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Abstract: Over the years, aquaponics has become a powerful technological tool that allows the
sustainable production of food, integrating conventional fish farming with vegetable production. The
present study evaluated the production of late seedlings of açai Euterpe oleraceae in an aquaponic
system with tambaqui Colossoma macropomum. A total of 36 tambaquis with an initial average weight
and length of 1086.75 ± 16.38 g and 38.49 ± 0.90 cm were distributed in 12 independent aquaponic
units, totaling 3.62 kg m−3. The fish were fed three times daily with commercial feed at a rate of
3%. Three flooding levels of 5, 10 and 15 cm, with constant water flow through the hydroponic
bed (0.5 m2), were evaluated, and a control-hydroponic bed with flooding levels of 10 cm was
established, all in triplicate. In the 5 and 10 cm treatments, 3450 açai seedlings with an initial height
of 12.3 ± 1.9 cm were used (575 per aquaponic units), while the 15 cm treatment contained non-
germinated açai seeds. The control group did not receive açai seeds and remained empty. Analyses
to monitor total dissolved solids (TDS), electrical conductivity, dissolved oxygen, temperature, pH,
alkalinity, hardness, nitrogenous compounds, and phosphate levels were performed. At the end
of the 30-day trial, the growth performance of tambaqui and plants was evaluated. Water quality
was significantly (p < 0.05) affected by different flooding levels. Electrical conductivity and TDS
decreased with an increasing in flooding levels. The flooding levels significantly influenced (p < 0.05)
the concentration of total ammonia and nitrate between the treatments. The 5 cm flooding level
showed the best plant development indexes for total height, aerial portion height, root height and
aerial portion fresh mass. No significant differences (p < 0.05) were observed in tambaqui growth
performance. The aquaponic system proved to be effective in reusing fish waste (excreta and feed
leftovers) generated in the system. The biotransformation of waste into nutrients allowed the growth
of plants and nitrifying bacteria, which, through their metabolic pathways, ensured the purification
and reuse of water, avoiding the discharge of this waste into the environment.
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1. Introduction

Aquaponics is a technological model that harmoniously integrates conventional fish
farming with vegetable production in a hydroponic environment, allowing greater food
productivity in a sustainable way [1]. In this symbiotic environment, vegetable growth
is optimized by the abundant availability of nutrients, generated from the aquaculture
system [2,3], which benefits as plants absorb and fix nutrients, contributing to the proper
maintenance of water quality parameters in fish ponds [4]. This technology provides a
considerable reduction in the use of chemical fertilizers for plant growth, while reducing
the environmental impacts generated by fish farming [5,6]. In this way, aquaponics emerges
as a circular bioeconomy model for production of organic food [7].

The cultivation techniques most used in aquaponic systems are the Nutrient Film
Technique (NFT), the Deep-Water Culture system (DWC) and the media-based grow bed
(MGB) [8,9], where various organic, inorganic, or synthetic materials are used as fixation
substrates [9], in order to provide greater stability to plant roots, and at the same time,
act as a biological support for nitrifying bacteria [1]. This layout establishes both physical
and biological filtration for the system, without needing an external biofilter as in other
hydroponic setups [10–12]. The use of efficient and low-cost filter media is essential
for the improvement of aquaponic systems [13,14]. Given this premise, the substrate
with açai seeds (Euterpe oleraceae Mart, 1824) can be highlighted, which, in addition to
functioning efficiently as an alternative biofilter, produces açai seedlings, generating income
for producers [15].

Açaí is a popular Amazonian fruit. In the year 2021 alone, Brazilian production reached
a volume close to 227 thousand tons [16], where the state of Pará became a reference in
açai production, with an estimated profit of USD 9.5 million for producers in recent years
due to exports to the United States [17]. However, the production of açai generates a high
volume of fibrous residues, which are often discarded irregularly after processing the fruit,
representing a major environmental problem [18,19].

The species reproduces sexually or asexually and the seeds germinate quickly and
constantly. Traditionally, the açai seed is sown directly into plastic bags to germinate and
form seedlings. This process lasts from 3 to 11 months, so that the plants reach a height
of approximately 40 and 50 cm [20]. Despite this, some seeds do not germinate, so it is
recommended to sow them in specific containers for germination, and when the seedlings
reach the “toothpick” stage, they are transplanted into seedling bags. However, the great
challenge is to increase the multiplication rate of vegetative tillers [21]. Thus, the formation
of seedlings is recommended in order to obtain a gain of 2 to 3 years in development, in the
field, compared to direct sowing [20].

