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Abstract: Recently, smart farming research based on artificial intelligence (AI) has been widely
applied in the field of agriculture to improve crop cultivation and management. Predicting the
harvest time (time-to-harvest) of crops is important in smart farming to solve problems such as
planning the production schedule of crops and optimizing the yield and quality. This helps farmers
plan their labor and resources more efficiently. In this paper, our concern is to predict the time-to-
harvest (i.e., survival time) of tomatoes on a smart farm. For this, it is first necessary to develop a
deep learning modeling approach that takes into account the farm effect on the tomato plants, as each
farm has multiple tomato plant subjects and outcomes on the same farm can be correlated. In this
paper, we propose deep neural network (DNN) survival models to account for the farm effect as a
fixed effect using one-hot encoding. The tomato data used in our study were collected on a weekly
basis using the Internet of Things (IoT). We compare the predictive performance of our proposed
method with that of existing DNN and statistical survival modeling methods. The results show that
our proposed DNN method outperforms the existing methods in terms of the root mean squared
error (RMSE), concordance index (C-index), and Brier score.

Keywords: DNN model; farm effect; one-hot encoding; survival model; time-to-harvest

1. Introduction

Recently, smart farm research based on artificial intelligence (AI), which is the founda-
tion of the fourth industrial revolution, has been widely applied in the field of agriculture
to improve crop production and management [1,2]. It is particularly important to predict
the harvest time of crops in smart farm research in order to solve problems such as plan-
ning the production schedule of crops and optimizing yield and quality, which can help
farmers plan their labor and resources more efficiently [3]. If these smart farms are univer-
sally implemented, it will become possible to enhance the competitiveness of agriculture
even further. This can be achieved by optimally predicting output variables (outcomes)
based on appropriate input variables. As a result, agriculture can lead the way as a future
growth industry.

On a smart farm which grows crops with the help of AI, a single farm will have a
variety of different plants, and the outcomes from the same farm can be correlated. Thus,
the use of a prediction model considering a single farm’s characteristics or identity can
enhance the predictive power of the outcomes. The farm’s characteristic can be represented
as a categorical input variable (feature) or an individual-level covariate based on one-hot
encoding (OHE). In particular, the OHE is a standard first-stage method for handling the
categorical feature [4].

In this paper, we are interested in predicting of the outcomes of tomato crop data
collected weekly from a smart farm via the IoT, as part of joint research with the Rural Devel-
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opment Administration of Korea [5,6]. Here, the outcome of interest is the time-to-harvest
(i.e., survival time) of tomato plants. IoT-enabled sensors measure and monitor the growth
and environmental information of tomatoes in real time. In general, this IoT technology
enables automatic management of crops by establishing an optimal growth management
system, leading to a significant increase in productivity and quality [1,3]. The unmeasured
effect that represents this particular farm’s characteristics is called the “farm effect”. The
existing research on deep neural networks (DNN) [7–12] has ignored the farm effect, which
may lead to inaccurate prediction results when applying the model to new datasets from
different farms. For example, Kim et al. [7] studied the prediction of harvest time using
DNN and machine learning methods without considering the impact of the farm effect.

Accordingly, in this paper we propose a DNN survival model that describes the farm
effect as a fixed effect based on the OHE. The DNN with OHE is applied to two types of
existing survival models, namely, the Accelerated Failure Time (AFT) and Cox Proportional
Hazards (PH) models, which are two broad classes of survival regression models [13,14].
We compare our proposed modelling method with the existing survival modelling methods
in terms of predictive measures such as the RMSE, C-index, and Brier score. The main
objective of this paper is to demonstrate the superior performance of the proposed DNN
survival model incorporating OHE for predicting the harvest time.

The rest of this paper is organized as follows. In Section 2, we describe the tomato
dataset. In Section 3, we outline a brief description of classical survival regression models.
In Section 4, we explain the DNN method and present the proposed model based on
the OHE. The prediction results for the tomato data are presented in Section 5. Finally,
we discuss the results and conclude the paper in Section 6.

