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Abstract: Rapid estimation of above-ground biomass (AGB) with high accuracy is essential for
monitoring crop growth status and predicting crop yield. Recently, remote sensing techniques using
unmanned aerial systems (UASs) have exhibited great potential in obtaining structural information
about crops and identifying spatial heterogeneity. However, methods of data fusion of different factors
still need to be explored in order to enhance the accuracy of their estimates. Therefore, the objective
of this study was to investigate the combined metrics of different variables (spectral, structural and
meteorological factors) for AGB estimation of wheat using UAS multispectral data. UAS images were
captured on two selected growing dates at a typical reclaimed cropland in the North China Plain.
The spectral response was determined using the highly correlated vegetation index (VI). A structural
metric, the canopy height model (CHM), was produced using UAS-based multispectral images. The
measure of growing degree days (GDD) was selected as a meteorological proxy. Subsequently, a
structurally–meteorologically weighted canopy spectral response metric (SM-CSRM) was derived by
the pixel-level fusion of CHM, GDD and VI. Both correlation coefficient analysis and simple function
fitting were implemented to explore the highest correlation between the measured AGB and each
proposed metric. The optimal regression model was built for AGB prediction using leave-one-out
cross-validation. The results showed that the proposed SM-CSRM generally improved the correlation
between wheat AGB and various VIs and can be used for estimating the wheat AGB. Specifically,
the combination of MERIS terrestrial chlorophyll index (MTCI), vegetation-masked CHM (mCHM)
and normalized GDD (nGDD) achieved an optimal accuracy (R2 = 0.8069, RMSE = 0.1667 kg/m2,
nRMSE = 19.62%) through the polynomial regression method. This improved the nRMSE by 3.44%
compared to the predictor using MTCI ×mCHM. Moreover, the pixel-level fusion method slightly
enhanced the nRMSE by ~0.3% for predicted accuracy compared to the feature-level fusion method.
In conclusion, this paper demonstrated that an SM-CSRM using pixel-level fusion with canopy
spectral, structural and meteorological factors can obtain a good level of accuracy for wheat biomass
prediction. This finding could benefit the assessment of reclaimed cropland or the monitoring of crop
growth and field management in precision agriculture.

Keywords: biomass estimation; unmanned aircraft system; vegetation index; canopy height model;
growing degree days

1. Introduction

Crops are extremely important for human beings. The monitoring of crop growth
is essential for precision agriculture or cropland reclamation, helping to understand the
physiological status of crops, forecast the agricultural production [1], and evaluate re-
claimed cropland. Various crop traits can be monitored to reflect the crop’s response to
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the growing environment and management practices [2], such as above-ground biomass
(AGB) [3] and canopy chlorophyll content (CCC) [4]. These indicators are closely related
to light use efficiency and grain quality [5]. Therefore, rapid and accurate estimation of
crop parameters is beneficial for field management tasks, such as pest control [6], fertilizer
measurement [7], and yield prediction. In particular, wheat (Triticum aestivum) is one of
the most important food crops, with a long history. Globally, it has the largest cultivated
area and highest production levels among all crops, including corn and rice [8]. Moreover,
wheat is also a typical ridge-cultivated crop. Hence, improving the estimation of wheat
AGB is a significant objective.

Methods of estimating the AGB of crops have been extensively reported. Conven-
tionally, a destructive method is employed by harvesting and drying the stems and leaves
of crops above the ground in a sampling plot. It is time-consuming, labor-intensive and
inefficient to operate on a large-scale site. Currently, remote sensing-based techniques have
been given more and more attention in predicting the AGB of crops at numerous spatial
scales [9,10]. These techniques can capture multi-temporal data of crops in a large area via
non-destructive methods at a relatively low cost. Different observation platforms, including
space-borne [9], airborne [11], unmanned aircraft systems (UASs) [12] or ground-based
platforms mounted with diverse sensors, such as optical [13], multispectral [9], hyperspec-
tral [12] or light detection and ranging (LiDAR) sensors [11], have been used in biomass
predictions. Space-borne platforms observe the field on a large scale, but they are easily
blocked by adverse weather conditions. Airborne platforms can be restricted by takeoff
and landing conditions. Ground-based observations can capture fine images but can hardly
be used to obtain wall-to-wall data. UAS-based platforms provide data with high spatial,
spectral and temporal resolution, exhibiting great potential in precision agriculture [14] or
other related applications.

Recently, UAS-based methods have been extensively introduced into the quantitative
retrieval of crop parameters because of their advantages in identifying spatial heterogeneity
and ability to obtain crop structural information. On the one hand, numerous variables have
been discussed that have the potential to improve estimates of crop AGB using UAS remote
sensing observations, including canopy spectral signatures, structural features, textural
characteristics and climatic factors [10]. Spectral information is a widely used indicator for
estimating the AGB of crops. A large number of vegetation indices have been explored and
the most highly correlated indices have been selected for use in biomass prediction, such as
the green–red ratio index (GRRI) derived from RGB imagery [13], normalized difference
red-edge index (NDRE) produced from multispectral images [15], or modified chlorophyll
absorption reflectance index (MCARI) derived from hyperspectral data [16]. Structure
features determine the canopy shape of crops, including crop height, the coefficient of
variation for plant height, etc. These structural indicators are significant for addressing the
spectral saturation problem [17]. Textural characteristics are relevant to the distribution
of both vegetation and soil pixels across canopy surfaces, which accounts for the spatial
variation of dark and bright areas on images. These proxies have been demonstrated to
be significantly associated with the AGB of crops in the breeding experimental field [18].
Moreover, climatic factors are useful in conventional predictions of crop biomass when
combined with satellite images of large-scale regions in the main maize cultivation areas
of China [19]. Recent studies have also demonstrated the effectiveness of using climatic
factors to improve the predicted accuracy of crop biomass on a small scale, such as in a
commercial maize field of 18.02 ha in southeastern Spain [20] and a rice field of 0.27 ha at
the experimental base of hybrid rice in Lingshui in southern China [15]. Growing degree
days (GDD) is an effective indicator, measures the effective accumulated heat over a certain
temperature throughout crop growth, and has a close correlation with crop AGB [15]. It
can be regarded as an independent variable that can improve the accuracy of biomass
prediction [21]. On the other hand, a combination of these factors can improve the accuracy
of AGB prediction [13,20]. Previous studies have confirmed that different strategies of data
fusion yield varying abilities of crop biomass estimation, including pixel-level, feature-
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level, or even decision-level data fusion. In fact, image fusion at the feature level or pixel
level is generally adopted in order to estimate crop biomass. Examples of this practice
include pixel-level fusion, combining the vegetation index weighted canopy volume model
(CVMVI) for soybean [13], and feature-level fusion, integrating the canopy multispectral
information, crop height and meteorological factors for rice [15]. It has been proved that
the pixel-level strategy can achieve a slightly higher accuracy than that obtained with the
feature-level fusion of soybean [13]. Besides, multispectral sensors usually include bands
with sensitivity to vegetation growth status, such as red-edge and near-infrared bands, in
order to record the detailed canopy response [22]. However, the appropriate method for
combining these data still needs further exploration in order to improve the accuracy of
biomass prediction.