Recently, a pilot study enabled the production of “toothpick” seedlings in aquaponic
systems, developing and forming more than 1300 seedlings per m2 in four weeks [15]. In
the aforementioned study three flooding levels with constant water flow through the açai
seed hydroponic bed were tested. Nevertheless, there are no studies that have evaluated
the development of açai seedlings beyond four weeks in an aquaponic system, observing
the effects of more robust açai seedlings in these systems.

For this reason, here in the present research, the açai seedlings that were germinated
in four weeks in the study proposed by Sterzelecki et al. [15] were used to evaluate the
production of late seedlings of açai Euterpe oleraceae in aquaponic system with tambaqui
Colossoma macropomum, verifying the influence of seedlings on water quality, nitrogenous
compounds, phosphate levels and on tambaqui growth performance.

2. Material and Methods

The experiment was carried out at the Federal Rural University of the Amazon
(UFRA)—campus Belém, Pará, Brazil, in an aquaponic system sheltered by a greenhouse,
and lasted 30 days. This study was approved by the Ethics Committee on Animal Use of
the Federal Rural University of Amazonia protocol number n◦ 1457260820.
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2.1. Experimental Design

The experiment was structured with 12 independent aquaponic units, featuring a
recirculating water system. Each unit consisted of an individual fish tank with a volume
of 1000 L (900 L useful), a 70 L decanter, a 100 L biofilter, a pump (3000 L h−1) for water
distribution in the system, and a 150 L hydroponic bed filled with açai seeds (13 cm deep)
(Figure 1). Dechlorinated water was used to fill the tanks and replace the evaporated water
throughout the experiment.
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Figure 1. Graphical representation of the experimental unit composed of independent aquaponic
systems. In (1) 1000 L individual fish tank, (2) decanter—70 L, (3) 100 L biofilter, (4) hydroponic
bed—150 L. i = water inlet; o = water outlet.

The fish used in this study came from the Universidade Federal Rural da Amazônia
and were obtained in the same spawning from a breeding stock from the Amazonian
Aquaculture Biosystems Laboratory. A total of 36 tambaquis with average initial weight
and length of 1086.75 ± 16.38 g and 38.49 ± 0.90 cm were used. The tanks were populated
with three animals per aquaponic unit (nine per treatment), making a low density of
3.62 kg m−3. The fish were fed three times daily with a comercial feed NUTRIPISCIS® with
a granulometry of 6–8 mm (28% crude protein and 9% lipid) at a rate of 3%.
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After the initial procedures for the operation of the aquaponic system, water circulation
in the hydroponic beds was allowed. Three flooding levels of 5, 10 and 15 cm with constant
flow through the hydroponic bed were tested, and a control-hydroponic bed with flooding
level of 10 cm was established, all in triplicate. In the 5 and 10 cm treatments, 3450 açai
seedlings (575 per hydroponic bed) with an initial height of 12.3 ± 1.9 cm were used
(Figure 2), while the 15 cm treatment contained non-germinated açai seeds during the study
by Sterzelecki et al. [15]. The control group did not receive açai seeds and remained empty
according to Sterzelecki et al. [15].
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Figure 2. Acai seedlings obtained by Sterzelecki et al. [15] in aquaponic system with tambaqui
Colossoma macropomum and used in the present study, giving experimental continuation for production
of late seedlings. The figure shows germinated and non-germinated seeds of Açai palm Euterpe
oleracea.

2.2. Water Analysis

Daily analyses were carried out in the fish tanks to monitor total dissolved solids
(TDS) (AQUAREAD AP-800 Multiparameter Probe), electrical conductivity in the water,
dissolved oxygen (YSI ProODO, Yellow Springs, OH, USA, ±0.01 mg L−1), temperature
and pH (BL-1072—portable digital pH meter). In addition, dissolved oxygen and pH were
also analysed in influent and effluent water from the hydroponic beds.
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Water samples were collected weekly to check alkalinity, hardness, nitrogenous com-
pounds and phosphate levels. The water was filtered using a 0.7 µm F/GF membrane and
analyzed based on standard APHA methods [22]. Phosphate levels were measured by
applying the test for total phosphorus (ascorbic acid) [22], total ammonia [23], nitrite with
the Griess reaction [22], and nitrate with spectrophotometry read at 220 nm/270 nm in a
spectrophotometer (Ionlab, Paraná, Brazil) [22]. Total ammonia removal (%) was calculated
as: TAN removed (%) = (TAT − TAC/TAC) × 100, where TAN is the total ammonia, TAT is
the total ammonia in the treatment tank, and TAC is the ammonia total in the control tank.

