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Abstract: Rice is a vital crop for global food security, but its production is vulnerable to various
diseases. Early detection and treatment of rice diseases are crucial to minimise yield losses. Convo-
lutional neural networks (CNNs) have shown great potential for disease detection in plant leaves,
but training CNNs requires large datasets of labelled images, which can be expensive and time-
consuming. Here, we have experimented a 3-Stage CNN architecture with a transfer learning
approach that utilises a pre-trained CNN model fine-tuned on a small dataset of rice disease images.
The proposed approach significantly reduces the required training data while achieving high accuracy.
We also incorporated deep learning techniques such as progressive re-sizing and parametric rectified
linear unit (PReLU) to enhance rice disease detection. Progressive re-sizing improves feature learning
by gradually increasing image size during training, while PReLU reduces overfitting and enhances
model performance. The proposed approach was evaluated on a dataset of 8883 and 1200 images
of disease and healthy rice leaves, respectively, achieving an accuracy of 94% when subjected to the
10-fold cross-validation process, significantly higher than other methods. These simulation results
for disease detection in rice prove the feasibility and efficiency and offer a cost-effective, accessible
solution for the early detection of rice diseases, particularly useful in developing countries with
limited resources that can significantly contribute toward sustainable food production.

Keywords: deep learning; image classification; PReLU; progressive re-sizing; transfer learning

1. Introduction

The global population is projected to reach 9.7 billion by 2050, creating a pressing need
to increase food production rapidly. Rice is a crucial crop for global food security, being
the second-most produced crop worldwide and a staple food for over half of the global
population. India is the second-largest producer of rice in the world, accounting for 24%
of global production [1,2]. However, numerous factors, such as pests, diseases, bacteria,
viruses, temperature, rainfall, and soil fertility, can significantly affect the yield and quality
of rice crops. Rice diseases are a significant concern in rice production, as they can cause
significant yield losses and impact food security [3]. Rice diseases can be broadly classified
into fungal, bacterial, and viral diseases. Fungal diseases, such as brown spot and leaf
blast, are caused by fungus. Bacterial diseases, such as bacterial leaf blight, are caused
by Xanthomonas. Viral diseases, like tungro, are caused by viruses, such as rice tungro
spherical virus (RTSV) and rice tungro bacilliform virus (RTBV) [4]. Each rice disease has
specific symptoms that helps in their identification and classification. Understanding the
pathogenesis of rice diseases is essential for effective management strategies [5]. Despite
dedicated time and resources to managing diseases [6], timely disease detection is a major
challenge, and by the time disease symptoms are detected and actions are taken to control
disease, significant damage has already been done, resulting in reduced production. It
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is tedious for farmers to timely inspect the entire crop [7]. Therefore, early detection and
identification of crop plant diseases are important in agriculture for preventing yield loss
and maintaining product quality [8].

Fortunately, the convergence of computer science and technology has made it possible
to detect crop diseases quickly and with minimal training by using artificial intelligence
(AI) analytics [9]. Deep learning (DL), particularly convolutional neural networks (CNNs),
has recently surpassed machine learning (ML) techniques for image categorisation [9–11].
Several articles have been published on the topic of disease classification using AI-based
methods. The CNN model establishes a link between image layers and spatial information,
making it useful for image categorization [12]. There have been few studies on rice disease
categorisation using CNN. For example, Lu et al. [13] used 500 photos from 10 different
categories and analysed by CNN model comprising three layers of convolution, three
stochastic pooling layers, and a softmax layer. Rajmohan et al. [14] investigated deep
CNN for image de-noising and support vector machine (SVM) for rice plant disease
categorisation using colour and shape information on 200 images and reported 87.5%
categorisation accuracy.