2. Tomato Data
2.1. Data Description

As part of a joint study with the Rural Development Administration, we used a raw
data set [5,6] consisting of data from a total of 83 farm households collected from 2017 to
2018 and from 2018 to 2019 in three regions in South Korea, namely, Gyeongam, Jeonbuk,
and Jeonnam. The dataset combines greenhouse environment data measured every minute
or hour with tomato growth data measured every 1–2 weeks on different smart farms.
In this context, a day is defined as being from sunrise to sunrise the following day. For the
analysis that considered the farm effect, farms with fewer than 11 tomato subjects (i.e., farm
size) were removed. As a result, there were 65 farms in the dataset ranging in size from 14
to 37, with a mean of 25.1 and a median of 24.0. The dataset used in this paper consisted of
30 input variables and 1633 observations.

The description and summary of input variables are presented in Table 1, as shown
in [6]. Here, the input variables (x1∼x28) are all continuous except for tomato cultivation,
greenhouse type (x29), and region type (x30). The 28 continuous variables were grouped
into binary variables as follows. The average production (yield) per square of the top ten
farms was considered as the standard average (average of the group level). A code of 1 was
assigned if the variable of each farm was above the average and a code of 0 otherwise.

Table 1. Description and summary of input variables [6].

Variable Description Average Variable Description Average

x1 Cumulative insolation 1275.89 x16 Internal humidity-sunset 80.59
x2 Internal temperature-all 19.36 x17 Internal humidity-evening 84.24
x3 Internal temperature-daytime1 21.94 x18 Internal humidity-night 86.36
x4 Internal temperature-daytime2 16.67 x19 Internal humidity-dawn 87.40
x5 Internal temperature-am 20.28 x20 CO2-am 417.91
x6 Internal temperature-pm 24.34 x21 CO2-daytime1 433.11
x7 Internal temperature-sunset 20.05 x22 CO2-daytime2 507.47
x8 Internal temperature-am 17.33 x23 CO2-am 478.38
x9 Internal temperature-night 16.53 x24 CO2-pm 404.59
x10 Internal temperature-dawn 16.76 x25 CO2-sunset 398.67
x11 Internal humidity-all 82.25 x26 CO2-evening 429.18
x12 Internal humidity-daytime1 78.74 x27 CO2-night 506.41
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Table 1. Cont.

Variable Description Average Variable Description Average

x13 Internal humidity-daytime2 86.08 x28 CO2-dawn 580.32
x14 Internal humidity-am 81.92 x29 Greenhouse type † ·
x15 Internal humidity-pm 74.41 x30 Region ‡ ·

Note: Average, Average of group level; am, ante meridiem; pm, post meridiem; CO2, Carbon dioxide; † Green-
house type: 0 = vinyl (864), 1 = glass (4313); ‡ Region: 0 = Outside Jangsu (1044), 1 = Jangsu (4133).

2.2. Definition of Harvest Time Data

The harvest time of tomatoes is determined based on the number of flower clusters
in the fruit group and the number of flower clusters in the harvest group. Typically,
the harvest time ranges from 6 to 10 weeks. If the harvest time is 6 weeks, it can be
calculated as follows [6]:

Harvest time = (the number of flower clusters in fruit group before 6 weeks)

−(the number of flower clusters in harvest group of thecorresponding week) + 6.

In this case, if the corresponding week is 40 weeks, the harvest time is 6.3112, as shown
in Table 2. This calculation is based on (the number of flower clusters in the fruit group
34 weeks before) − (the number of flower clusters in the harvest group at 40 weeks) +6.

Table 2. Definition of harvest time [6].

Week fgroup hgroup Harvtime

34 0.9775 · ·
35 2.0000 · ·
36 2.7275 · ·
37 3.6625 · ·
38 4.3975 · ·
39 5.0000 · ·
40 5.6413 0.6663 6.3112
41 6.2825 1.3325 6.6675
42 7.0625 1.8750 6.8525

Note: fgroup, fruit group; hgroup, harvest group; Harvtime, harvest time.