2.3. Fish Growth Performance

Fish were measured and weighed weekly to verify growth performance. Before
sampling, individuals were fasted for 24 h and anesthetized with Eugenol (50 mg L−1)
to avoid stress. Weight gain was obtained by subtracting the final weight from the initial
weight. Feed conversion rates were calculated by (FCR) = feed intake (g)/weight gain (g).
Fulton’s condition factor (K) = W/L3 × 100.

2.4. Plant Growth Performance

The performance of the açai seedlings was verified at the end of 30 days through the
development in relation to the total height of the plant (cm), aerial portion height (cm), root
height (cm), collar diameter (mm), total fresh mass (g), aerial portion fresh mass (g), and
root fresh mass (n = 30 per treatment).

2.5. Statistical Analysis

The homoscedastic and normality dispersion of the data was analyzed. For parametric
variables, post hoc one-way ANOVA and Tukey tests were used to verify significant
differences (p < 0.05). For non-parametric results, post hoc Kruskal–Wallis and Dunn tests
were applied to explore significant differences (p < 0.05). Two-way ANOVA was used
on nitrogen and phosphate compounds to compare different sampling times (p < 0.05).
GraphPad Prism 9 was used for statistical analysis.

3. Results
3.1. Water Quality

Water quality variables were significantly affected (p < 0.05) by different flooding levels.
The flooding levels significantly influenced (p < 0.05) the concentration of total ammonia
and nitrate between treatments. Total ammonia was significantly reduced throughout the
experimental period in groups with seedlings and açai seeds, regardless of the flooding
level. The lowest nitrate concentrations were observed in the treatment with a flooding
level of 15 cm. However, nitrate was lower in the flooding level 15 cm only in the 21st
day, when compared to the other treatments. Nitrite and phosphate were not significant
between groups (Table 1). Dissolved oxygen showed a significant difference (p < 0.05)
between the control group and the flooding level of 10 cm. The pH was depth-dependent
on the flooding levels, while the conductivity and amount of TDS decreased with increasing
depth of the system (Table 2).

3.2. Plant Growth Performance

The flooding levels of 5 and 10 cm significantly influenced plant performance. The
5 cm flooding level showed the best development indexes in relation to total height, aerial
portion height, root height and aerial portion fresh mass. However, collar diameter, total
fresh mass and root fresh mass did not differ between the groups. The treatment with a
depth of 15 cm did not show germinated açai seedlings, while the control treatment was
empty and did not have açai seedlings (Table 3).
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Table 1. Effects of seeds and late seedlings of açai Euterpe oleraceae in aquaponic system with tambaqui
Colossoma macropomum on nitrogen and phosphate compounds at different flooding levels (5, 10 and
15 cm), and control group. Data are presented as the mean ± SEM. Different letters indicate statistical
differences between the groups (p < 0.05).

Compounds Days Control 5 cm 10 cm 15 cm

Total
ammonia
(mg L−1)

0 7.73 ± 2.86 a 7.73 ± 2.86 b 0.45 ± 0.08 b 0.14 ± 0.03 b

14 15.76 ± 14.77 a 0.97 ± 0.67 b 0.47 ± 0.18 b 0.75 ± 0.82 b

21 13.55 ± 14.11 a 0.26 ± 0.21 b 0.17 ± 0.06 b 0.10 ± 0.03 b

28 10.07 ± 12.44 a 0.39 ± 0.28 b 0.34 ± 0.16 b 0.34 ± 0.18 b

Nitrite
(mg L−1)

0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
14 0.03 ± 0.00 0.02 ± 0.00 0.02 ± 0.01 0.03 ± 0.01
21 0.03 ± 0.02 0.02 ± 0.01 0.01 ± 0.01 0.01 ± 0.02
28 0.01 ± 0.00 0.01 ± 0.02 0.02 ± 0.01 0.02 ± 0.00

Nitrate
(mg L−1)