However, CNN requires a large amount of training data to be properly trained and
collecting accurate images of a given type of diseased leaf in rice is a difficult operation. This
constraint can be circumvented using the transfer learning technique which modifies the
weights of previously trained networks on big data sets for the present small dataset [15].
This study experimented a 3-Stage CNN architecture that incorporates transfer learning
and progressive resizing to consider various factors affecting model performance, such as
effective regularisation approaches, active data augmentation, and large-scale data [16]. The
transfer learning technique shortens training time, mitigates overfitting in networks, and
solves the problem of insufficient training data in deep models [17]. In addition, progressive
resizing helps fine-tune the final model and boosts accuracy by gradually increasing the
scale of images used in the training process from small to large. The parametric rectified
linear unit (PReLU) activation function has been used in the dense layers of the proposed
model, which is a generalisation of the conventional rectified unit [18]. PReLU improves
model fitting with little computational overhead and almost no overfitting risk.

This research implemented the 3-stage deep CNN model to identify five major rice
diseases in the midland area of India. The dataset used for training and testing contained
images from various regions of India. This study aimed to identify the most effective
approach to using AI, neural networks, and ML in rice disease detection. By improving
disease identification and classification, farmers can timely control disease and prevent
yield loss and improve crop quality, ultimately contributing to global food security.

2. Materials and Methods
2.1. Model Selection for Early Detection of Rice Diseases

With the progress of DL in recent years, various deep architectures have been intro-
duced for image classification, such as CNNs, R-CNNs, Caps Nets, and ResNets, which
allow for the extraction of deep-level attributes [19,20]. Both ML and DL algorithms are
used to tackle problems in agriculture research [21]. This research aims to automate tasks
that are usually performed by humans, with the added value of machines performing these
tasks. Deep learning technology has shown great promise in plant disease classification
from images, which is a technique based on feature learning from labelled training data
sets. For instance, this technique is used for diseases of tea, apple, tomato, grapes, peaches,
and pears, mostly using leaves to identify diseases from images [22,23]. Table 1 provides a
comparison of various machine-learning techniques used for target disease detection.
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Table 1. Published research work examples of disease detection in plants using deep learning models.

Year Techniques Target Data Data Set
Number of

Classes
Accuracy Rate

(%)
Error Rate (%) References

2012
SVM/Baye’s

Classifier
Rice

Diseases
450 2

SVM = 68.10,
Bayes = 79.50

20.5 [24]

2017 CNN, HOG, SVM
Rice

Diseases
500 10 CNN = 95.5 4.5 [13]

2015 SVM Rice leaves - 1 SVM= 82.00 18 [25]
2015 SVM, C-DCGAN Tea leaves 1500 3 90 10 [26]
2016 SVM Rice seedlings 700 1 SVM= 87.0 13.0 [27]
2016 CNN Insect pests 1033 12 95.01 4.99 [28]
2019 CNN Different crop leaves 1575 10 75.0 25.0 [29]

2020 Deep-CNN
Multiple crops

diseases
30,000 12 92.89 7.11 [30]

2017 KNN
Multiple crop plant

disease
121,955 17 92.0 8.0 [31]

2017
K-means

Clustering
Leaves - 2 78 22 [32]

2018 AlexNet Leaves 600 3 91.23 8.77 [33]
2017 SVM Rice leaves 50 7 92.0 8.0 [34]

2020
ANN, DAE and

DNN-JOA
Rice disease 400 5 90.57 9.47 [35]

2018 SVM/CNN Rice disease leaves 5808 2 95.83 4.17 [36]
2019 SVM/CNN Leaves 700 4 91.37 8.63 [37]
2019 SVM Rice disease leaves 970 2 96.7 3.3 [38]

2019
DNN-CSA and

10-fold SVM
Rice disease leaves 120 3 87.46 12.54 [39]

2021 CNN Grape leaves 500 4 93.75 6.25 [40]
2022 ELM Lemon leaves 73 4 94.0 6.0 [41]

2022
NSVMBPN

Network
Rice leaves 790 3 95.2 4.8 [42]