Below, we provide a basic summary and distribution of the harvest time. As shown
in Table 2, a harvest time with a positive real value indicates no censoring. The mean
harvest time is 7.649 weeks, with a standard deviation of 1.048 weeks. Figure 1 displays
three histograms for the harvest time: (a) the harvest time; (b) the log-transformation of the
harvest time; and (c) the square root transformation of the harvest time. The corresponding
skewness statistics (SW) that indicate the degree of symmetry are (a) −0.211, (b) −0.610,
and (c) −0.406, respectively. These SW results confirm that the histogram without any
transformation, histogram (a) appears more symmetrical.
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Figure 1. Histograms of the transformation of the harvest time [7].

3. Survival Regression Models
3.1. Accelerated Failure Time Model

Let T denote the harvest time (i.e., survival time) and let x be a vector of p-dimensional
input variables. In survival analysis, the functional relationship between T and x is typically
described by the following AFT regression model [15]:

g(T) = f (x) + ε,

where g(·) is a transformation of T (usually, log(T)), f (x) is a function of x, and ε is a
random error with E(ε) = 0.

For a simple analysis, we aim to find a transformation g(·) that yields a symmetric
distribution concerning T, as depicted in Figure 1’s histogram. This is because the harvest
time T is not censored. In particular, Kumar [16] pointed out that the predictive performance
of regression and neural network models can be improved by constructing a symmetric
distribution by using an appropriate transformation on the output variable (dependent
variable). As indicated by the SW values in Figure 1, the original scale (g(T) = T) exhibits
greater symmetry. Therefore, in this paper, we consider the following AFT model:

T = f (x) + ε, (1)

where f (x) = xT β is a linear predictor, β is a vector of regression parameters, and E(ε) = 0.
Hence, the regression parameters β can be easily estimated via the least squares method,
resulting in the prediction of output variable T provided by T̂ = xT β̂.

3.2. The Cox Proportional Hazards Model

The hazard function of the harvest time T with given input variables x is defined as

λ(t|x) = lim4t→0
Pr(t ≤ T < t +4t|T ≥ t, x)

4t
.

The functional relationship between the hazard function of T and x can be described as the
following hazard model:

λ(t|x) = λ0(t) exp( f (x)), (2)

where λ0(t) is an unknown baseline hazard function. Here, Model (2) is called the Cox
Proportional Hazards (PH) model [17] when f (x) = xT β is a linear predictor without the
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intercept β0. The regression parameters β are estimated by maximizing a partial likelihood
(e.g., the Breslow or Efron likelihood) with λ0(t) eliminated.

Under the Cox PH model, the survival function of T given x, S(t|x) = Pr(T > t|x)
can be expressed as follows:

S(t|x) = exp{−Λ0(t)exT β} (3)

where the cumulative baseline hazard function Λ0(t) =
∫ t

0 λ0(u)du is estimated using the
Breslow [18] estimator. Then, the estimated (or predicted) survival function given x is
provided by

Ŝ(t|x) = exp{−Λ̂0(t)exT β̂}. (4)

4. DNN Survival Models

This section provides an overview of the fundamental DNN framework followed by
the introduction of the proposed DNN–OHE survival models.

4.1. DNN Model

The DNN models are structured neural networks that include input, hidden, and out-
put layers representing and modeling the nonlinear relationship between the input and
output variables [19,20]. The primary objective is to find a nonlinear predictor for the
output variable y given input variables x.