Previous studies present a research gap in terms of integrating the different factors in
pixel-level data fusion to predict crop biomass. Therefore, the objective of this paper is to
investigate the combination of discussed variables in order to improve the accuracy of AGB
estimation. The specific goals are to (1) propose a metric for combining variables in pixel-
level fusion as a predictor of wheat AGB, considering spectral, structural, meteorological
factors, and (2) to explore the optimal estimation model of wheat biomass, using the
proposed metric as the predictor.

2. Materials and Methods
2.1. Study Area and Experimental Designing

The study area was located around 60 km in the west of Jinan, Shandong Province of
China (36◦28′21′′ N, 116◦28′08′′ E). This region experiences an average annual rainfall of
556.9 mm and an average annual temperature of 14.5 ◦C. It is a representative agricultural
landscape of the North China Plain (NCP), with a typical temperate monsoon climate. The
NCP is a crucial agricultural zone in China and produces over 75% and 32% of Chinese
wheat and corn, respectively [23].

The experimental field was approximately 1200 m2 in size, with an average elevation
28.98 m. The soil type was identified as silty loam, with a pH value of 8.1 and an organic
content of around 8.5 g/kg. The site was located in the NCP (see Figure 1a,b) and was cre-
ated by farmland reclamation activities due to ground subsidence induced by underground
coal exploitation. In total, 38 plots were distributed throughout the experimental field (see
Figure 1c). Diverse soil profiles were designed to adopt inter-layers of filling materials,
including local soil and sediments from the Yellow River with different thicknesses. A
total of 13 inter-layer soil profiles and 1 control profile were constructed (see Figure 2 for
detailed design). This field represents a collection of various refilling profiles, making it a
typical reclaimed cropland in practice. For instance, the profile of T09 consists of a 30 cm
topsoil layer, followed by a 20 cm subsoil layer, a 20 cm layer of sediment from the Yellow
River, another 20 cm of subsoil layer, and a final 30 cm layer of sediment from the Yellow
River at the bottom.

2.2. Data Acquisition
2.2.1. UAS Platform and Data Acquisition

The UAS platform employed was DJI Matrice 100 (see Figure 3). This is a low-cost
and high-stability platform with a maximum hovering duration of 20 min and a 500 g
payload. The platform is equipped with an onboard flight controller that incorporates
various modules, including a compass, barometer, inertial measurement unit (IMU) and
global positioning system (GPS). The flight route can be preplanned and transmitted to the
control system of the platform. This allows the UAS to follow a predetermined trajectory at
the desired altitude during the flight.
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Figure 3. The UAS platform (DJI Matrice 100) and the multispectral camera (Parrot Sequoia).

The multispectral camera used was a Parrot Sequoia (see Figure 3) with a focal
length 3.98 mm. It comprised two parts: the multispectral sensor (72 g), containing four
bands (green: 530–570 nm; red: 640–680 nm; red-edge: 730–740 nm; and near-infrared:
770–810 nm) at a resolution of 1280 × 960 pixels, and the sunshine sensor (35 g), which
was placed on the top of drone. The multispectral images were recorded on the built-in
memory card of the multispectral sensor and could be accessed after flight mission. Sequoia
can be triggered according to an equal distance or time interval. The time interval mode
was adopted and set to three seconds in this paper. The sunshine sensor can continuously
record the light conditions of the external environment, and the recorded data could then
be employed in the radiometric correction of spectral signatures.

Multispectral images were obtained between 11:00 and 14:00 on two dates (23 April
2017, 14 May 2017) during crop growth. The flight mission was planned using the software
DJI GS Pro. The flight altitude was set at 50 m, with a nominal ground sampling distance
(GSD) of 4.7 cm. The side overlap was 80% and the forward overlap was 90%, providing
sufficient image overlap for post-processing. The same flight route was used for both
missions, ensuring flight consistency during data collection. Before each flight, a rectangular
calibration panel provided by the manufacturer served as the standard reference for four-
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band reflectance. The panel was placed near the take-off and landing point, and a set
of multispectral images were taken from the top of the panel at around a 1 m height for
radiometric correction during post-processing.

Ground control points (GCPs) were employed to transform the system from a relative
into an absolute coordinate system. Eight GCPs were distributed on the cropland ridges in
the experimental field (see Figure 1c), and the targets were marked with crosses using lime.
The coordinates of these points were measured using a global navigation satellite system
(GNSS) receiver mentioned above.

To generate the point cloud and band reflectance map of the crop canopy, the collected
multispectral images were imported into Pix4D mapper software (Pix4D SA, Lausanne,
Switzerland), which integrates the principles of photogrammetry and computer vision
to process the stereoscopic photos. The imagery was first processed using structure from
motion (SfM), which includes feature extraction and matching to establish point corre-
spondence. An iterative bundle adjustment was performed to estimate the 3D position of
points, and a clustering view for multi-view stereo (CMVS) was used to densify the sparse
point cloud. Additionally, GCPs were manually identified from the overlapping images
for rectification into absolute coordinates. To produce the digital surface model (DSM), the
dense point cloud was interpolated using inverse distance weighting (IDW), which was
carried out in ArcMap 10.0 (ESRI, Redlands, CA, USA).

2.2.2. Crop Height and AGB Measurement

Field measurement included crop height and the weight of dry AGB. The sampling
size was 1 m × 1 m, covering four rows of wheat, because of its row spacing of 25 cm.
On the one hand, the crop height of 10 plants was measured in each sample using a steel
tape. Measurements were taken one day before or after each UAS flight (23 April 2017 and
14 May 2017). Each plant was surveyed from the ground above the soil to its youngest and
completely unfurled leaf. The mean height of these 10 plants served as the validation for
the sampling plot. On the other hand, sampling plants were gathered from each sampling
plot after each UAS flight. Ten stems were sampled and first dried for two hours at 105 ◦C
to remove green, and then dried to a constant weight for over 24 h at 80 ◦C. Additionally,
the total number of plants was counted in each sampling plot during field observation.
Finally, the dry weight of AGB was realized in the unit of kg/m2 (see Equation (1)):

DAGB =
1
n d× N

1000
(1)

where d is the dry weight of 10 sampled plants, n is the sampling number of the wheat
plant (10 plants in this study), and N is the total plants in the sampling plot.

Besides, the central coordinates of the sampling points were surveyed using a GNSS
receiver (South Survey GALAXY G1, real-time kinematics surveying with a typical accuracy
of 0.008 m + 1 ppm horizontally and 0.015 m + 1 ppm vertically).