2022 DenseNet169-MLP Rice leaves 1500 3 97.68 2.32 [43]

2.2. Data Collection and Training

Images for the dataset were collected from various regions of India, including the
states of Uttar Pradesh, Haryana, and Assam (Figure 1). The climate of Uttar Pradesh
and Haryana falls under the sub-tropical region. In contrast, the climate of Assam is
characterised by alternate cool and warm periods with high humidity. Samples of healthy
and diseased rice plants were collected from various locations to identify diseases affecting
rice plants in these states.
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We developed a Deep CNN model based on images to classify rice leaf diseases.
The model comprises three phases: data processing, learning, and result analysis. Data
processing includes data collection, noise elimination, labelling, and visualisation. During
the learning phase, tasks and learning strategies are determined to train the deep neural
network. The model’s hidden representations are analysed through performance evaluation
and validation. Figure 2 illustrates the classification workflow, with arrows representing the
iterative design process. The backward arrows in each phase indicate iterations and updates
based on the model’s performance. For example, the Iterate (1) arrow in the data-processing
phase indicates room for improvement in the raw instances, while Iterate (2) represents
adjusting the data-processing stage based on the learning phase. If the model overfits the
training data, Iterate (3) may be used to shorten the training phase. The Iterate (4) arrow
indicates that the validation and analysis phase results inform the next data processing
round. The Iterate (5) arrow indicates the normal completion of the data processing.
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2.3. System Model

The DL approach is a powerful tool that utilises multiple representations to learn
feature hierarchies. Its primary goal is to generate features at the top of the hierarchy from
those at the bottom. Deep CNN-based image classification has proven to be a highly effec-
tive approach in computer vision, outperforming more traditional ML methods (Figure 3).
One of the main advantages of CNN networks is their ability to perform automatic feature
design [44], thus eliminating the need for more traditional feature extraction techniques
like SIFT, HOG, and GIST.

In this implementation, we utilised a split-and-train technique, transfer learning, and
progressive scaling to construct deep CNN models. Additionally, the model’s dense layers
have been activated with the generalised traditional rectified unit, known as the Parametric
Rectified Linear Unit (PreLU), to enhance the accuracy of the representation. This approach
has a low risk of overfitting and improves model fitting with almost no discernible increase
in computational cost. To enhance comprehension, we divided the concepts and procedures
into several steps.
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2.3.1. Transfer Learning

CNNs are a powerful tool for image classification. However, training a CNN from
scratch can be time-consuming and expensive, especially if a large dataset is not available.
A common approach is to pre-train a CNN on a large dataset, such as ImageNet, and then
fine-tune it on a dataset. This approach, called transfer learning, has become increasingly
popular, particularly when the training and test data are not required to be independent
and identically distributed [45]. Moreover, it can save a lot of time and effort, help to
improve model performance, and generalise the model to new datasets. Transfer learning
can be implemented in different ways. One way is to use a pre-trained CNN as a feature
extractor by freezing its weights and only training the last few layers. This is suitable for
small datasets. Another way is to fine-tune a pre-trained CNN by unfreezing its weights
and training the entire model on a new dataset, which is more suitable for large datasets.

To implement transfer learning in the proposed 3-Stage CNN model, we used Ef-
ficientNET B7, developed by Mingxing Tan and Quoc Le of the Google Research Brain
team. In terms of accuracy and computing efficiency for image classification, EfficientNet
surpasses the current state of the art. Based on the EfficientNET architecture, the network’s
classification accuracy improves with increasing depth, width, and resolution. Efficient net
adheres to the compound scaling formula, making it more efficient than other previously
developed pre-trained networks. The EfficientNet family is scaled up in various block
layers (from B0 to B7 using a compound scaling method). By using EfficientNET B7 as a
transfer learning network, we were able to leverage the network’s pre-trained weights and
significantly speed up the training process while achieving high classification accuracy.