In a given dataset D = {(yi, xi); i = 1, . . . , n}, yi is an output (or target) variable
of the ith cluster and xi = (xi1, . . . , xip)

T is the corresponding p-dimensional input (or
feature) vector. Here, the yis are assumed to be independent. The general structure of
the DNN consists of one input layer, ` hidden layers (` = 1, 2, . . . , L), and one output
layer, as shown in Figure 2. When the number of hidden layers is one it is called a neural
network (NN), while when the number of hidden layers is two or more it is called a DNN.
Here, p` is the number of nodes in the `th hidden layer, p0 = p is the number of nodes in
the input layer, W(`) = (w(`)

0 , w(`)
1 , . . . , w(`)

p`−1) is the weight matrix of the `-hidden layer,

and w(`)
i = (w(`)

i1 , w(`)
i2 , . . . , W(`)

ip`
) is the component vector of the ith node with element

w(`)
ij , which is the jth weight of the ith node for each ` hidden layer. Here, w(`)

0 is the bias

(intercept) vector of the p` node of the ` hidden layer and B = (β0, β1, . . . , βpL)
T is the

weight vector of output layer, including the bias β0. Now, the three layers (input, hidden,
and output) constituting the DNN can be expressed as follows:

• Input layer:

h(0)i = xi (i = 1, 2, . . . , p0);

• Hidden layer:

h(1)j = f (1)
( p0

∑
i=1

w(1)
ij h(0)i + w(1)

0j

)
, j = 1, . . . , p1,

h(2)j = f (2)
( p1

∑
i=1

w(2)
ij h(1)i + w(2)

0j

)
, j = 1, . . . , p2,

...

h(L)
j = f (L)

(pL−1

∑
i=1

w(L)
ij h(L−1)

i + w(L)
0j

)
, j = 1, . . . , pL;
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• Output layer:

ŷ = f (y)
( pL

∑
j=1

β jh
(L)
j + β0

)
= f (y)(NN(x));

where f (`)(·) and f (y)(·) are the activation functions of the ` hidden layer and output layer,
respectively, and

NN(x) = NN(x; w, β) =
pL

∑
j=1

β jh
(L)
j + β0 (5)

denotes a neural network (NN) predictor that describes a nonlinear function of x. Acti-
vation functions typically include linear, sigmoid, Tanh (hyperbolic tangent), and ReLU
(rectified linear unit) functions. Specifically, a nonlinear function such as sigmoid or ReLU is
commonly used as an activation function in the hidden layer, while the activation function
in the output layer is selected as either a linear or nonlinear function depending on the
type of output variables [20].

Figure 2. A schematic diagram of a deep neural network; bias terms are omitted for brevity, and can
be found in the main text.

4.2. Learning Procedure of DNN

Next, we describe the learning procedure used to estimate the weights (i.e., model
parameters) θ = (w, β) for the DNN in (5) using training data D. The estimation or
learning process is conducted through the optimization of a loss function (called the
objective function), which is denoted by L(θ) = L( f (x), y), which consists of true target
y and true regression function f (x), as in (1) and (2). It should be noted that a negative
log-likelihood can be used as a loss function.

The model parameters θ are estimated by optimizing, that is, by minimizing the loss
function L(θ); their estimates are defined by

θ̂ = arg min
θ

L(θ),

and are equivalent to the maximum likelihood (ML) estimators of θ, obtained by solving

∂L(θ)
∂θ

= 0. (6)
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However, the estimating Equations (6) are generally complex and highly nonlinear. There-
fore, gradient descent (GD) methods are often used to solve (6). For a given loss function L,
the formula for updating parameters θ on iteration k using the GD method is provided by

θk+1 = θk − α
∂

∂θk
L(θ), (7)

where α(> 0) is the learning rate (or step size). Thus, for given initial values of θ and the
learning rate α, parameter estimation (or learning) is determined by computing the gradient
vector ∂L(θ)/∂θk in (7), i.e., back-propagation [21]. It is important to note that optimization
of L(θ) is usually performed using a mini-batch stochastic GD (SGD) method, particularly
for very large datasets.

