, stems, pods,
and seeds

Cool and wet weather
conditions

Rust Uromyces pisi (Pers.)
Wint.

Infected debris of
Euphorbia cyparissias L.

and urediospores

Leaves, stems, and
occasionally pods Temperate regions

U. viciae-fabae (Pers.) de
Bary

Infected crop debris,
aeciospores, and

urediospores

Leaves, stems, and
occasionally pods

Tropical and
sub-tropical regions,

e.g., India, China

Soilborne diseases

Fusarium wilt
Fusarium oxysporum

f.sp. pisi (W.C. Snyder
and H.N. Hansen)

Infected crop debris,
chlamydospores, and

micro- and
macroconidia

Roots, xylem vessels,
and seeds

Worldwide, in both dry
and wet field

conditions

Fusarium root rot
complex

Fusarium solani f. sp.
pisi (W.C. Snyder and

H.N. Hansen)

Infected crop debris,
chlamydospores, and

micro- and
macroconidia

Roots and seeds
Worldwide (mainly in
the Pacific North-West

regions)

F. graminearum Schw.

Infected crop and
cereal debris,

ascospores, and micro-
and macroconidia

Roots and seeds Canada, USA, and
Europe

F. avenaceum (Fries)
Saccardo

Infected crop debris
and ascospores Roots and seeds Canada, USA, and

Europe

Common root rot Aphanomyces euteiches
(Drechsler)

Infected soil and crop
debris, oospores, and

zoospores

Roots, stems, and
leaves

Worldwide, temperate,
and wet areas

Rhizoctonia root rot Rhizoctonia solani Kühn Infected soil and
sclerotia

Roots, stems, and
leaves

Temperate and
subarctic areas
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Table 1. Cont.

Biotic Stress Pathogen Species Source of Infection Organ Distribution

Bacteria

Pea blight Pseudomonas syringae
pv. pisi Sackett

Infected seeds and crop
debris

Leaves, stems, pods,
and seeds

Areas with cool and
wet weather

Viruses
Pea Seed-borne Mosaic

Virus PSbMV Infected seeds and
aphids

Leaves, stems, pods,
and seeds Worldwide

Pea Enation Mosaic
Virus PEMV

Infected aphids
(infected seeds in a
small proportion)

Leaves, stems, pods,
and seeds

USA, Europe, Africa,
and India

Nematodes

Cyst nematodes Heterodera goettingiana
Liebscher

Infected soil and roots
with eggs Roots Worldwide

Root-knot nematodes
Meloidogyne incognita
(Kofoid and White)

Chitwood

Infected soil and roots
with eggs Roots Europe

Root lesion nematodes Pratylenchus neglectus
Rensch

Infected soil and roots
with eggs Roots Worldwide

P. thornei Sher and
Allen

Infected soil and roots
with eggs Roots Worldwide

Parasitic plants

Broomrapes Orobanche crenata
Forskal Infested soil with seeds Roots Mediterranean basin

Insect pests
Pea weevil Bruchus pisorum L. Infested seeds Pods and seeds Worldwide

Pea aphid Acyrthosiphon pisum H.

Infested soil and crop
debris with eggs,
parthenogenetic

individuals

Leaves, stems, pods,
and seeds Temperate areas

2. State of the Art by Groups of Diseases and Pests
2.1. Ascochyta Blight

Ascochyta blight is a complex disease that causes necrotic spots on leaves and stems.
It can be caused by several fungi, such as Ascochyta pisi, Peyronellaea pinodes, and different
species of Phoma, including Ph. medicaginis var. pinodella, Ph. koolunga, and Ph. glomer-
ata [4]. Out of these species, P. pinodes appears to be the most widespread and damaging.
Only moderate levels of quantitative resistance are available [5–11]. Several quantitative
trait loci (QTLs) associated with partial resistance to ascochyta blight have been reported
(Table 2) [7–11]. However, these QTLs explain only a limited percentage of the phenotypic
variation. In addition, the associated markers are still too far away, impeding their imple-
mentation for marker-assisted selection (MAS) and identification of the underlying genes.
As a result, progress in resistance breeding is slow [12]. Defense responses against P. pinodes
include the accumulation of pisatin [13], activation of defense genes such as phenylalanine
ammonia-lyase, chalcone synthase, pathogenesis related (PR) proteins, and polyphospho-
inositide metabolism [14]. Resistance is associated with reduced colony establishment
and smaller lesion sizes as a consequence of protein cross-linking, hydrogen peroxide
accumulation, and a greater frequency of epidermal cell death [15]. Early synthesis of
pisatin was also identified as a key factor in resistance against P. koolunga [16]. Several
transcriptomic and proteomic studies have been performed to identify candidate genes and
proteins to be used as markers. A number of transcriptomic studies, such as the Medicago
truncatula microarray [17], expressed sequence tag (EST)-based microarray analysis [18],
DeepSuperSAGE genome-wide transcriptional profiling [19], or Massive Analysis of cDNA
Ends (MACE) [20], identified a large number of up- or down-regulated genes that could
be used as expression markers for resistance. Similarly, shotgun proteomics allowed the
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identification of protein markers that could be used to select for resistance in peas [21].
A recent screening of a large collection of peas against multiple isolates of P. pinodes and
Ph. koolunga identified novel resistance sources to both pathogenic species [10]. It also
identified more closely linked markers and novel candidate resistance genes, showing
promise for future resistance breeding of pea against ascochyta blight [10].