2.3.2. Progressive Re-Sizing

DL networks incorporated a progressive image resizing technique to enhance their
performance, as documented by [46]. This method involves training CNN models with a
gradually increasing dataset size, starting from smaller images such as 128 × 128 pixels.
The weights of the first model are then utilised to train a second model on larger images of
size 256 × 256 pixels, and so on, to fine-tune the models and improve their accuracy scores.
The architecture of larger models incorporates the layers and weights of earlier smaller
models to further refine their performance. Despite the resolution of the images being
changed from 64 × 64 to 128 × 128 pixels, the human eye may not discern the difference,
but it provides CNN models with a fresh dataset to practice and improve their learning as
shown in Figure 4.
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2.3.3. PreLU Activation

Additionally, we used the PreLU activation function on the dense layers of the 3-Stage
CNN model, which generalises the standard rectified unit [47] by introducing a learnable
slope parameter for negative values. This allows the PreLU function to better capture the
non-linearities in the data, which can lead to improved performance on classification tasks.
PreLU also has the benefit of being computationally efficient and less prone to overfitting
than other activation functions. The activation function of a neural network can be defined
as in Equation (1):

L(Xi) =

{
Xi

aiXi,
i f
i f

Xi
Xi

>
>

0
0

(1)

The slope of the negative component of the PreLU function is determined by the
coefficient Xi, which is the input to the ith nonlinear activation function L. This allows the
PreLU function to be differentially expressed in different channels, as shown by the ith in
ai. ReLU is the name given to the activation function when the coefficient (ai = 0), while
PreLU is the name given to Equation (1) when (ai) is a learnable parameter [47]. Figure 5
presents the results of the experiment using the Deep CNN model.
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The proposed Deep 3-Stage CNN model was built in three stages using the pretrained
architecture of EfficientNet7 as a transfer learning model (Figure 5) [48]. Layers were added
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using the compound scaling concept. The PreLU activation was used in the dense layers of
the proposed architecture, which allows the parameter to be adaptively learned from the
data. The controlling coefficient (ai) regulates the negative slope by adaptively learning the
parameters. The proposed Deep 3-Stage CNN model incorporates a progressive rescaling
technique on images to boost accuracy while taking both image size and the regularization
parameter into account. The split and train strategy, which is an enhancement of progressive
learning, was implemented to achieve a faster training time and better re-sizing dataset.

Adding more layers to a network increases its complexity, making it more difficult
to train. This is because the network has more parameters to learn, and the loss function
can become more jagged, making it difficult to find the optimal solution. To address this
challenge, hyperparameter optimization was used to tune the parameters of the network,
such as the learning rate, batch size, and number of epochs. This can help the network to
learn more effectively and achieve better accuracy. In addition, strategies like SGD, Adam,
AdaGrad, and AdaDelta were implemented for optimisation [49]. This is because different
optimisers work better for different networks. For example, the SGD optimiser is a good
choice for small networks, while the Adam optimiser is a better choice for large networks.
By fine-tuning the optimiser, the proposed Deep CNN model can achieve better accuracy
on the rice leaf datasets with fewer parameters. The model’s Hyperparameters with values
are shown in Table 2.

Table 2. Hyperparameter values of the CNN model.

Hyper-Parameters Values

Optimizer Adam
Batch size 32

Momentum 0.8
Learning Rate Decay learning rate

2.4. Dataset and Implementation Setup

The rice image dataset used in this study were captured using a Samsung 52S mobile
camera (Samsung Electronics, Noida, India) and a Canon EOS 1500D DSLR (Canon Inc.,
Tokyo, Japan). The dataset comprises a total of 8883 images, including those of rice leaves
affected by four diseases: brown spot, leaf blast, bacterial leaf blight (BLB), and tungro, and
1200 images of healthy leaves, presented in Table 3. Brown spot infected leaves have large
spots, which initially appear as small, circular, dark brown to purple-brown lesions. As
the disease progresses, lesions become circular to oval with a light brown to grey centre
and a reddish-brown margin (Figure 6a) [50]. In leaf blast disease, small necrotic regions
grow into chlorotic margins. The disease affects rice plant leaves, collars, nodes, inter-
nodes, leaf blades, and panicles (Figure 6b) [51]. BLB infected leaves turn greyish-green
and roll up, then turn yellow, discolour straw, and die (Figure 6d). Wavy margins spread
toward the base. Bacterial ooze resembles early-morning dew in younger leaves [52]. The
most serious rice disease; tungro, in South and Southeast Asia is caused by rice tungro
spherical virus (RTSV), transmitted by the green leafhopper (Nephotettix virescens), and rice
tungro bacilliform virus (RTBV). RTSV infection causes yellowing and redness in leaves
and stunted plant growth (Figure 6e). RTBV causes severe symptoms without leafhopper
transmission [53].