2.2.3. Meteorological Data

Meteorological factors have conventionally been reported to be closely related to
the accumulation of crop biomass, especially the effective accumulated temperature [20].
Hence, the meteorological data were collected from two adjacent regional-level weather
stations in the east and west, located around 8 km from the study area. The collected items
included maximum and minimum daily temperature from 1 October 2016, to 30 September
2017. These data were recorded by the local administrative bureau.

2.3. Method

This study first proposed a metric that combined structural and meteorological data
with canopy spectral information using pixel-level data fusion, and secondly implemented
AGB modelling and validation using the proposed highly correlated metric. The metric
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was referred to as the structurally–meteorologically weighted canopy spectral response
metric (SM-CSRM). The workflow of this study can be seen in Figure 4.
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2.3.1. Spectral, Structural and Metrological Indicators

(a) Selection of vegetation indices (VIs). VIs are indicators of canopy reflectance response.
Previous studies have reported that VIs derived from UAS-based multispectral reflectance
showed good performance in the prediction of crop parameters, such as above-ground
biomass and crop yield [16,24]. Therefore, we chose 25 highly correlated VIs based on
various reported studies in order to explore their correlation with measured wheat AGB.
The equations for these VIs were listed in the Appendix A of Table A1.

(b) CHM generation and vegetation mask. Crop height contains the canopy structural
information in the vertical direction and serves as a useful proxy for AGB prediction [13,15].
It helps to mitigate the saturation issue of spectral indices in response to changes in biomass
with higher vegetation density [17,25]. The canopy height model (CHM) provides wall-
to-wall data of crop height through UAS-based estimation. CHM has been widely tested
using SfM-based methods, such as optical cameras or multispectral cameras. UAS-based
multispectral images have been demonstrated to be a viable alternative for canopy height
estimation in crops like wheat and corn [26]. Therefore, this study employed optimal
settings to generate the CHM of wheat using UAS-based multispectral images. The general
process is as follows: (1) produce dense the point cloud using a generating setting of
90,000 feature points; (2) filter the point cloud using statistical outlier removal (SOR) and
conditional removal (CR); (3) obtain the DSM using IDW method; and (4) calculate the
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CHM by subtracting the DSM from the DEM. The specific parameters can be seen in the
published literature [26].

Vegetation masks were considered to account for the spatial heterogeneity of the
reclaimed farmland and were built using a supervised classification method of random
forest (RF) with spectral band-derived VIs. RF is an ensemble learning algorithm that
effectively addresses the issue of weak generalization ability observed in decision tree
methods. The excellent performance of RF in image classification has been confirmed
by many studies [27]. The specific steps were as follows: (1) 1000 sampling points were
randomly generated within the study site using the GIS software and divided into two parts
on the basis of training points (70%) and validation points (30%). The reference values were
achieved via visual interpretation using the orthomosaic as a background. (2) The simple
ratio (SR) was selected as the input for classification, and the RF classifier was selected
as the classification method. (3) Kappa coefficient (KC) and overall accuracy (OA) were
chosen as verification indicators after the classification. The classification results showed
that KC was higher than 0.942 for each date and that OA was higher than 94.4%. Then, the
vegetation masks of wheat were obtained for two observed images after the completion of
these steps discussed above. Subsequently, a vegetation-masked CHM was achieved by
applying the vegetation mask to the CHM.

(c) Calculation of meteorological factors. Meteorological factors have a close relationship
with the growth status of crops, including daily temperature, solar radiation, precipitation
and evapotranspiration [20]. The selection of meteorological factors should consider their
correlation with crop growth, the distribution of meteorological stations, the stability of
monitoring elements and the spatiotemporal characteristics of these elements. Temperature
is a considerable meteorological factor, featuring continuous evolution in temporal scale
and gradual changes in spatial distribution, and is closely related to crop growth simulation
and yield prediction. Growing degree days (GDD) is the accumulated effective temperature
of crops in a specific growth stage under actual environmental conditions. GDD has been
verified as a useful index for monitoring crop AGB in many studies [15,20].

GDD requires daily maximum and minimum temperatures, as well as the temperature
of the biological zero point. This paper calculated the daily maximum and minimum
temperature of the study site via IDW interpolation method using data from two adjacent
meteorological stations. The temperature of biological zero point was 10 ◦C for wheat, as
reported in a relevant reference [28] using data taken from near the experimental site of
this study (~115 km away). The calculation formula for GDD is provided in Equation (2).
Subsequently, normalized GDD (nGDD) was computed by dividing the GDD of each
date by the maximum GDD value obtained throughout all growth stages, from sowing to
harvest. The result of nGDD was obtained in Table 1.

Td =
d
∑

i=1

(
Tmax_i+Tmin_i

2 − Tbase

)
,

Tmax_i+Tmin_i
2 − Tbase = 0, if Tmax_i+Tmin_i

2 < Tbase

(2)

where Td is the effective accumulated temperature on the d-th day after sowing, Tmax_i and
Tmin_i are the daily maximum and minimum temperature on the d-th day after sowing, and
Tbase is the biological zero point of a given crop type.

Table 1. GDD results of crop-observed dates in the experimental site.

Date Days after Sowing (DAS) GDD (◦C·d) nGDD Notes

5 October 2016 1 12.3 0.0131 sowing
23 April 2017 201 346 0.3699
14 May 2017 222 568.8 0.6080
8 June 2017 247 935.4 1 harvest
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2.3.2. SM-CSRM: Data Fusion of Selected VI, mCHM and nGDD

Data fusion enhances the representation of crop growing conditions. In this study,
different fusion strategies, including pixel-level and feature-level fusion, were compared by
combining a highly correlated VI, masked CHM (mCHM) and normalized GDD (nGDD)
in order to predict the wheat AGB in reclaimed cropland. The strategy with the best perfor-
mance was identified. VI captures spectral information and reflects the differences in crop
physiological states. CHM presents the vertical properties of the vegetation canopy, and
vegetation mask represents the horizontal features of crop growth. CHM and vegetation
mask show the crop growth status at a specific moment. GDD reflects the accumulated
effects of the effective temperature on the temporal dimension, and nGDD resolves the di-
mensionality issue via combined use with other features. This proposed metric was named
structurally–meteorologically weighted canopy spectral response metric (SM-CSRM). Pixel-
level fusion involved the pixel-wise combination of all the features and then utilized the
accumulation of all pixels within each sampling plot. The specific equation for pixel-level
fusion is as follows:

(SM− CSRM)i =

{
(VI)i × (mCHM)i

p × (nGDD)q, if (mCHM)i 6= 0 or (nGDD) 6= 0
0, if (mCHM)i = 0 or (nGDD) = 0

(3)

where (VI)i is the i-th pixel value of VI representing the canopy spectral response at an
observation date of wheat, (mCHM)i is the i-th pixel value of vegetation-masked CHM
at the same observation date of wheat, (nGDD) is the normalized accumulated effective
temperature at the UAS observation date, and the value of i ranges from 1 to the total
number of VI raster. Besides, p and q are the constants that control the non-linearity of
Equation (3) and their values depend on the correlation between VI and wheat AGB. They
are positive if there is a positive correlation. Otherwise, a negative value is achieved. In
this work, it was found that a good result can be obtained when p and q are equal to ±1.