2.2. Mildews

Powdery mildew is a foliar disease mainly incited by the biotrophic fungus Erysiphe
pisi, although other species such as E. trifolii can also infect peas. Three monogenic resis-
tance genes are available so far for pea breeding, along with accessions showing varying
levels of resistance. Two of these genes are recessive (er1 and er2), while the third one is
dominant (Er3) [22]. These three genes have been mapped using different types of markers
and are located on chr1LGVI, chr5LGIII, and chr4LGIV, respectively [22,23]. From these
three genes, er1 is the most widely deployed gene in breeding programs. Despite being
monogenic, the resistance provided by er1 is considered durable [24]. This gene confers
a pre-penetration non-hypersensitive response [25], not associated with callose papillae
deposition but with protein cross-linking [26]. Histochemical and biochemical analyses
suggest that er1 resistance possibly utilizes antioxidant machinery to maintain a low level
of ROS [27]. The er1 phenotype is conferred by loss-of-function mutations in the susceptible
gene PsMLO1 [28,29]. To date, 12 er1 alleles have been identified, including two artificial
chemical mutations (er1-5 and er1-10) and ten natural mutations [30]. However, E. trifolii is
known to defeat er1 resistance, requiring breeding attention [31,32]. Therefore, pyramiding
more than one gene into a single background is desirable. The er2 expression is affected by
temperature and plant age, being effective in mature leaves and at temperatures higher
than 25 ◦C [25]. The er2 resistance is likely conferred by maintaining ROS balance coupled
with rapid pathogenesis-related gene 1 (PR-1) accumulation [33]. Transcriptome analysis
identified 2755 transcripts involved in resistance to E. pisi [34]. Proteomic analyses have
identified proteins involved in virulence and pathogenesis, including signal transduction,
secondary metabolites, and stress response [35,36]. Er3 was initially identified in a wild
P. fulvum accession. It confers complete resistance to E. pisi through hypersensitive cell
death initiated rapidly after penetration [37]. Er3 has been mapped onto chr4LGIV, but no
candidate genes have been identified yet. It was nonetheless successfully transferred to
some elite pea cultivars [37,38].

Pea downy mildew, caused by the oomycete Peronospora viciae f.sp. pisi, can be impor-
tant in cooler areas. Monogenic resistance has been reported with at least one dominant
gene (Rpv) and two complementary recessive ones (rpv-1 and rpv-2) [39]. Differential
expression of host proteins has been identified [40]. More recently, markers associated with
adult plant resistance have been identified by genome-wide association study (GWAS)
approaches on chr1LGVI, chr3LGV, and chr6LGII [41], offering some potential for future
breeding although no candidate genes could be identified.

2.3. Rusts

Pea rust is a widespread disease that affects both leaves and stems. In temperate
climates, it is caused by the pathogen Uromyces pisi, whereas U. viciae-fabae is prevalent in
tropical areas. Despite a scarcity of hypersensitive responses, levels of partial resistance are
available in both cases [42,43], possibly attributed to a single gene/major QTL (named Ruf
for U. viciae-fabae and UpDS for U. pisi) [44–46]. In addition, a recent study has identified
for the first time a late-acting hypersensitive response in a pea-U. pisi pathosystem [47].
Further studies targeting the establishment of its genetic base are ongoing.

Slow rusting resistance was described in peas as a type of resistance independent of the
pathogenic race. It is characterized by retarded disease progression, resulting in moderate
disease levels despite a compatible host-pathogen interaction [42,43,47,48]. This resistance
is pre-haustorial in nature and influenced by the crop growth stage and environment. In
addition, slow-rusting, is often associated with the formation of lignin and callose as part
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of the plant’s defense mechanisms. The phenyl ammonia lyase (PAL) enzyme might play
a role in the expression of slow rusting, although additional genes might also participate.
Total phenolic accumulation, induction of actin, and several pathogenesis-related proteins
such as PR-1 and PR-2 have also been linked to partial resistance [48–50].

2.4. Wilts and Root Rots

Wilts and root rots are major soilborne diseases of peas that are difficult to manage.
Fusarium wilt is incited by several races of Fusarium oxysporum f.sp. pisi. Single race-
specific resistance has been detected for races 1, 5, and 6 [51] while resistance to race 2 is
quantitative [52]. Resistance to races 1 and 5 has been successfully incorporated into pea
cultivars through classical breeding [53,54]. Genetic mapping efforts located resistance
to races 1 and 5 in pea chr5LGIII and chr6LGII, respectively [55]. Different studies have
identified DNA markers linked to race 1 resistance genes [56–58]. Resistance to race 2 has
also been identified [52,59], but it is more complex, with at least two minor loci (Fnw3.1
and Fnw3.2) and a major one (Fnw4.1) [60]. Further studies showed the role of physical
and chemical barriers within pea root tissues in resistance to race 2, leading to cell wall
and xylem reinforcement to block pathogen growth [61]. A pre-penetration resistance
mechanism reducing Fop race 2 germination mediated by the constitutive exudation of
pisatin was also detected in some pea accessions [62]. In addition, a proteomic analysis
identified 53 proteins responsible for various functions in pea, confirming the involvement
of phenolics in the resistance to race 2 [63].