Table 3. Dataset description of training and validation images.

Name of Class Training Images Validation Images

Brown Spot 1770 443
Leaf Blast 1860 465

Tungro 1201 300
BLB 1300 324

Healthy 980 220
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Implementation setup: Python version 3.7 was used for implementing the network
architecture, with Keras 2.3.1 and TensorFlow 1.15 serving as the frontend and backend,
respectively. We employed model and data-parallelism techniques for conducting image
classification experiments on a Linux-based GPU environment with over 2000 CPU cores,
1.5 TB RAM, and NVIDIA Tesla V100 32 GB GPU accelerators (Hewlett Packard Enterprise,
Nvidia, Santa Clara, CA, USA) running on Google Collab Pro.

To train network on the rice leaf dataset, which includes five distinct classes (BLB, leaf
blast, tungro, healthy, and brown spot), we used the GPU configuration platform to create
a pretrained network using ImageNet, which was then fine-tuned. Furthermore, we used a
decreasing learning rate schedule of 5% per 10 epochs for an adaptive learning schedule,
with each iteration comprising 150 epochs.

Performance matrices: Accuracy and error rate calculations were used to make model
comparisons [54]. In most cases, the best models are those with the fewest errors and the
highest accuracy. The precision and the margin of error are defined as follows:

Accuracy of model =
TN + TP

FN + FP + TP + TN
.

Error in model =
FN + FP

FP + FN + TP + TN
.

The numbers of true negatives, false negatives, true positives, and false positives are
denoted as TN, FN, TP, and FP.
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3. Results and Discussion

Here we describe the accuracy of the deep 3-Stage CNN model that classifies a dataset
of rice leaf images into five classes. The proposed 3-Stage CNN model trained under
suitable hyperparameter values for the best results and generalizing the model. The hyper-
parameter values are described in Table 2. For this experimentation, the proposed 3-Stage
CNN model mentioned in Figure 5 was trained using two configurations: (i) progressive
resizing and (ii) ReLU versus PReLU activation with transfer learning. Previous research
shows that the CNN model outperformed with precision variations ranging from 3% to
28.9% [55,56]. Mohanty et al. [57] trained models to identify 14 crop species and 26 diseases
using the Plant Village database, achieving a 99.4% accuracy on a held-out test set. Picon,
Alvarez-Gila et al. [58] focused on three wheat diseases and achieved a balanced accuracy
of 98% for Septoria and 96% for Rust using a mobile app.

The efficiency of deep neural networks (DNN) training and accuracy improvement
is significantly influenced by image size. In this experiment, three parameters were con-
sidered while training the network with images of various aspect ratios. The experiment
revealed that regularisation parameters employed by the model could affect its accuracy.
To achieve higher accuracy when incorporating progressive rescaling on image data, it is
recommended that regularisation parameters be adjusted instead of using fixed regulari-
sations, which can lead to inaccurate results. More stringent regularisation is essential to
prevent overfitting in large models. For example, EfficientNet-B7 employs higher dropout
rates and more stringent data augmentations than EfficientNet-B0. In this experiment,
regularisation methods such as Dropout [59] and Rand Augment [60] were used in con-
junction with the progressive rescaling of images during three training phases for various
image dimensions.

The present study conducted experiments on rice leaf disease datasets to evaluate the
performance of a proposed 3-Stage CNN model for image classification. The experimental
setup is presented in Table 4, with 100 epochs set for each stage. As illustrated in Figure 7,
an accuracy of 89.5% was achieved when the image size was 64 × 64 pixels, and the
regularisation was less stringent (RandAugment = 5, Dropout 0.1). However, accuracy was
increased to 93.99% after the third training stage when the image size was increased and
applied more stringent regularisation.

Table 4. The model’s progressive rescaling setup parameters.