Feature-level fusion integrated the features of VI, CHM and GDD using a mean value
in each sampling spot. The specific equation for feature-level fusion is as follows:

(SM− CSRM)mean =
k
∑

i=1

(VI)i
k ×

(
(mCHM)i

k

)p
× (nGDD)q,

i f (mCHM)i 6= 0 or (nGDD) 6= 0
(4)

where (VI)i is the i-th pixel value of VI representing the canopy spectral response at an
observation date of wheat, (mCHM)i is the i-th pixel value of vegetation-masked CHM
at the same observation date of wheat, (nGDD) is the normalized accumulated effective
temperature at same observation date, and k is the total number of VI raster.

2.3.3. Regression Model and Validation

The optimal metric (SM-CSRM) was selected and used to build the regression model.
Firstly, the correlation between the proposed SM-CSRM and measured wheat AGB was
investigated through qualitative analysis using the Pearson correlation coefficient, and
their relationship was further examined via quantitative analysis using five simple fitting
functions (see Table 2). Secondly, potential regression models were determined using
simple regression methods according to the results of previous step, and then wheat AGB
was estimated using the optimal proposed metric and model. This study directly trained
the model using the data from two observations together. This was performed because
many studies have demonstrated that regression models using data collected from multiple
growth stages can enhance the accuracy of predicted models [13,18]. Thirdly, a leave-one-
out cross-validation (LOOCV) method was employed for model training and validation.
LOOCV extracts one sample for validation and uses the rest of the samples for training in
each trial. This method has advantages in terms of reducing overfitting and provides a
more accurate prediction model when the number of training samples is relatively small.
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Table 2. The popular simple fitting functions.

NO. Fitting Function Function Equation

1 Linear function Y = aX + b
2 Polynomial function Y = aX2 + bX + c
3 Power function Y = aXb

4 Exponential function Y = ae (bX)

5 Logarithmic function Y = alnX + b
Notes: Y is the dependent variable (crop biomass); X is the independent variable (the proposed SM-CSRM);
a, b, and c are constant.

The performance of the model was assessed using three metrics: coefficient of deter-
mination (R2), root-mean-square error (RMSE) and normalized RMSE (nRMSE). Higher
RMSE or nRMSE indicates lower model accuracy. The value of R2 ranges from 0 to 1, with
a value closer to 1 indicating the higher explanatory ability of the independent variable in
relation to the dependent variable. These metrics are expressed as follows:

RMSE =

√
1
n

n

∑
i=1

(yi − xi)
2 (5)

nRMSE =
(RMSE)

x
× 100% (6)

R2 =

n
∑

i=1
(xi − x)2 × (yi − y)2

n
∑

i=1
(xi − x)2 ×

n
∑

i=1
(yi − y)2

(7)

where yi is the i-th predicted AGB, xi is the i-th measured AGB, n is the total number of
sampling plots, and y and x are the average values of all the predicted AGB and measured
AGB, respectively.

3. Results
3.1. Correlation Analysis between AGB and VIs

Correlation analysis was conducted in order to investigate the relationship between
spectral indicators (VIs) and measured AGB. To evaluate the goodness of correlation,
Pearson correlation and Spearman rank-order correlation were employed, and the results
are presented in Table 3. As previously reported, using a combination of different observed
dates helps to generate better correlation than using the data from a single date [13,18]. VI
raster values were calculated for different stages of crop development, and the average
value was individually extracted from each 1 × 1 m square sample using zonal statistics.

According to Table 3, most VIs presented a good correlation with measured AGB, and
VIs containing the red-edge band produced a better correlation with wheat biomass. Among
all the VIs, MTCI earned the highest correlation with the wheat AGB. However, typical VIs,
like NDVI and SR, exhibited relatively low negative correlation values (−0.59~−0.49). It
might result from the selected sampling dates at different wheat growth periods. The former
stage was at the end of vegetative growth, as indicated by relatively strong photosynthesis,
while the canopy reflectance of the latter stage was influenced by the emergence of panicles
during the reproductive growth period [29]. Based on reported researcher experience [15],
VIs with absolute values of Pearson correlation coefficients greater than 0.6 were selected for
further study. Thus, 20 VIs were determined to be the variables of spectral characteristics.
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Table 3. Correlation coefficient between vegetation indexes and measured wheat AGB.

NO. VIs Pearson Correlation (r) Spearman Rank-Order Correlation (rs)

1 CIgreen 0.3311 ** 0.3919 **
2 CIreg 0.8253 ** 0.8375 **
3 DVI 0.8396 ** 0.8344 **
4 DVIreg 0.8686 ** 0.8637 **
5 EVI 0.7981 ** 0.8147 **
6 EVIreg 0.8625 ** 0.8654 **
7 MNLI 0.8035 ** 0.816 **
8 MNLIreg 0.8636 ** 0.8641 **
9 MSAVI 0.8527 ** 0.8277 **

10 MSAVIreg 0.8589 ** 0.8396 **
11 MSR −0.5764 ** −0.5614 **
12 MSRreg 0.8248 ** 0.8367 **
13 MTCI 0.8816 ** 0.8884 **
14 NDVI −0.4982 ** −0.5426 **
15 NDVIreg 0.8222 ** 0.8358 **
16 OSAVI 0.5999 ** 0.6429 **
17 OSAVIreg 0.8482 ** 0.8516 **
18 RDVI 0.7622 ** 0.7834 **
19 RDVIreg 0.8611 ** 0.8647 **
20 SAVI 0.7863 ** 0.8053 **
21 SAVIreg 0.8609 ** 0.8646 **
22 SR −0.588 ** −0.5655 **
23 SRreg 0.8253 ** 0.8375 **
24 TVI 0.8338 ** 0.8323 **
25 TVIreg 0.8754 ** 0.881 **

Notes: ** represents the significant correlation at the 0.01 level; NS represents not significant.

3.2. Determination of the Proposed SM-CSRM
3.2.1. Correlation between Measured AGB and Different Proposed Metrics

According to Equation (3), a total of 20 potential metrics of SM-CSRM were formed by
combining the selected VI, mCHM and nGDD. In order to investigate the performance of
the proposed metrics, as well as their corresponding VI and the combination of spectral and
structural factors (VI × mCHM), we used Pearson correlation to analyze the correlation
between each metric and measured AGB. The pixel value of each sampling plot was
extracted from the raster pixels within the sampling extent, excluding zero values. The
result was shown in Figure 5. Furthermore, “VI ×mCHM” refers to the pixel-level fusion
of spectral (VI) and structural (mCHM) factors, and “VI ×mCHM × nGDD” refers to the
pixel-level fusion of spectral (VI), structural (mCHM) and meteorological (nGDD) factors.