4.3. One-Hot Encoding (OHE)

The growth environment of individual tomato subjects may be similar within the same
farm even if it is heterogeneous across different farms. This farm effect can be treated as a
fixed effect, with the farm feature represented through the OHE method. OHE is a process
in which categorical variables are converted into binary variables that take values of 0 or 1;
it is sometimes known as dummy encoding. If there are multiple farms with several tomato
plants, OHE creates binary variables (features) z1, . . . , zq, where the element zki equals one
if tomato plant i belongs to farm k and equals 0 otherwise. Figure 3 illustrates the OHE
method considering the farm index. Note that q = 65 for the tomato data in Section 2.1.

Figure 3. A schematic diagram of one-hot encoding (OHE) for the farm index.

4.4. DNN–OHE Survival Models

To consider the tomato farm effect as a fixed effect, we propose a DNN model based
on OHE. The proposed models can be described by the following two types according to
their method of applying OHE to the DNN model:

• DNN-I (DNN OHE-input): the DNN model applies OHE to the input layer (I).
• DNN-L (DNN OHE-last): the DNN model applies OHE to the last hidden layer (L).

Figure 4 presents a schematic representation of the DNN-I model, a DNN model in
which the farm ID is applied to the input layer (I). This indicates that in the input layer
the ID variables represented as OHE are combined with the 30 input variables from Table 1.
DNN-I is a natural choice, as the binary variables generated by OHE continue to be treated
as input variables. On the other hand, Figure 5 shows a schematic representation of the
DNN-L model, in which the farm ID is applied to the last hidden layer (L), i.e., just before
the output layer. This indicates that another input layer with only the ID variables is
combined together with the last hidden layer in the output layer.
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Figure 4. Schematic diagram of the DNN–OHE-input model (DNN-I).

Figure 5. Schematic diagram of the DNN–OHE-last model (DNN-L).

Accordingly, the two DNN–OHE models, namely, DNN-I and DNN-L, can be easily
applied to the AFT model (1) and Cox model (2) to analyze the harvest time. The resulting
models are described below. The DNN–OHE model based on the AFT model follows

T = f (x) + ε,

where f (x) = NN(x; w, β) is the NN predictor in (5). The DNN–OHE model based on the
Cox model follows

λ(t|x) = λ0(t) exp( f (x)),

where f (x) = NN(x; w, β) is the same NN predictor except without the bias β0 in (5).
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5. Prediction Performance Results of DNN Survival Models
5.1. Model Fitting and Predictive Measures

In this section, we aim to compare the predictive performance of the proposed DNN-I
and DNN-L survival models with the existing AFT and Cox PH models and their corre-
sponding DNN models. All DNN models, including the proposed models, were computed
using Python-based TensorFlow-Keras, while the Cox PH model was implemented using the
lifelines package in Python.

The total dataset was divided into three separate sets; within each farm, the last
three observations were assigned to the test set, the middle four observations were assigned
to the validation set, and the remaining observations were assigned to the training set.

The optimal hyperparameters used in the DNN models are summarized in Table 3; early
stopping was employed to prevent overfitting [20]. In the Cox model DNN, the negative
Efron log-likelihood [22] was used as the loss function, while the RMSE loss was utilized
in the AFT-based DNN because it penalizes larger errors more, especially when there is
no censoring.

Table 3. Optimal hyperparameter settings.

Hyper Parameter Setting
No. of hidden layers 3

No. of nodes per layer {2, 32, 16}
Learning rate 0.001

Batch size length of validation set of y
No. of epoch 1000

Activation function (hidden layer) elu
Activation function (output layer) linear

Optimizer (AFT-type models) AdamW
Optimizer (Cox-type models) Nadam

Note that yi = Ti in Section 4.1 due to no censoring. The predictive performance for
survival models based on the Tis without censoring was evaluated using the following
measures. For the AFT-type models, we used the RMSE and mean absolute error (MAE),
defined as follows:

RMSE =

√
1
n

n

∑
i=1

(Ti − T̂i)2

and

MAE =
1
n

n

∑
i=1
|Ti − T̂i|,

respectively, where Ti is the ith observed harvest time and T̂i is the ith harvest time predicted
by the fitted model. The MAE is more robust against outliers compared to the RMSE.
Notably, AFT-type models are particularly useful for predicting the harvest time because
they directly model the survival times.