Fusarium root rot in pea is mainly incited by Fusarium solani f. sp. pisi (Fsp), although F.
avenaceum is gradually gaining prominence [64]. Some levels of incomplete resistance have
been reported. Interestingly, this resistance is more frequently detected in genotypes with
pigmented flowers and seed coats [65,66]. QTL associated with Fsp resistance have been
determined, explaining up to 53% of the phenotypic variance [65,67–69]. More recently,
SNPs have been identified in Fsp-responsive differentially expressed genes. They were used
to refine the location of QTLs associated with partial Fsp resistance using composite interval
mapping (CIM) in two recombinant inbred line (RIL) populations [70]. This approach
identified five QTLs explaining from 5.3% to 14.8% of the variance. The evaluation of
another RIL population also allowed the identification of five QTLs for resistance to F.
graminearum, another species of the Fusarium root rot complex. The most stable QTL was
localized in linkage group IV [71].

Aphanomyces root rot is caused by the soilborne oomycete Aphanomyces euteiches.
The general threat of this rot complex on peas in most growing regions drove research to
improve its management and resistance. These studies have aided in pathogen characteri-
zation and identified alleles linked to established partial resistance [72]. Genetic studies,
using either biparental populations [73,74] or GWAS [75–77], show the complex inheritance
underlying resistance, complicating resistance breeding. A transcriptome analysis revealed
the involvement of genes associated with phenylpropanoid metabolism, strengthening of
the cell wall, and hormonal signaling (jasmonic acid, auxin, and ethylene) in response to A.
euteiches [78]. These efforts have guided the improvement of root rots resistance, specifically
toward precision and maker-assisted breeding [79]. This allows the transfer of several of
the main QTLs to advanced pea lines showing increased levels of resistance, although no
cultivar with full resistance has been developed so far [80].

Rhizoctonia root rot, caused by Rhizoctonia spp., is another soilborne disease that can
reduce pea yield in some regions. Little resistance is available so far, with only reports of
reduced infection linked to seedling epicotyl thickness and plants becoming less susceptible
with age [81]. On the other hand, the Pythium spp. complex is responsible for dumping off
as well as seed/seedling and shoot rot. Few sources of resistance are available, calling for
the need to intensify resistance screenings [82,83].
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2.5. Root Parasitic Nematodes

Parasitic nematodes can cause significant damage to peas. They are challenging to
manage due to their broad host range and the scarcity of available resistance sources. The
most damaging nematodes include cyst, root knot, and root lesion nematodes. The most
widespread cyst nematode is Heterodera goettingiana, which can survive in the soil for long
periods [84]. No resistance has been reported against this pathogen so far. However, studies
have shown that lipoxygenase enzymes can inhibit H. goettingiana growth in pea roots [85],
offering potential for resistance breeding.

The most damaging knot nematode is Meloidogyne incognita, whose management is
also difficult due to its broad host range and the lack of identified resistance. A negative
correlation between pea biomass and root knot infection has been found [86]. The most
damaging root lesion nematodes are Pratylenchus neglectus and P. thornei. No resistance is
available so far in pea, while some resistance has been identified in other legume crops [87].
By contrast, some resistance has been identified in pea against P. nanus [88].

2.6. Broomrapes

Broomrapes are soil-borne root parasitic plants belonging to the family Orobancheae.
Among the most damaging and widely distributed species infecting peas is Orobanche
crenata [89]. Pea breeding for broomrape resistance has been slow but successful [90,91].
Phenotypic evaluations in the field and under controlled conditions in pots and rhizotrons
have revealed some sources of partial resistance. Resistance was mediated by a range
of mechanisms, including avoidance, low induction of seed germination, and inhibition
mechanisms against the pathogen [92–95]. Partial resistance has been identified in wild
pea and landraces [90] and successfully bred into pea cultivars [96–98]. As an alternative to
resistance, broomrape can be managed by breeding for early maturity lines, which have
the advantage of escaping to outcompete the parasite [99]. Preliminary evaluations on a
pea core collection panel have also presented several potential resistance lines against O.
crenata under field conditions [100].

A first mapping study detected two QTLs for broomrape resistance using DNA mark-
ers in an F2:3 bi-parental population [101]. Later, four QTLs were identified as associated
using RIL populations derived from the same cross [102]. These were associated with
broomrape emergence and development under field conditions and/or with specific re-
sistance mechanisms in vitro. More recently, the study of a different RIL population [103]
allowed the identification of three QTLs associated with the field response to O. crenata
infection and the development of three KASP markers linked to these QTLs.