In Figure 5, it can be observed that all the selected SM-CSRM were positively correlated
with measured AGB, and 95% of SM-CSRM showed improved correlations with AGB
(>0.8689) compared to each individual variable. The two highest correlations between
SM-CSRM and wheat biomass were achieved with the metrics MSAVI × mCHM × nGDD
(0.8925) and MTCI × mCHM × nGDD (0.8853). In approximately 80% of cases, the
correlation between individual VI and AGB was higher than 0.8222, but the metric of
VI ×mCHM showed a slightly lower correlation with AGB. This might be attributed to the
fact that the correlation between VI and AGB was higher than that between mCHM and
AGB. The mCHM presented a limited performance in terms of improving the correlation
when combined with VI. Besides, nGDD had a positive correlation with biomass and
generally enhanced the correlation between the proposed SM-CSRM and biomass.
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3.2.2. Function Fitting between Different Proposed Metrics and Measured AGB

To further explore the quantitative relationship between the proposed metric (SM-
CSRM) and AGB, five simple fitting functions were used, including a linear function
and four nonlinear functions (polynomial, power, exponential, and logarithmic). The
fitting accuracy was assessed using a coefficient of determination (R2) and RMSE. The
optimal five metrics were listed in Table 4. It was found that these metrics exhibited
a nonlinear relationship with AGB, and most of the SM-CSRM earned the best fitting
results using the polynomial fitting function. Moreover, four metrics containing the band
of red edge presented higher fitting accuracies with lower RMSE values, which further
demonstrated that a VI containing red-edge band had a closer correlation with wheat
AGB. The two best fitting metrics were found to be TVIreg × mCHM × nGDD (R2 = 0.809,
RMSE = 0.1705 kg/m2) and MTCI×mCHM× nGDD (R2 = 0.8058, RMSE = 0.1719 kg/m2).
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Table 4. Five optimal univariate fitting results between wheat AGB and proposed SM-CSRM.

NO. Input Variable Fitting Type Optimal Fitting Result R2 RMSE (kg/m2)

1 DVIreg ×mCHM × nGDD Linear y = 9.764x + 0.3115 0.7831 0.1804
Polynomial y = −54.67x2 + 16.77x + 0.1572 0.7987 0.1751

Power y = 5.167x0.6055 0.7956 0.1752
Exponential y = 0.4594exp(10.08x) 0.7425 0.1966
Logarithmic y = 0.4936ln(x) + 2.389 0.7803 0.1816

2 EVIreg ×mCHM × nGDD Linear y = 18.67x + 0.2825 0.7813 0.1812
Polynomial y = −185x2 + 31.7x + 0.1181 0.7953 0.1765

Power y = 8.446x0.645 0.7890 0.1768
Exponential y = 0.447exp(19.22x) 0.7411 0.1972
Logarithmic y = 0.5303ln(x) + 2.805 0.7774 0.1828

3 MSAVI ×mCHM × nGDD Linear y = 2.668x + 0.2141 0.7990 0.1737
Polynomial y = −1.973x2 + 3.707x + 0.1109 0.8026 0.1733

Power y = 2.487x0.7281 0.8018 0.1725
Exponential y = 0.4017exp(2.868x) 0.7719 0.1850
Logarithmic y = 0.5883ln(x) + 1.779 0.7791 0.1821

4 MTCI ×mCHM × nGDD Linear y = 1.584x + 0.2922 0.7853 0.1795
Polynomial y = −1.541x2 + 2.865x + 0.1026 0.8058 0.1719

Power y = 1.725x0.6351 0.7997 0.1734
Exponential y = 0.4586exp(1.593x) 0.7371 0.1987
Logarithmic y = 0.5309ln(x) + 1.508 0.7905 0.1774

5 TVIreg ×mCHM × nGDD Linear y = 0.2435x + 0.4179 0.7777 0.1827
Polynomial y = −0.0449x2 + 0.4419x + 0.2934 0.8090 0.1705

Power y = 0.7112x0.4615 0.8035 0.1718
Exponential y = 0.5258exp(0.2408x) 0.7218 0.2044
Logarithmic y = 0.351ln(x) + 0.7836 0.7637 0.1883

3.3. AGB Estimation and Mapping
3.3.1. Performance Comparison of Data Fusion Using Pixel Level or Feature Level

This paper compared the wheat biomass estimation using both pixel-level and feature-
level fusion with polynomial regression. The result was shown in Table 5.

Table 5. Accuracy validation of wheat AGB estimation using pixel-level or feature-level data fusion.

Way of Data Fusion Independent Variable R2 RMSE (kg/m2) nRMSE (%)

Pixel-level (MTCI ×mCHM × nGDD)_mean 0.8069 0.1667 19.62
Feature-level MTCI_mean ×mCHM_mean × nGDD 0.8046 0.1674 19.71

Pixel-level (TVIreg ×mCHM × nGDD)_mean 0.7865 0.1724 20.29
Feature-level TVIreg_mean ×mCHM_mean × nGDD 0.7788 0.1748 20.58

It can be seen that the proposed metric using pixel-level fusion improved the esti-
mation accuracy of wheat biomass. Both RMSE and nRMSE slightly decreased, while R2

slightly increased. These improvements indicated that the pixel-level fusion approach led to
more accurate predictions of wheat biomass compared to the feature-level fusion approach,
demonstrating the advantages of the pixel-wise accumulation method in maintaining the
characteristics of canopy spatial variation [13]. Overall, the results suggested that pixel-
level fusion using the proposed SM-CSRM was a promising approach for enhancing the
accuracy of wheat biomass retrieval.

3.3.2. Statistical Modelling of Wheat AGB

Statistical modelling of wheat AGB was estimated using polynomial regression for
modelling and LOOCV for validation. The accuracy was evaluated using R2, RMSE
and nRMSE. It can be seen from Table 6 that the best results were obtained for the met-
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ric of TVIreg × mCHM × nGDD (RMSE = 0.1782 kg/m2) in the training dataset and
MTCI ×mCHM × nGDD (RMSE = 0.1667 kg/m2) in the validating dataset, respectively.

Table 6. Modelling accuracy of polynomial regression for wheat AGB estimation.