For the Cox-type hazard models we used the concordance index (C-index), defined as

CH = P(T̂i < T̂j|Ti < Tj)

= P( f (xi) > f (xj)|Ti < Tj);

here, f (xi) is the risk function of xi in (2), and is estimated as follows [23]:

ĈH =
∑i ∑j δi I(Ti < Tj){I(T̂i < T̂j) + 0.5I(T̂i = T̂j)}

∑i ∑j δi I(Ti < Tj))

where δi is the censoring indicator of the ith observation and T̂i is the ith observed harvest
time, which is the corresponding predicted harvest time obtained from the fitted model.
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The C-index takes a value between 0 and 1, with values closer to 1 indicating better predic-
tive performance. Note that Cox-type models are particularly useful for predicting survival
probability, i.e., the survival function; the survival probability can be easily computed using
the Cox hazard model, as shown in (3) and (4). We used the time-dependent Brier Score
(BS) to evaluate the accuracy of the predicted survival function at a given time point t.
The BS represents the average squared distance between the observed survival status and
the predicted survival probability at that time point t, and is defined by for a given time
point t as follows:

BS(t) = E{I(T > t)− S(t|x)}2.

Without censoring, the BS is estimated as follows [24]:

B̂S(t) =
1
n

n

∑
i=1
{I(Ti > t)− Ŝ(t|xi)}2,

where Ŝ(t|xi) represents the predicted survival function obtained from the fitted model.
Note that a lower BS indicates better prediction performance, similar to the RMSE. The in-
tegrated BS (IBS) provides an overall evaluation of model performance across all available
times (t1 < t < tmax). The IBS over the interval [0, tmax] for t1 = 0 is defined as

IBS =
1

tmax

∫ tmax

0
BS(s)ds.

5.2. Prediction Results for AFT-Type DNN Models

We first consider the four AFT-type models: AFT, AFT-DNN, AFT-DNN-I, and AFT-
DNN-L. Figure 6 illustrates the predicted values of T against the observed values of T on
the test set. The results suggest that the AFT DNN-L model effectively predicts the output
variables, with a Pearson’s sample correlation coefficient of 0.624. Furthermore, Table 4
demonstrates that the AFT DNN-L model achieves the lowest RMSE (0.8067) and MAE
(0.6090), indicating superior performance.
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Figure 6. Predicted value of T against observed value of T and correlation (corr) results of the four
AFT-type models on the tomato data test set.
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Table 4. RMSE and MAE results of the four AFT-type models on the tomato data test set.

Predictive
Measure AFT AFT-DNN AFT-DNN-I AFT-DNN-L

RMSE 0.8257 0.8124 0.9726 0.8067
MAE 0.6487 0.6167 0.7375 0.6090

Table 4 compares the prediction performances of the AFT-type methods with those
of three popular machine learning (ML) methods: random forest (RF; [25]), XGBoost
(XGB; [26]), and support vector regression (SVR; [27]). The hyperparameters for the three
ML methods were tuned using ten-fold cross-validation through the Python packages
RandomForestRegressor, xgboost, and svm, and the resulting optimal settings were as follows:
(i) for the RF model, the number of trees was 500, the number of features randomly selected
as candidates for splitting a node was

√
p, and the maximum depth of trees was ten; (ii) for

the XGB model, the number of trees was 300, the learning rate was 0.1, and the maximum
depth of trees was one; (iii) for the SVR model, the trade-off between maximizing the
margin and minimizing the error was 0.1, the width of the margin was 0.01, and the kernel
function was linear. The resulting ML predictive results are summarized as follows: for
RF, the RMSE was 1.1929 and the MAE was 0.9384; for XGB, the RMSE was 1.2256 and
the MAE was 0.9443; and for SVR, the RMSE was 1.1973 and the MAE was 0.9314. It is
worth noting that none of these three ML methods are able to directly account for the farm
effect. Consequently, we observe that all three ML methods yield inferior predictive results
compared to the AFT–DNN methods presented in Table 4.