Gene expression approaches have been used to profile Medicago truncatula against O.
crenata, revealing a potential comprehensive source of O. crenata resistance and gene pat-
terns associated with plant pathological resistance [104]. Proteomics has been employed to
decipher protease inhibition pathways to improve the molecular basis for early broomrape
infection, first in M. truncatula [105] and then in pea [106]. This helped our understanding
of the biochemical processes involved in resistance and the selection of potential candidates
for improvement through gene silencing (RNAs, siRNA) or gene editing (CRISPR/Cas9),
which could contribute to delivering O. crenata resistance in the future.

2.7. Bacterial Blight

Up to eight races of the seedborne bacteria Pseudomonas syringae pv. pisi have been
reported to affect peas [107]. Race-specific monogenic resistances have been identified
and mapped [108–111]. Additional QTLs have also been reported [112]. Interestingly, P.
abyssinicum accessions exhibit resistance (total or partial) to all races, including race 6. This
valuable resistance in P. abyssinicum is controlled by a major recessive gene along with
several modifiers [113]. In an effort to gain deeper insights into the molecular mechanisms
underlying bacterial blight resistance in peas, a deepSuperSAGE transcriptomic approach
was employed. This led to the identification of UniTags differentially expressed between
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resistant and susceptible accessions [110]. These UniTags represent potential candidate
genes that may play crucial roles in conferring resistance against this pathogen.

2.8. Viruses

Pea Seed-borne Mosaic Virus (PSbMV) can be transmitted through both infected seeds
and aphids. Up to four different races or pathotypes of the virus have been detected.
Race-specific recessive resistance genes are available (sbm1 to 4) [114,115]. It is worth
noting that all these genes, except sbm2, are clustered in the same chr1LGVI region [116].
KASP markers have been developed, identifying two PSbMV alleles, and used to identify
novel sources of resistance in pea germplasm [117,118]. Apart from PSbMV, other viruses
affecting peas have been studied for resistance. A recessive monogenic resistance has been
identified against the Bean Yellow Mosaic Virus (BYMV) [119]. Similarly, resistance to Bean
Leaf Roll Virus (BLRV) has been found to be conferred by a recessive gene [120]. By contrast,
Pea Enation Mosaic Virus (PEMV) resistance is controlled by a dominant gene (En), located
on chr5LGIII. The identification of closely linked markers has allowed the prediction of En
presence with 99.4% accuracy, making it highly suitable for MAS strategies [121].

2.9. Insect Pests

Pea weevils (Bruchus pisorum) cause significant damage to stored pea seeds, leading to
increasing concerns in organic production. Adults feed on pollen, causing no damage, but
larvae emerging from eggs laid on young pods penetrate through the pod and seeds, feeding
on the cotyledon and molting inside the seeds. Moderate levels of resistance have been
reported in cultivated and wild pea relatives [122,123]. Resistance involves a combination of
antixenosis and antibiosis mechanisms, resulting in reduced seed infestation and retarded
larval development [124,125]. Genetic studies in interspecific crosses of P. fulvum suggested
three recessive alleles [126]. Additionally, neoplasm formation is suggested to contribute to
bruchus resistance. Neoplasm formation is controlled by a single dominant gene, and its
expression is highly influenced by environmental factors [127]. Accordingly, three QTLs
associated with reduced seed infestation and one QTL for reduced larval development were
identified from a RIL population, along with seven potential candidate genes located in
close proximity to these QTLs [128]. This offers breeders opportunities to develop effective
and sustainable strategies for weevil control in peas.

Pea aphids (Acyrthosiphon pisum) can be very constraining to peas. Incomplete resis-
tance is available. It results from a combination of antixenosis and antibiosis resistance
mechanisms [129–132]. QTLs associated with tolerance to aphid damage have been re-
ported in a RIL population derived from two P. fulvum accessions [133]. Further genetic
studies have enabled the identification of a major-effect quantitative trait locus, ApRVII,
on Chr7LGVII, associated with resistance against different adapted and non-adapted bio-
types of pea aphids [131]. A subsequent GWAS [132] on a different pea panel identified
additional SNPs associated with resistance. Earlier proteomic analysis identified pro-
teins related to various processes, including amino acid and carbohydrate metabolism,
photosynthesis, folding/degradation, stress response, signal transduction, and transcrip-
tion/translation [134].
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Table 2. List of genes and QTL available for pea resistance breeding against the most important pea
diseases and pests.