Input Variables Dataset R2 RMSE (kg/m2) nRMSE (%)

MTCI ×mCHM × nGDD Training 0.7840 0.1823 21.46
TVIreg ×mCHM × nGDD Training 0.7935 0.1782 20.98
MTCI ×mCHM × nGDD Validation 0.8069 0.1667 19.62
TVIreg ×mCHM × nGDD Validation 0.7865 0.1724 20.29

Figure 6 showed the scatter plot representing the wheat biomass estimation results.
The plot exhibited that the wheat estimation achieved good accuracy overall, but it also
revealed a tendency to underestimate when dealing with higher quantities of biomass
(>1.4~1.5 kg/m2). Similar studies have reported this phenomenon in the estimation of crop
biomass [13]. Finally, the metric of MTCI ×mCHM × nGDD was determined to estimate
wheat AGB using polynomial regression.
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3.3.3. AGB Mapping

AGB mapping was implemented by applying the estimated model to a raster format.
This study conducted median filtering with a sliding window of size 3 × 3 to eliminate the
potential outliers at local pixels. The final mapping results can be seen in Figure 7.
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4. Discussion
4.1. Advantages of VIs Combining with CHM and GDD

The improvement ability of the proposed metrics with multi-feature fusion (SM-CSRM)
is further analyzed by comparing the accuracy of different models for wheat biomass
estimation. Specifically, the metrics of MTCI, mCHM, mCHM × nGDD, MTCI ×mCHM,
and MTCI ×mCHM × nGDD were selected as the independent input variables for wheat
biomass prediction. Table 7 shows the accuracy of the results of different models in order
to demonstrate the performance of individual metrics and their combinations in efforts to
forecast wheat biomass.

Table 7. Validation statistics of wheat AGB estimation using different univariate regression.

Independent Variable Regression Method R2 RMSE (kg/m2) nRMSE (%)

MTCI Polynomial 0.8007 0.1682 19.80
mCHM Polynomial 0.6609 0.2110 24.84
MTCI ×mCHM Polynomial 0.7363 0.1959 23.06
mCHM × nGDD Polynomial 0.7945 0.1750 20.61
MTCI ×mCHM × nGDD Polynomial 0.8069 0.1667 19.62

In Table 7, it can be seen that the estimation accuracy achieved using only the variable
of structure information (mCHM) was significantly lower than that obtained in this study
using only spectral input (MTCI). The use of mCHM derived from UAS multispectral
images showed limited effectiveness in improving the wheat biomass prediction, and its
accuracy even decreased when combining mCHM with MTCI. The meteorological factor
nGDD contributed to enhance the estimation accuracy, and the accuracy predicted by
mCHM × nGDD was slightly improved. However, the most optimal estimation was
obtained by using the proposed metric (MTCI × mCHM × nGDD) with polynomial
regression (R2 = 0.8069, RMSE = 0.1667 kg/m2), which enhanced the nRMSE by 3.44% with
a multispectral image of 53 mm spatial resolution. In contrast, the estimated precision was
slightly lower than that seen in similar literature for the prediction of wheat or soybean
biomass. Wheat biomass was estimated, using only two spectral VIs with an nRMSE
of 22.63% or only four image textures with an nRMSE of 21.24%, via multiple stepwise
regression and using UAS optical images with an 11 mm ground sampling distance [18].
Similarly, soybean AGB was forecasted using a VI-weighted canopy volume model via
linear regression and the use of 6 mm-resolution UAS RGB images, achieving an nRMSE of
16.3%. In summary, the proposed SM-CSRM metric, combining MTCI, mCHM, and nGDD,
showed promising accuracy improvements in wheat biomass retrieval, although they were
slightly lower than those obtained in some previous studies using different methodologies
and higher-resolution imagery.

Figure 8 illustrated that the wheat biomass could be predicted with different levels of
accuracy using spectral features (MTCI), structural features (mCHM) and meteorological
factors (nGDD). In this study, the vegetation index involving the red-edge spectral band
provided a good precision. However, a limitation of using only spectral indices was that
they captured only one-dimensional information about the crop canopy, which tended to
be saturation effects as biomass increased. Canopy structure traits can encompass both
vertical and horizontal information, especially for UAS observations with a very high
resolution. Notably, UAS multispectral imagery was demonstrated to obtain an accepted
canopy height, although it exhibited somewhat lower precision compared to methods
employing airborne optical or LiDAR sensors [26]. However, it even underestimated most
of the samples with wheat biomass on the former observed date, and this was improved
after pixel-level fusion with MTCI or nGDD.
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The meteorological factor (nGDD) could improve the performance of UAS-based
biomass estimation in the local scale after combination with canopy characteristics [20],
such as spectral features (MTCI) and structural features (mCHM), or when used with
combined spectral–structural features (MTCI ×mCHM). These findings were in agreement
with previous studies [13]. The improvement could be explained by the close relationship
between crop biomass and climatic indicators, like GDD, and many climatic factors played
a role in the physical models of crop parameters forecasting [30]. When considering
the fusion of double variables, MTCI × nGDD displayed a higher RMSE than the other
combination, but it was important to note that this combination presented two obvious
clusters for two observed dates. This suggested that MTCI × nGDD might not be the best
model for final AGB mapping with multiple observed dates.

Additionally, six figures of above-mentioned AGB modelling and mapping were
attached in the Appendix A (see Figures A1–A6). Spatial variability was determined from
the six results of biomass mapping. Particularly, spatial difference decreased after the
combination of the input variable with nGDD, for instance MTCI versus MTCI× nGDD,
mCHM versus mCHM × nGDD and MTCI ×mCHM versus MTCI ×mCHM × nGDD,
especially for AGB mapping using MTCI × nGDD.

4.2. The Response of Estimated Crop Biomass to Typical Soil Profiles in Reclaimed Cropland

The crop response to the reclaimed soil environment was examined using the esti-
mated AGB, as depicted in Figure 9. The figure displayed seven typical soil profiles that
were chosen by considering the complexity of the reclamation activities, including three
individual experimental plots (CT50, BT70, AT90) and three treatments (T02, T04, T09)
with three duplicates in different cropland strips, as well as a control treatment (CK) with
three duplicates. The mean AGB value of all pixels within each plot was employed by the
statistical range inward 1 m distance from the plot boundary. Two sets of statistical AGB
mapping were compared across the seven soil profiles in the figure. It was found that the
proposed SM-CSRM showed a more stable and reliable prediction compared to structurally
weighted canopy spectral response metric (S-CSRM) within the same treatment across
different cropland lines, such as T02, T04 and T09 distributed in Line A, B and C, as well as
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CK treatment in Line CK. Notably, three samples (BT02, BT04, BT09) obtained apparently
higher biomass than the control samples (CK02, CK03, CK04) for S-CSRM estimation on
14 May 2017. This discrepancy further confirmed the better performance of the proposed
SM-CSRM over S-CSRM. The control treatment (CK) produced the highest wheat biomass
with relative stability status across the two development stages, as seen in particular on
23 April 2017. This observation suggested that the plants in the control treatment were less
stressed by the soil environment, resulting in better growth and biomass production.
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Figure 9. Estimated wheat AGB in seven typical soil profiles.