0 26.45 ± 4.70 a 24.57 ± 0.10 a 18.78 ± 12.33 ab 2.14 ± 0.63 b

14 36.16 ± 0.54 a 33.85 ± 4.33 a 20.40 ± 14.44 ab 7.83 ± 0.47 b

21 33.99 ± 3.31 a 30.08 ± 9.46 ab 15.25 ± 15.04 b 7.23 ± 0.07 c

28 30.15 ± 6.30 a 29.31 ± 7.28 a 17.02 ± 9.41 ab 6.55 ± 1.69 b

Phosohate
(mg L−1)

0 5.63 ± 1.30 6.23 ± 0.80 6.06 ± 0.39 6.00 ± 0.21
14 7.77 ± 0.08 7.74 ± 0.27 6.48 ± 1.28 6.76 ± 0.61
21 7.37 ± 0.77 7.60 ± 0.25 7.29 ± 0.56 6.77 ± 0.10
28 6.89 ± 0.47 6.54 ± 0.38 6.61 ± 1.33 6.08 ± 0.96

Table 2. Effects of seeds and late seedlings of açai Euterpe oleraceae in aquaponic system with tambaqui
Colossoma macropomum on water quality at different flooding levels (5, 10 and 15 cm), and control
group. Data are presented as the mean ± SEM. Different letters indicate statistical differences between
the groups (p < 0.05).

Variables
Flooding Levels

Control (10 cm) 5 cm 10 cm 15 cm

Temperature ◦C 27.7 ± 0.06 a 27.8 ± 0.06 a 27.6 ± 0.07 ab 27.4 ± 0.06 b

Dissolved oxygen (mg L−1) 5.37 ± 0.09 a 5.13 ± 0.08 ab 4.98 ± 0.10 b 5.2 ± 0.09 ab

pH 6.4 ± 0.05 c 6.85 ± 0.05 b 6.99 ± 0.04 b 7.16 ± 0.03 a

Electrical conductivity (µS cm−1) 423.2 ± 12.30 a 344.0 ± 7.87 b 328.9 ± 8.14 b 266.5 ± 8.20 c

Total dissolved solids (mg L−1) 276.7 ± 7.70 a 226.6 ± 5.80 b 206.4 ± 6.00 b 180.0 ± 7.61 c

Table 3. Development parameters of açai seedlings after 30 days in aquaponic system at different
flooding levels (5, 10 cm). Data are presented as the mean ± SEM based on sampling of 15 plants per
aquaponic bed (45 per treatment). Different statistical letters indicate differences between the groups
(p < 0.05).

Development Parameters
Flooding Levels

5 cm 10 cm

Plant initial height (cm) 12.3 ± 1.9 a 12.3 ± 1.9 a

Plant total height (cm) 34.55 ± 0.72 a 24.7 ± 0.57 b

Aerial portion height (cm) 20.61 ± 0.51 a 13.41 ± 0.40 b

Root height (cm) 13.93 ± 0.40 a 11.29 ± 0.33 b

Collar diameter (mm) 3.4 ± 0.071 3.56 ± 0.061
Total fresh mass (g) 1.88 ± 0.03 1.83 ± 0.04
Aerial portion fresh mass (g) 0.87 ± 0.03 a 0.66 ± 0.02 b

Root fresh mass (g) 0.98 ± 0.03 b 1.19 ± 0.04 a
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3.3. Fish Growth Performance

No significant differences (p < 0.05) were observed in tambaqui growth performance
indexes, regardless of the flooding levels tested. Furthermore, no fish mortalities were
observed during the experimental period (Table 4).

Table 4. Effects of seeds and late seedlings of açai Euterpe oleraceae at different flooding levels (5, 10
and 15 cm) on the growth performance of tambaqui Colossoma macropomum, and control group. Data
are presented as the mean ± SEM n = 9.