Biotic Stress Pathogen Gene/QTL Effect Linkage Group Resistance Type Reference

Aerial fungi or oomycete

Ascochyta blight Peyronellaea
pinodes

Dp1.1, Dp1.2, Dp1.3,

Minor to
moderate

Chr2LGI

Incomplete [6,7,11]

MpII.1, Chr6LGII
Dp3.1, Dp3.2, Dp3.3,

Dp3.4, Chr5LGIII

Dp3.5, Dp3.6, Dp3.7,
Dp3.8,

Dp3.9, MpIV.1 Chr4LGIV
Dp5.1, Dp5.2, Dp5.3, Chr3LGV
Dp6.1, Dp6.2, Dp6.3,

Dp6.4, Chr1LGVI

Dp7.1, Dp7.2, Dp7.3 Chr7LGVII

Powdery mildew Erysiphe pisi
er1, Major Chr1LGVI

Incomplete [22,23]er2, Major Chr5LGIII
Er3 Major Chr4LGIV

Downy mildew
Peronospora
viciae f. sp. pisi

3552605, Chr1LGVI

Complete [39,41]

3559062, Chr3LGV
5943381 Chr6LGII

Rpv Major Chr2LGI
rpv-1 Minor
rpv-2 Minor

Rust Uromyces pisi
UpDSII, Major

Incomplete [46]UpDSIV, Major
UpDSIV.2 Minor

Uromyces
viciae-fabae Ruf Major Incomplete [44]

Soilborne fungi or oomycete

Fusarium root rot

Fusarium solani
f. sp. pisi

Fsp-Ps2.1, Chr6LGII

Incomplete [68,69]

Fsp-Ps6.1, Chr1LGVI
Fsp-Ps3.1, Fsp-Ps3.2,

Fsp-Ps3.3, Chr5LGIII

Fsp-4.1, Chr7LGVII
Fsp-Ps7.1

F. graminearum
Fg-Ps3.1, Fg-s3.2, Minor Chr5LGIII

Incomplete [71]Fg-Ps4.1, Fg-s4.2, Moderate Chr4LGIV
Fg-Ps5.1 Minor Chr3LGV

Fusarium wilt

F. oxysporum. f.
sp. pisi race 1 Fw Major Chr5LGIII Complete [56–58]

F. oxysporum. f.
sp. pisi race 2

Fnw 3.1, Fnw 3.2, Minor Chr5LGIII Complete [60]Fnw 4.1 Major Chr4LGIV

F. oxysporum. f.
sp. pisi race 5 Fwf Major Chr6LGII Complete [55]

Common root rot Aphanomyces
euteiches

Ae-Ps1.1, Ae-Ps1.2 Minor Chr2LGI

Incomplete [74–76]

Ae-Ps2.1, Ae-Ps2.2 Minor Chr6LGII
Ae-Ps3.1, Ae-Ps3.2 Minor Chr5LGIII
Ae-Ps4-4, Ae-Ps4.5 Minor Chr4LGIV

Ae-Ps5.1, Minor Chr3LGV
Ae-Ps6.1, Minor Chr1LGVI
Ae-Ps7.6 Major Chr7LG7



Agriculture 2023, 13, 1825 10 of 23

Table 2. Cont.

Biotic Stress Pathogen Gene/QTL Effect Linkage Group Resistance Type Reference

Bacteria

Pea blight Pseudomonas
syringae pv. pisi

Ppi1, Chr1LGVI

complete [108–110]
Ppi2, Chr7LGVII

Ppi3, Ppi4, Chr6LGII,
Ppi8 Chr5LGIII

Pseudomonas
syringae pv.
syringae

PsBB1-Psy Minor Chr6LGII

complete [111,112]
Psy1, PsBB3-Psy,

PsBB4-Psy Major Chr5LGIII

Psy2, Minor Chr1LGVI
PsBB5-Psy, PsBB6-Psy Minor Chr7LG7

Viruses

Pea Seed-borne
Mosaic Virus PSbMV

sbm-1, sbm-3, sbm-4 Major Chr1LGVI Complete [114]sbm-2 Chr6LGII

Pea Enation
Mosaic Virus PEMV En Major Chr5LGIII Complete [121]

Pea common
Mosaic PMV mo Major Chr6LGII Complete [119]
virus

Parasitic Plant

Broomrape Orobanche
crenata

Nºbr03-1, Chr2LGI Moderate

Partial [102,103]
Nºbr03-2, PsOcr3 Chr5LGIII Minor

Nºbr03-3, Chr3LGV Moderate
Nºbr04, PsOcr2, Chr1LGVI Moderate

PsOcr1 Chr4LGIV Major

Insect Pest

Pea weevil Bruchus pisorum
BpSI.I, Chr2LGI

Moderate Partial [128]BpSI.II, Chr6LGII
BpSI.III, BpLD.I Chr4LGIV

Pea aphid Acyrthosiphon
pisum

ApI, Chr7LG7 Minor

Partial [131,133]