The performance of typical soil profiles was reflected in the wheat biomass. Firstly,
soil profiles consisting of a single layer of Yellow River sediments (CT50, BT70, AT90)
showed higher predicted AGB as the effective soil thickness (comprising topsoil and
subsoil) increased by 50 cm, 70 cm and 90 cm on the two surveying dates. Additionally,
BT70 and CT90 displayed the relative difference of wheat biomass on 23 April 2017, but
this variation became less apparent on 14 May 2017 after the rainfall and field management.
This highlighted the importance of the thickness of topsoil and subsoil, particularly during
the early period of crop development. This result aligned with the soil thickness (70 cm)
recommended by the local regulation of cropland consolidation. Secondly, for the soil
profiles composed of multilayer Yellow River sediments (T02, T04, T09), the estimated
biomass displayed a positive correlation with soil layer thickness. Specifically, thicker soil
layers were associated with higher crop biomass for three treatments (T02, T04 and T09)
across different cropland strips (Line A, B and C). Similar changing trends were observed
within the same cropland strip, while variations existed among the three cropland lines.
Besides the minor disturbance by the local farmer in the plot of AT04 before 23 April 2017,
the lowest and highest averaging biomass were consistently observed in soil profiles of
T02 and T09 across the three cropland lines for both two observation dates, respectively.
These findings underscored that soil thickness was significant during cropland reclamation
using multilayer Yellow River sediments. Furthermore, according to the field investigation,
the different crop phenotypes in three cropland lines were related to the actual thickness
of topsoil and subsoil after soil reconstruction. The soil thickness of Line B is universally
thicker than that of the other two lines. These findings were in accordance with the previous
research [31].

4.3. The Implications and Applicability of the Proposed SM-CSRM

The metric (SM-CSRM) proposed in this paper has an exact physical meaning. Firstly,
the coefficient of p and q were determined by examining the correlation between the wheat
biomass and each selected VI variable. CHM and GDD have positive correlations with
wheat biomass, leading to concurrent positive values for p and q. However, different
VIs might show positive or negative correlation with wheat biomass at different growing
stages or their combinations. Secondly, the value range of CHM, GDD and VIs was taken
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into account. The theoretical minimum value of CHM is zero, indicating bare ground
without vegetation. The maximum value of CHM varies based on factors like crop variety,
field management and growth environment. Similarly, the minimum value of GDD is
zero when crop seeds are ready to grow just after sowing. The maximum value of GDD
depends on crop varieties and meteorological conditions. The value range of VIs differs,
and certain scenarios, such as when a VI pixel value is zero and its exponential coefficient is
negative, could lead to infinite values, which in turn could pose challenges for programing
computation. However, VIs have long been recognized as crucial predictors for AGB
estimation. Therefore, this paper introduced the vegetation-masked CHM and normalized
GDD, incorporating their corresponding exponential coefficients as weights for the VI. In
the future, more structural and climatic factors should be explored to improve the estimated
accuracy of wheat biomass.

VIs serve as indicators of the spectral response exhibited by a crop canopy and they
correlate highly with the growth status of crops at different development stages. Different
VIs show varying degrees of correlation with the growth parameters of crops. In this study,
13 VIs containing red-edge bands showed relatively higher correlation with AGB compared
to VIs without red-edge bands. VIs containing red-edge bands have been proved to be
strongly correlated with plant parameters like SPAD [22] and LAI [32]. Specifically, NDVI
and SR were negatively correlated with the wheat AGB during two observed dates, with
correlations of −0.4982 and −0.588, respectively. However, NDVIreg and SRreg showed
positive correlations with AGB for 0.8222 and 0.8253, respectively, because the wheat had a
good spectral response (higher values of NDVI) in vegetative growth at the jointing stage
(23 April 2017) and a poor spectral response (lower values of NDVI) in reproductive growth
at flowering stage (14 May 2017). It also indicated that data acquisition should properly
select the crop growth stage.

CHM is a commonly utilized structure data type that is often employed to assess
the characteristics of vegetation canopies. However, its performance in data fusion with
VI demonstrated limitations in this study, which can potentially lead to relatively lower
prediction accuracy when using UAS-based multispectral data. It was worth considering
that UAS-based RGB or LiDAR data can offer alternative approaches with the capacity to
improve the estimation accuracy of plant height.

Meteorological factors required gradual changes in spatial distribution and continuous
temporal evolution. GDD is an indicator of accumulated effective temperature, which
aligns well with the above-mentioned requirements. The suitability of GDD relates to its
ability to reflect the cumulative impact of temperature on crop growth over time, which
makes it an ideal metric for use in this kind of exercise. In contrast, precipitation is unbal-
anced in its spatial and temporal distribution, which is not suitable for UAS-based biomass
estimation at a fine scale. Besides, the total evapotranspiration is usually calculated using
the Penman equation, which needs multiple climate parameters, but many meteorologi-
cal stations provide poor-quality data [33]. From the perspective of data acquisition, the
density of meteorological stations can basically support the monitoring needs because the
average distance of neighboring national-level meteorological stations is around 10~20 km
in the central and eastern parts of China. There is denser coverage for regional-level
stations. Moreover, daily observation elements only encompass five items: maximum tem-
perature, minimum temperature, precipitation, wind speed and wind direction. Notably,
precipitation records may be absent during the winter period.

Crops with similar row crops and canopy traits might be suitable for utilizing the
proposed framework for above-ground biomass estimation, and the specific field can be
applied in the effect evaluation of reclaimed cropland or in the potential utilization of crop
breeding for precision agriculture.

4.4. Limitations and Future Work of the Proposed SM-CSRM

This study explained the potential of combining UAS multispectral data with tem-
perature information to estimate crop biomass through pixel-level data fusion, integrating
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canopy spectral features with plant structure and environmental factor of temperature. As
such, the limitations should be stated to assist further efforts to improve the performance
of this approach.

Single factors of data fusion in crop biomass estimation have limitations in terms
of data acquisition and analysis. Firstly, the optimal spectral response traits should be
further explored for either a single date or combined dates. In this paper, NDVI and SR
displayed a negative correlation with measured AGB in two combined observations, and
they achieved unsatisfactory results when combined with canopy height. This was because
many VIs increased to the highest values as crops grew, and then decreased over time. This
phenomenon can be also illustrated by a previous study of crop biomass prediction using
two development periods [29]. Therefore, more crop growth stages should be observed in
order to identify the optimal spectral response (VIs) at various growing periods, and each
surveying stage should be examined to perform biomass estimation. Secondly, the accuracy
of canopy structure information might limit the retrieved performance of proposed SM-
CSRM. Several UAS-derived approaches could be compared and employed to extract the
canopy structure, such as optical or LiDAR sensors [26]. CHM with the higher accuracy
should be surveyed more extensively [13], and other plant structural traits should also be
considered, in order to enhance biomass retrieval [15]. Thirdly, meteorological indicators
showed a good relationship with crop biomass, but only GDD was utilized as a point value
for a specific date. The spatial variation of GDD or other climatic factors was considerable
for the larger scale, which could potentially lead to more accurate estimates.