Growth Indexes
Flooding Levels

Control (10 cm) 5 cm 10 cm 15 cm

Initial weight (g) 1097.0 ± 50.0 1103.0 ± 57.6 1080.0 ± 56.3 1067.0 ± 54.8
Initial condition factor 1.83 ± 0.12 1.95 ± 0.14 1.78 ± 0.13 2.05 ± 0.16
Final weight (g) 1388.0 ± 69.6 1427.0 ± 76.6 1396.0 ± 71.1 1396.0 ± 65.1
Weight gain (g) 291.3 ± 31.3 324.0 ± 35.9 315.6 ± 28.3 329.4 ± 36.4
Initial length (cm) 39.12 ± 0.6 38.33 ± 0.7 39.26 ± 0.5 37.28 ± 0.6
Final length (cm) 41.02 ± 0.9 42.6 ± 0.6 41.92 ± 0.7 41.8 ± 0.7
Final condition factor 2.01 ± 0.11 1.84 ± 0.6 1.89 ± 0.12 1.91 ± 0.14
Feed conversion ratio 2.07 ± 0.16 1.87 ± 0.18 1.87 ± 0.12 1.80 ± 0.22

4. Discussion

Aquaponics has all the fundamental characteristics established as basic criteria for a
more sustainable future in food production, and meets the principles of circular bioeconomy,
being able to optimize the efficiency of resources used in production and mitigate the
environmental impacts caused by conventional aquaculture [1,7].

As observed by Sterzelecki et al. [15], in the present study the use of seed and late
seedlings of açai in different flooding levels produced significant positive effects on water
quality and plant development in the long term. The water quality in an aquaponic
system can be affected mainly by the stocking density of fish, plants and microbiological
activities [24], in addition to providing an increase in productivity in the system when
maintained in optimal conditions [25–28]. This information corroborates the findings of
the present study, where a lower availability of dissolved oxygen was observed at flooding
levels of 10 cm, which possibly resulted in lower plant productivity rates.

Likewise, the pH variation recorded here can be related to the characteristics of the
aquaponic sets presented. In the control group, which contained only the fish tank without
the açai bed, the pH remained significantly more acidic. This probably occurred due to
the absence of plants in this treatment, which reduced the ability to remove nitrogenous
compounds from the water, increasing the levels of N-NH3 and Carbon dioxide (CO2) in the
aqueous medium, and consequently, the acidity of the water. While in the other treatments
that had açai seedlings or seeds, the pH remained close to neutrality, possibly providing a
greater proliferation of nitrifying or heterotrophic bacteria, which have optimized growth
at a pH between 7.0 and 8.0 [29]. Despite the values found in the present study being a little
below the level indicated for plants and fish, no apparent harmful effects were observed on
the development of açai seedlings and fish, indicating that these conditions were acceptable
for the aquaponic system proposed in the present study.

Electrical conductivity is a good indicator of ion availability for plants [30], as it varies
considerably according to the concentration of dissolved salts in water [31]. The results
found in the present study demonstrate that the açai seedlings efficiently absorbed the
nutrients available in the water [7], significantly reducing the electrical conductivity in the
treatment with flooding level of 5 cm, where the plants ended the experiment with greater
total height, implying a greater demand and absorption of nutrients from water. However,
high flooding levels are not favorable for the system [15], given that the absorption of
nutrients available within reach of plant roots is limited when the plant is in an early stage
of development.
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Total dissolved solids at elevated levels can significantly affect fish and aquatic life
in general, and are extremely important indicators of deteriorating water quality and
degradation of aquatic environments [32]. In turn, plant roots have the ability to filter
such particles dissolved in water and use them as nutrients, alleviating the amount of
total dissolved solids in a given aquatic ecosystem [33]. Here, in the present study, we
didactically observed such an event, where the control treatment had higher concentrations
of TDS, probably because it did not have plants in its configuration. While the groups
with flooding levels 5 and 10 cm significantly reduced the amount of TDS. Interestingly,
the group with flooding levels at 15 cm, which contained only açai seeds, had the lowest
amount of TDS, demonstrating that açai seeds are also an excellent medium for biological
support, capable of removing TDS.

Nitrogen compounds, in their various forms, can be removed from cropping systems
through mechanical, physical-chemical and biological processes. However, biological
processes prove to be more economical and efficient, as they follow the same decompo-
sition pathways that exist in nature. In effluent treatment systems, the main biological
processes for nitrogen cycling are nitrification, denitrification and anaerobic ammonia
oxidation [15,34–36]. In aquaponics, the nitrification process takes place in two stages. In
the first step, called nitritation, ammonia is oxidized to nitrite by ammonia-oxidizing bac-
teria (Nitrosomonas and Nitrosospir). Then, in the phase known as nitratation, nitrite is
oxidized to nitrate by nitrite-oxidizing bacteria (Nitrosococcus, Nitrobacter, Nitrospira, Nitro-
coccus and Nitrospina) [36,37]. However, the natural establishment of nitrifying bacterial
communities is slow [36].