ApII, Chr3LGV Minor
ApIII, Chr5LGIII Minor

ApIV.1, ApIV.2 Chr6LGII Minor
ApV.1, ApV.2, ApV.3, Chr1LGVI Major

ApRVII Chr7LG7 Major

3. Germplasm Resources for Tolerance Traits

Pea was primarily domesticated in the Near East about 10,000 years ago, with sec-
ondary expansion and diversification in the Mediterranean, East Africa with the Abyssinian
types, and central Asia with the long-vined Afghan types. Similar to other grain legumes,
peas were a key diet component of early civilizations, complementing cereals. It is widely
grown in temperate regions as a winter crop across Europe, Asia, and North America. The
most commonly accepted taxonomic classification assigns peas to the Pisum genus and
distinguishes three species: P. sativum, P. fulvum, and P. abyssinicum [135]. However, the
classification of P. abyssinicum as an independent species or a subspecies within P. sativum
is still under debate [136,137]. P. sativum is the major species of the genus. It contains both
wild and cultivated peas. A recent study separated this species into at least five subspecies:
P.s. elatius (wild), P.s. humile (wild), P.s. jomardii (domesticated), P.s. arvense (domesticated),
and P.s. sativum (domesticated) [137]. Additional wild subspecies have also been described,
although their taxonomic status remains unclear [137]. All Pisum species and subspecies
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are crossable and produce viable hybrids, albeit at a low rate [138,139]. This facilitates the
exploitation of the wide genetic variation of peas during pre-breeding.

Breeding requires the availability of germplasm with sufficient diversity for the desired
traits and affordable screening methods. Large germplasm collections, amounting to over
60,000 accessions and encompassing wild, landrace, breeding lines, and mutants, are main-
tained in a number of gene banks, constituting a valuable pre-breeding resource [140–144].
Pea diversity held in gene banks has been characterized using morphological descriptors
and agronomic traits. Subsets of pea germplasm have also been searched for resistance to
specific stresses. However, it represents only 1% of the collections. The rest remains largely
uncharacterized against most stresses, leaving room to identify needed resistances. Wild
relatives are excellent candidates for sources of resistance to biotic stresses. Fortunately, the
various Pisum species and subspecies cross readily, making the genetic diversity available
in the secondary gene pool accessible for pea breeding. As a result, resistance to pea weevil,
ascochyta blight, broomrape, and powdery mildew has already been transferred to pea
from wild Pisum by sexual hybridization [37,98,126]. To access the tertiary gene pool,
attempts have been made to cross P. sativum with more distant species, such as Lathyrus
sativus, through protoplast fusion. This allows the formation of somatic hybrids [145], but
no fertile plants have been generated so far.

4. Generating Novel Variations for Pest and Disease Resistance
4.1. Induced Mutagenesis

Induced mutagenesis has been frequently used in legume breeding and remains a
valuable breeding tool [146–148]. Large mutant collections can be easily produced through
chemical or physical methods. However, identification of the desired mutants within
these large collections required the availability of a strong selection method. Although
tedious, this approach has allowed the identification of mutants with resistance against
powdery mildew [148–150], fusarium wilt [151], and aphanomyces root rot [152]. More
recently, the establishment of targeted-induced local lesion in the genome (TILLING) and
deletion-TILLING platforms has facilitated high-throughput identification of mutated
sites [153,154]. Although their application has been so far restricted to functional analysis
of candidate genes, identified mutants can be applied directly or as a pre-breeding material
for resistance breeding.

4.2. Transgenic Technology

Pea genetic transformation is feasible but arduous due to difficulties in plant regen-
eration [155]. Transgenic pea lines resistant to the tobacco budworm insect [156] or with
increased resistance to viruses such as Alfalfa Mosaic Virus [157], Pea Seedborne Mosaic
Virus [158], and Pea Enation Mosaic Virus [159] have been achieved. Despite these achieve-
ments, the level of resistance gained by the transgenic lines was sometimes lower than
expected, or these lines were not accepted by the market for various reasons. For example,
transgenic lines expressing four antifungal genes did not show consistent resistance to
fusarium root rot [160]. By contrast, the transfer of α-amylase inhibitor from common
beans provided protection against bruchus weevil in pea [161], but raised concerns due to
their potential immunogenicity [162]. The main obstacle to adopting transgenic technology
in pea breeding is the rigid genetically modified organism (GMO) legislation in some
countries, coupled with low public acceptance. Accordingly, no transgenic pea lines have
so far reached commercial application.

4.3. Gene Editing

New breeding techniques based on targeted gene editing offer new hope [163]. This
approach is based on the targeted modification of endogenous genes. It could potentially
remove some of the social concerns raised by GMOs since it does not involve the addi-
tion of foreign DNA. Targeted gene editing has been successfully established for several
legumes but remains a challenge for peas due to their regeneration recalcitrance [164].
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Two transformation methods have recently been tested for gene editing in pea [163,165].
These methods, based on mesophyll protoplast transformation and Agrobacterium-mediated
explant transformation, respectively, showed promise for efficient gene editing of pea cells.
However, regeneration of stable gene-edited plants, which has only been tested for the
Agrobacterium transformation methods, was lower than 1%. This demonstrates the feasibil-
ity of the transformation methods, although additional efforts should be made to improve
gene-editing efficiency and regeneration rate in this species [163,165].