5.3. Prediction Results for Cox-Type DNN Hazard Models

Next, we consider the four Cox-type hazard models: Cox, Cox-DNN, Cox-DNN-
I, and Cox-DNN-L. Table 5 presents the C-index and IBS results for the four Cox-type
models on the test set. Among these models, the Cox-DNN-L model demonstrates the
highest performance in terms of the C-index and IBS. Figure 7 displays the time-dependent
BS results on the test set for the four Cox-type models. The BS values of the proposed
Cox-DNN-L model and Cox-DNN model are very similar at each time point (week), and
are consistently lower than those of the other two models (Cox and Cox-DNN-I) across
almost all time points. Notably, the base Cox model exhibits exceptionally high BS values
for weeks 6 and 8. These results indicate that the proposed Cox-DNN-L model outperforms
the other three Cox-type models (Cox, Cox-DNN, and Cox-DNN-F) in terms of overall
prediction performance.
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Figure 7. Time-dependent Brier scores for four Cox-type hazard models on the tomato data test set.



Agriculture 2023, 13, 1782 12 of 14

Table 5. C-index and IBS results of four Cox-type hazard models on the tomato data test set.

Predictive
Measure Cox Cox-DNN Cox-DNN-I Cox-DNN-L

C-index 0.6582 0.6527 0.6506 0.6600
IBS 0.1125 0.0471 0.0584 0.0468

6. Discussion and Conclusions

In this paper, we have presented DNN modelling approaches for tomato plants that
take into account the farm effect. Because each farm has multiple tomato plant subjects,
outcomes within the same farm can be correlated. Through analysis of the tomato data
in Tables 4 and 5, we observe that the proposed DNN survival models (AFT-DNN-L and
Cox-DNN-L) demonstrate the best model performance in terms of predictive measures
(RMSE, MAE, C-index, and IBS) for both harvest time and hazard rate as compared to
the existing AFT-type and Cox-type models. In particular, we find that the three machine
learning methods (i.e., RF, XGB, and SVR) used for the AFT-type models show relatively
poor performance compared to all the AFT–DNN methods in Table 4. These results confirm
that taking the farm effect into consideration enhances the models’ predictive capability.

In conclusion, the proposed DNN–OHE models (DNN-I and DNN-L) can be easily
implemented using the existing DNN modeling approach. However, we recommend
using the DNN-L model when considering farm effects, as the DNN-I model can pose
computational problems due to the large number of parameters in the neural network as
the number of farms increases [4] and provided lower prediction performance compared to
the DNN-L model on our tomato data. One advantage of the proposed DNN-L method
is that it can predict harvest times for individual tomato farms. This can assist farmers
in improving or modifying their strategies to optimize yields and quality while reducing
labor and resource usage [28].

Because it incorporates the farm effect based on OHE, the proposed DNN-L model
can be applied to various types of data from smart farms, including yield data, sequential
data, and image data. Belouz et al. [29] used artificial neural networks for the prediction
of tomato yields, while Cho et al. [5] studied an encoding attention-based long short-term
memory (LSTM) network. Minagawa and Kim [3] demonstrated the prediction of harvest
times using a mask region-based convolutional neural network (Mask R-CNN [30]) to detect
tomato bunch images. Furthermore, Nugroho et al. [31] compared the prediction accuracy
of models based on Faster R-CNN, multibox Single-Shot Detector (SSD), and You Only Look
Once (YOLO) for detecting tomato ripeness using input images [32–36]. Developing a DNN-
L framework that allows for the above deep learning methods would be an interesting task
for future research.

Another potential avenue for future work is to develop a new deep learning survival
model that treats the farm effect considered in this paper as a random effect.
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