In the present study, it was observed that the treatment with flooding levels at 15 cm,
which contained only açai seeds, probably offered greater surface area of biological support
for the adhesion of nitrite-oxidizing bacteria, given the kinetics of degradation of this
nitrogenous compound observed on the 21st day (Table 1). Nevertheless, the groups in
flooding levels at 5, 10 and 15 cm were efficient in the oxidation of total ammonia when
compared to the control treatment, possibly due to the greater availability of biological
support for the adhesion of ammonia-oxidizing bacteria (Nitrosomonas and Nitrosospir),
considering the absence of plants and seeds in the control group. Even so, we observed
that in the groups of flooding levels at 5, 10 cm, the total ammonia remained low since the
beginning of the period, indicating that the reduction in nitrogenous compounds in this
period also occurred through the absorption of the açai seedlings roots, while the presence
of phototrophic microorganisms may justify the reduction in nitrate in flooding levels at
15 cm, as already demonstrated by Sterzelecki et al. [15]. Such results demonstrate that the
açai seed acted efficiently within the aquaponic system, significantly improving the water
quality, and can be considered an excellent live biofilter for the system.

Plant development can be significantly influenced according to the depth level where
it is found [38], and depending on the water depth, the survival capacity of plants can
decrease [39]. Although the açai tree presents adaptations to flooding situations [40], the
results obtained in the present study indicate that the flooding level of 5 cm presented
the best results for the analyzed parameters. Similar results related to the development
of the aerial portion of açai seedlings in an aquaponic system were also found by Medina
et al. [41] when comparing the effects of two feedings on the productivity of red amaranth
(Amaranthus tricolor) in an integrated culture with blue tilapia (Oreochromis aureus) during
60 days. At the time, the researchers verified that the increased productivity of the plant,
combined with the use of a low-protein fish feed, can increase the total revenue of the
aquaponic farm, despite the reduction in fish production.

Although root height was greater at the 5 cm flooding level, fresh root mass was
greater at the 10 cm level. This result may be directly related to the depth level and to
the açai substrates, since, due to the greater depth in the 10 cm flooding levels, the plant
probably produced more dispersed roots to optimize the absorption of nutrients in the
water. Results similar to those of the present study were also found by Fischer et al. [42]
when comparing the productivity of juvenile largemouth bass Micropterus salmoides in a



Agriculture 2023, 13, 1581 9 of 11

recirculating aquaculture system versus aquaponics with lemongrass and spring onion
production. At the time, the authors considered M. salmoides as a suitable fish species to
grow with aquaponics.

Tambaqui C. macropomum is considered a rustic species that grows best in slightly
acidic waters [43], as do most plants [24], which results in two essential factors for integrated
agriculture. Despite this, no improvements were observed in the growth performance of
the fish in the present study. Similar results to those presented here were described by Silva
et al. [44] integrating the tambaqui cultivation with lettuce Lactuca sativa production; by
Da Costa et al. [45] integrating the tambaqui with coriander Coriandrum sativum seedlings
production; by Araújo et al. [46] integrating the tambaqui with Italy tomato Solanun ly-
copersicum production, and by Sterzelecki et al. [15] integrating the tambaqui with açai
seedlings production, demonstrating a pronounced potential of the species for production
in aquaponic systems.

In the present study, the use of a low-cost medium in aquaponics proved to be ef-
fective in reusing fish waste (excreta and feed remains) generated in the system. The
biotransformation of waste into nutrients in the aquatic environment allowed the growth
of hydroponic plants and nitrifying bacteria which, through their metabolic pathways,
ensured that the water was purified and reused for fish growing, preventing the discharge
of this waste into the environment.

5. Conclusions

Under the conditions proposed in the present study, the açai seed biofilter maintained
the water quality variables within the range tolerated by tambaqui, regardless of the
flooding levels used. For better production of late seedlings of açai E. oleraceae in aquaponic
system with tambaqui C. macropomum, a flooding level of 5 cm is recommended, where the
best results of plant performance were observed, without negatively affecting water quality
and fish growth. Obtaining late seedlings of açai in an aquaponic system proved to be
efficient and easy to handle, allowing sowing and production of vegetable seedlings in the
same place. We recommend further studies to verify the economic feasibility of producing
açai seedlings in aquaponics.
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