5. Understanding the Genetic Makeup of Plant Traits Imparting Resistance

Pea has a long history as a model species since the studies of Mendel, which con-
tributed to establish his laws of genetics and heredity. Despite that, pea research lagged
behind many other crops for decades due to its large genome size, which delayed the
development of genomic resources [137]. Fortunately, modern genomic tools, including
next generation sequencing (NGS)-derived approaches that allow genome-wide associ-
ation studies (GWAS), genomic selection (GS), and omic platforms (transcriptomic, pro-
teomic, and metabolomic), are rapidly developing in pea and are readily adopted by
breeders [166–168]. When lacking in elite pea cultivars, resistance to pests and diseases can
be searched for in wild, mutant, unadapted germplasm, or other species and introgressed
by crossing, mutagenesis, transgenic technology, or gene editing. The improvement and
cost reduction of NGS-derived approaches and the release of the pea reference genome
are facilitating the identification of new resistance loci or alleles. It also facilitates the
development of diagnostic markers to be used in breeding, which should allow the more
efficient implementation of marker-assisted breeding (MAB) [169,170]. This is expected
to accelerate the generation of novel pea lines with higher resistance to pests and dis-
eases. However, introducing durable and sustainable resistance requires complementing
this molecular knowledge with a thorough understanding of plant and pathogen biology,
their genetic variability, and host-pathogen associations. Implementation of advanced
histological approaches [25,61] allows identification of the range of resistance mechanisms
available against each biotic stress. In addition, integration of transcriptomic, proteomics,
and metabolomics approaches [18–21,34,35,63,72,87] can contribute to identifying their
underlying genes and proteins. However, implementation of these approaches requires
detailed phenotyping and the establishment of affordable and reliable resistance screening
methods, which is becoming the true bottleneck for resistance breeding.

5.1. Phenotyping and Phenomics

The decrease in sequencing cost and the constant development of novel genomic tools
provide opportunities for the identification of new allelic variants effective against complex
pea diseases. However, the exploitation of this wealth of resources requires accurate and
affordable screening tools, which is today a major bottleneck. Detailed screening protocols
have been established for most pests and diseases under field, greenhouse, or controlled con-
ditions, but they remain highly time-consuming [23,37,39,43,47,52,66,81,86,91,107]. High-
throughput phenomic platforms are becoming available and being used in pea research,
shedding some light on how to solve the challenge of phenotyping [171–174]. Reports
on the implementation of a semi-automated phenotyping platform are limited. Only one
study reported the implementation of a greenhouse-based phenotyping platform to assess
disease resistance in peas [171]. This study allowed screening of a set of 300 advanced
breeding lines for aphanomyces root rot resistance and facilitated GWAS mapping [171].
In addition, automated phenotyping platforms under controlled conditions were also
implemented in peas to assess cold tolerance [172] and early vigor [173] by digital color
imaging technology. In open field conditions, aerial-based imaging platforms [174] and
unmanned aerial systems [175,176] have also been used to phenotype pea biomass or yield.
Implementation of such large-scale phenotyping approaches is expected to increase in the
near future, providing detailed phenotypic information on pea responses to diseases.
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In parallel to the implementation of semi-automated phenotyping platforms, image-
based analysis systems are being developed to estimate disease severity [177–179]. They
are expected to improve and increase the precision of disease ratings. Application of infra-
red thermography allows discrimination of susceptible and resistant pea plants against
fusarium wilt before typical wilt symptoms can be visually detected [177]. An image-
based analysis system implemented in R was also recently developed to assess rust disease
progression parameters under controlled conditions, which could be implemented in auto-
mated phenotyping platforms [178]. Machine learning coupled with image analysis has
also been attempted to improve pea screening for aphanomyces root rot resistance [179].
These initial attempts at image-based analysis of disease have demonstrated their effective-
ness in improving accuracy in measurements and reducing processing time. Accordingly,
the development and application of image-based systems will play a key role in the future
development of resistance breeding in peas.

5.2. Genetic Mapping

Many pea linkage maps based on biparental populations have been generated over the
years with the use of different DNA markers as they became available [168]. These maps are
rapidly improved by the novel genome-wide sequencing approaches [46,137,166,180,181].
This, together with proper phenotyping, is allowing the identification of trait associa-
tions through QTL mapping or GWAS. As a result, markers associated with resistance
genes/QTLs have been identified for resistance against ascochyta blight [7,8,119], powdery
mildew [22,30,182,183], downy mildew [41], rust [44–46,184], fusarium root rot [67–70],
fusarium wilt [60,185], aphanomyces root rot [73–79], broomrape [101–103], bacterial
blight [110–112], several viruses [114,115,118,121], weevil [128], and aphid [131–133]. Ear-
lier reported markers were often not close enough for precise utilization in MAS. However,
this is being rapidly improved by the use of advanced sequencing technologies. This
allows the saturation of genetic maps and the generation of gene-based markers, greatly
reducing the distance between the linked markers and the trait. SNP markers are also being
converted to competitive allele-specific PCR (KASP) markers for more flexible genotyp-
ing [11,118]. As an example, marker-assisted backcrossing (MABC) has been successfully
used to introgress one to three of the seven main QTLs for aphanomyces root rot resistance
into several recipient lines [74].