In future, the influencing mechanism behind the combination of spectral, structural
features and meteorological factors should be further explored to perform wheat biomass
predictions. Notably, wheat biomass revealed a strong correlation (0.8816) with MTCI and
a weak correlation (0.6405) with mCHM derived from UAS multispectral data, but soybean
biomass showed an comparable correlation (0.889) with CHmean and a lower correlation
(0.544) with the selected VI (green–red ratio index, GRRI) [13], but their combinations
exhibited varying abilities for biomass forecasting. Thus, these combinations should be
examined under different conditions of crop cultivation and field management to improve
the robustness of the proposed SM-CSRM and achieve more accurate estimations for the
assessment of reclaimed cropland or precision agriculture. Besides, more observed dates
and their combinations should be further explored to provide guidelines for UAS data
collection about different cultivated crop types. The scale effect of UAS observations with
different flight height should also be investigated for each individual factor and combined
metrics, a practice which helps to identify the optimal flight altitude. In addition, this
study was only verified using winter wheat in a relatively small reclaimed experimental
site of 1200 m2. Consequently, the robustness of the proposed metric should be further
tested under more complex environment and field management situations relevant to
reclaimed cropland or precision agriculture, such as diverse sites, various crop varieties
and cultivation density, or more stage combinations of different crop development phases.

Besides, the reclaimed cropland was required to be restored to the original level of crop
production by national regulations, requiring a recovery period of 3~5 years. The proposed
SM-CSRM considered both the potential height of crop canopies and interannual variations
using normalized GDD. As a result, it has the potential to significantly contribute to the
interannual evaluation of reclaimed effects, but it should also be tested across a broader
spectrum of reclaimed cropland with different crop densities or growing stages after the
completion of reclamation activities. By accumulating data over more consecutive years,
the proposed SM-CSRM can be further refined, validated and improved, thereby bolstering
its utility in not only crop biomass forecasting but also for comprehensive assessments of
reclaimed cropland.

5. Conclusions

This paper reported an improved metric, termed the structurally–meteorologically
weighted canopy spectral response metric (SM-CSRM), for the accurate estimation of
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wheat AGB using UAS-based multispectral images. This novel metric was proposed via
pixel-level data fusion combining the canopy spectral response (VI), structural information
(vegetation-masked CHM) and meteorological factors (normalized GDD) as an independent
input variable. The best metric was identified via qualitative analysis using Pearson
correlation and quantitative analysis using the simple function fitting. Subsequently,
an AGB estimation model was built using the optimal simple regression method and
LOOCV. The results indicated that the proposed metrics (SM-CSRM) showed a nonlinear
relationship with wheat AGB when integrating mCHM, nGDD and a highly correlated
VI. The metric (MTCI × mCHM × nGDD) achieved the highest level of accuracy in
biomass estimation using polynomial regression (R2 = 0.8069, RMSE = 0.1667 kg/m2,
nRMSE = 19.62%), exhibiting improvement on predictions solely made using MTCI or
mCHM as variables. Additionally, VI incorporating the red-edge band presented strong
correlation with wheat biomass, such MTCI and TVIreg. GDD was demonstrated to be a
greatly useful indicator for AGB estimation. The performance of pixel-level data fusion
demonstrated advantages over feature-level fusion. This study offers contributions by
facilitating the accurate estimation of wheat AGB and efficient assessment of reclaimed
cropland or precision agriculture. These advancements hold potential benefits for enhanced
crop monitoring and field management practices.
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Appendix A

Table A1. Name and equation list of selected vegetation indices.

NO. VI Name Equation

1 Simple ratio vegetation index, SR SR =
ρNIR
ρR

2 Modified ratio vegetation index, MSR MSR =
ρNIR

ρR
−1√

ρNIR
ρR

+1

3 Normalized difference vegetation index, NDVI NDVI = ρNIR−ρR
ρNIR+ρR

4 Renormalized difference vegetation index, RDVI RDVI = ρNIR−ρR√
ρNIR+ρR

5 Enhanced vegetation index, EVI EVI = ρNIR−ρR
1+ρNIR+2.4ρR

6 Difference vegetation index, DVI DVI = ρNIR − ρR
7 Triangular vegetation index, TVI TVI = 60(ρNIR − ρG)− 100(ρR − ρG)
8 Optimized soil adjustment vegetation index, OSAVI OSAVI = ρNIR−ρR

ρNIR+ρR+0.16

9 Modified soil adjustment vegetation index, MSAVI MSAVI =
2ρNIR+1−

√
(ρNIR+1)2−8(ρNIR−ρR)

2
10 Modified Nonlinear vegetation index, MNLI MNLI = 1.5(ρNIR

2−ρG)
ρNIR2+ρR+0.5

11 MERIS Terrestrial Chlorophyll Index, MTCI MTCI = ρNIR−ρReg
ρReg−ρR

12 Soil adjustment vegetation index, SAVI SAVI = (1 + L) ρNIR−ρR
ρNIR+ρR+1 , L = 0.5
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Table A1. Cont.

NO. VI Name Equation

13 Chlorophyll vegetation index—green, CIgreen CIgreen =
ρNIR
ρR
− 1

14 Simple ratio vegetation index—red edge, SRreg SRreg =
ρNIR
ρReg

15 Modified ratio vegetation index—red edge, MSRreg MSRreg =

ρNIR
ρReg
−1√

ρNIR
ρReg

+1

16 Normalized difference vegetation index—red edge, NDVIreg NDVIreg =
ρNIR−ρReg
ρNIR+ρReg

17 Renormalized difference vegetation index—red edge, RDVIreg RDVIreg =
ρNIR−ρReg√

ρNIR+ρReg

18 Enhanced vegetation index—red edge, EVIreg EVIreg =
ρNIR−ρReg

1+ρNIR+2.4ρReg

19 Difference vegetation index—red edge, DVIreg DVIreg = ρNIR − ρReg
20 Triangular vegetation index—red edge, TVIreg TVIreg = 60(ρNIR − ρG)− 100(ρReg − ρG)

21 Optimized soil adjustment vegetation index—red edge, OSAVIreg OSAVIreg =
ρNIR−ρReg

ρNIR+ρReg+0.16

22 Modified soil adjustment vegetation index, MSAVIreg MSAVIreg =
2ρNIR+1−

√
(ρNIR+1)2−8(ρNIR−ρReg)

2
23 Modified Nonlinear vegetation index—red edge, MNLIreg MNLIreg =

1.5(ρNIR
2−ρG)

ρNIR2+ρReg+0.5

24 Soil adjustment vegetation index, SAVIreg SAVIreg = (1 + L) ρNIR−ρReg
ρNIR+ρReg+1 , L = 0.5

25 Chlorophyll vegetation index—red edge, CIreg CIreg =
ρNIR
ρReg
− 1

Note: ρG , ρR, ρReg and ρNIR are the band reflectance of green, red, red-edge and near-infrared, respectively.
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