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The increasing global demand for sustainably sourced animal-derived food has
prompted the development and application of smart technologies to address environmental,
economic, and societal concerns, resulting in precision livestock farming (PLF) applica-
tions. PLF can be defined as “individual animal management by continuous real-time
monitoring of health, welfare, production/reproduction, and environmental impact” [1].
This approach includes the implementation of digital tools, sensors, and automation tech-
nologies applied with different degrees of integration [2–4]. PLF can provide farmers with
continuous, contactless, and objective data collection, allowing for the detection of small
but significant variations in behavioural patterns or other significant parameters, greatly
improving farmers’ decision management and resource use efficiency [5].

The focal point of this Special Issue, “Recent Advancements in Precision Livestock
Farming”, delves into this subject matter from multiple perspectives, aiming to provide
novel insights, current challenges, and future trends for the sustainable application of PLF
approaches and systems.

Researchers across Asia and Europe have contributed 11 papers (10 research and
1 review article) published in this issue. They cover a wide range of aspects related to the
performance modelling of PLF approaches, such as animal body measurement systems
and automation in livestock environments.

Several authors reported on PLF approaches with the aim of measuring and predicting
animal body parameters to improve the maintenance of animal health and to maximise
production efficiency.

In pig production, Yang et al. [6] implement an optimised system for determining the
shipping schedule for pigs with a predictive model that uses machine learning based on a
large amount of data. Such prediction is achieved using a machine-learning model that
considers the weight gain trend pattern of abdominal fat-forming pigs to predict weight,
and eventually allows for the definition of the optimal shipping time.

Similarly, Preethi et al. [7] developed an Artificial Neural Network (ANN) model
to predict the body weight of Landlly piglets at different growth stages based on linear
body measurements and compared it with non-linear regression models. The results of the
ANN models were comparable to those given by the non-linear regression models at all
growth stages.

Moreover, Li et al. [8] introduced a hybrid CNN-ViT (Vision Transformer, ViT) model
for measuring sows’ backfat thickness (BF). The model was tested on seven groups of
pregnant sows (106 animals in total). The results gave evidence of the high performance
of the CNN-ViT, with a Mean Absolute Error MAE = 0.83 mm, a Root Mean Square Error
RMSE = 1.05 mm, a Mean Absolute Percentage Error MAPE = 4.87%, and a coefficient of
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determination R2 = 0.74. Finally, Hu et al. [9] proposed and evaluated a novel curve skeleton
extraction method for point clouds. The extracted skeleton allows for the evaluation of a
pig’s posture, which can assist in selecting data suitable for body size measurements.

Also within the pig sector, a new interesting application of pig face recognition was
reported by Wang et al. [10]. This study establishes an improved ResNAM network as a
backbone network for pig face feature extraction by combining an NAM (normalisation-
based attention module) attention mechanism and a ResNet model to probe non-contact
open-set pig face recognition. The experimental results highlighted an accuracy of 95.28%,
which is over 2% higher than a human face recognition model.

Regarding beef cattle production, Ruchay et al. [11] described a new model for predict-
ing live weight based on augmenting three-dimensional clouds through flat projections and
image regression with deep learning. Tests on farm conditions reported an accuracy as high
as 91.6% on weight measurements based on the proposed model. Furthermore, a highly
efficient and automatic method was developed by Li et al. [12] to measure beef cattle’s
body dimensions based on the reconstructed three-dimensional point cloud. The results
showed that the errors of calculated body dimensions, i.e., the oblique length, height, width,
abdominal girth, and chest girth, were always lower than 3%. The proposed algorithm
gave evidence of the negligible influence of the different postures of beef cattle.

Regarding the dairy sector, the importance of cow oestrus behaviour detection is
evident in the contribution by Wang et al. (2022) [13]. The authors proposed a cow oestrus
detection method based on the improved YOLOv5 to improve the inference speed and
accuracy in natural scenes. The experimental results show that the average accuracy of
the improved model was 94.3%, the precision was 97.0%, and the recall was 89.5%: such
performance was shown to be higher than those of mainstream models such as YOLOv5,
YOLOv3, and Faster R-CNN.

In the field of dairy production, Pavkin et al. [14] presented an algorithm for automatic
positioning and a mobile remote-control system for a feed-pushing robot on a dairy farm.
This research made it possible to eliminate the inductive sensors from the system and
reduced the labour required to assemble the feed alley’s contour wire.

In the poultry sector, Jia et al. [15] systematically reviewed the key techniques for the
in ovo sexing of chicken eggs before hatching, and presented recent research on molecular-
based, spectral-based, acoustic-based, morphology-based, and volatile organic compound
(VOC)-based technologies. To identify the chicken’s sex, an identification model was
developed by Jia et al. [16] based on an improved YOLOv7 deep learning algorithm. The
results highlighted a mean average precision of 88.79%.

The presented works contribute towards solving issues regarding the development, re-
search, and optimisation of engineering innovations in precision livestock farming systems.
The reported results addressing cattle, pig, and poultry are of interest to specialists and
scientists involved not only in research but also in daily farm support and management.
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