Both bi-parental and association mapping approaches have been utilized to identify
closely associated markers with disease resistance genes in pea [8–10,46,60,69–72,75,102,128].
While these approaches are largely improving our understanding of the genetic control of
resistance, they also have some limitations. To circumvent these limitations, multiparent
populations such as nested association mapping (NAM) and multi-parent advanced gener-
ation inter-cross (MAGIC) populations that combine GWAS and QTL mapping approaches
have been proposed [186]. Seminal works in different species, including A. thaliana, maize
and barley, showed the usefulness of these approaches to unravel the genetic control of
important traits and increase their precision [186]. Several NAM or MAGIC populations
have been developed for several legumes, including peanuts, soybeans, cowpea, and fava
beans [186]. Both approaches are also under development in pea in several programs
involving crosses with different donors of resistance to its main pests and diseases. Ex-
ploitation of this pea multi-parental population is expected to allow an important step
forward toward understanding the genetic makeup controlling disease resistance and
identifying molecular markers readily applicable for MAS.

Reducing the gap between the responsible gene and the linked molecular marker and
their characterization should allow their direct exploitation for resistance breeding. This
requires the improvement of genome annotation, which could be gained by integrating tran-
scriptome, proteome, and metabolome atlases [187,188]. Different approaches have been
used in pea to identify candidate genes, including microarray, deepSuperSAGE, MACE,
and RNASeq [17,19,20,34,78,110]. They could be used to develop functional markers for
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MAB. Differently expressed proteins in response to pea pathogens could also be used as
markers for resistance breeding [21].

6. Genomic Selection

GS is gaining attention in legume breeding and is supported by the constant decrease
in genotyping costs, often below the cost of phenotyping [189]. GS combines genotypes
and phenotypes from a training population to predict breeding values in genotyped but not
phenotyped individuals by using appropriate statistical models [190]. Similarly, genomic
predictions (GP) allow the efficient and quick assessment of the wealth of genetic diversity
available in a germplasm collection to identify valuable germplasm accessions. GS has been
initiated in pea for a number of agronomic and quality traits [189–193]. Implementation
of GS approaches to improve biotic stresses in pea is only initiating, and very few reports
are available so far on the development of GS models for disease resistance. Efforts have
been made to produce the first GS models for resistance to ascochyta blight [194], bacterial
blight [195], or rust [196]. Implementation of GS techniques is expected to steadily increase
as genotyping costs decrease.

Implementation of MAS and GS approaches can potentially reduce the time required
for selection. Notwithstanding, breeding still requires several generations of backcrosses to
stabilize and homogenize the introduced trait(s) of interest. Breeding remains, therefore,
a lengthy process that should benefit from a reduction in generation advancement time.
In many crops, this has been efficiently reduced through double haploid techniques, but
this has proven difficult in legumes. To overcome this limitation, speed breeding protocols
allowing 4 to 5 breeding generations per year have been adjusted for pea [197,198] and are
steadily implemented in pea breeding programs. Combining speed breeding approaches
with other modern breeding and biotechnological techniques such as genome editing, GS,
and high-throughput genotyping has great potential to boost the genetic gain toward the
development of biotic stress-tolerant cultivars in the near future.

7. Conclusions and Perspectives

Some levels of resistance and associated molecular markers have been identified for
many pea pests and diseases. However, in many instances, the identified resistance is
incomplete and/or the markers are still too far from the responsible gene to allow precise
MAS. In spite of these difficulties, resistant cultivars have been developed by breeding,
even succeeding in introducing resistance from wild relatives through sexual hybridization
and classical breeding. This process can today be highly facilitated by the adoption of
modern genomic breeding tools and speed breeding approaches.

The large set of bi-parental and multi-parental populations segregating for diverse
important agronomic traits, individual and consensus genetic maps, high-throughput
genotyping tools, TILLING populations, and the whole-genome, transcriptome, and pro-
teome sequences from diverse accessions have significantly enhanced our understanding of
disease and pest resistance. More importantly, it will keep facilitating advances in gene dis-
covery and the use of more diverse genetic resources for pea improvement. GWAS and GS,
rapidly adopted in pea, coupled with the development of multi-parent populations, will
certainly facilitate the identification of resistance gene(s)/QTLs with a small additive effect.
All these approaches generated a wealth of data that is promising to improve resistance
breeding. However, these data are currently scattered and disconnected. Implementation
of advanced bioinformatic analytical tools should allow integration of the results obtained
from the different omic platforms and from different studies to refine the list of candidate
genes. While some attempts toward this have already been made [11], more efforts toward
omic result integration would be needed to fill the gap between studies and refine candidate
genes. Similarly, functional characterization of these genes to ascertain their involvement
in resistance is generally missing. Functional characterization should be tackled urgently
to validate these candidate genes before their transfer to elite pea cultivars. Then, speed



Agriculture 2023, 13, 1825 15 of 23

breeding (or Rapid Generation) techniques that have been refined for pea should speed up
the generation of novel pea cultivars with enhanced resistance in the near future.
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