Training Stages
Image Size Rand Augment Dropout

Min Max Min Max Min Max

First Training Stage 64 224 5 10 0.1 0.3
Second Training Stage 64 224 5 15 0.2 0.5
Third Training Stage 64 224 5 20 0.1 0.5

The accuracy of model improved from 90.79% to 93.99% when we moved from stage I
to stage III with a larger image size and stronger regularisation parameters. Furthermore,
the accuracy of model and training time were improved when the dataset was rescaled
in progressive steps. The loss and accuracy plot of the deep model is shown in Figure 8,
where the accuracy on the rice leaf dataset was 93.99%.

Our proposed model, which was trained for a total of 26 h using 36 million parameters,
achieved an accuracy of 93.99% on categorising the five distinct types of images, as shown
in Figure 9. We used fewer FLOPs and fewer parameters than other benchmark models in
the literature, which suggests that increasing the image size is more effective for this data
set than increasing the model size by adding layers.
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the datasets. On the dataset, the training implementation achieved 93.99% accuracy after
being tested with 10 different views. Using progressive training on different blocks without
loading the weight of the previous block, ReLUs were used to train the model across all
layers. As a result, accuracy in all three sections improved by around 3%. Later, the model
was trained by switching out all of the ReLUs for PreLUs, and progressive training was also
performed by loading weights from the prior block. Table 5 provides the results’ specifics,
showing that PReLU is 3.2% more accurate than ReLU from stage I to stage III in the rice
leaf dataset. The more favourable value is presented in boldface for each of the stages.

Table 5. Classification accuracy of rice dataset deep model.

Training Stages Activation Function Rand Augment Dropout Rate Image Size in Pixels Accuracy

Min Max Min Max

Stage I

ReLU 5 10 0.1 0.3
64 × 64 68.61

128 × 128 75.73
224 × 224 86.55

PReLU 5 10 0.1 0.3
64 × 64 71.77

128 × 128 78.63
224 × 224 90.91

Stage II

ReLU 5 15 0.2 0.5
64 × 64 69.90

128 × 128 76.65
224 × 224 87.79

PReLU 5 15 0.2 0.5
64 × 64 71.95

128 × 128 79.56
224 × 224 91.97

Stage III

ReLU 5 20 0.1 0.5
64 × 64 70.09

128 × 128 76.89
224 × 224 89.99

PReLU 5 20 0.1 0.5
64 × 64 72.57

128 × 128 83.34
224 × 224 93.99

The results indicate that (i) using the PReLU activation function on model layers
generalises the standard rectified unit and offers various benefits, including improved
model fitting, reduced risk of overfitting, superior efficiency on datasets that incorporate
rescaled images, and essentially no additional computing cost. (ii) Fine-tuning the Deep
network’s hyperparameters and optimisers and increasing the training dataset’s size can
lead to competitive results in the high-accuracy regime. (iii) The improved performance on
the dataset with rescaled images can be attributed to the use of PReLU activation function
on the model layers, which generalises the classic rectified unit and improves model fitting
with almost no additional computing cost and no risk of overfitting.

4. Conclusions and Future Work

Computer vision and AI frameworks have spread to many areas of the food indus-
try, including farming and processing. The application of these techniques is effective to
computerize laborious tasks in a risk-free manner, thereby producing sufficient data for
subsequent investigation. These techniques are applicable to monitor the disease sever-
ity thereby timely controlling diseases in crops with reduced losses and increased yield.
Here, we propose a deep 3-Stage CNN model and showed how to use transfer learning,
progressive scaling, and a split-and-train strategy to improve upon a pre-trained deep
CNN of EfficientNetB7. In addition, the thick layers of the model were activated using
the PReLU, a generalisation of the classic rectified unit. This was done to improve the
accuracy of the simulation and ensure that the representation was as accurate as possible.
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PReLU reduces the risk of overfitting while increasing model fitting quality with negligible
computational overhead.

This study considered the four most common diseases affecting rice plants: leaf
blast, bacterial blight, brown spot, and tungro. We conducted experiments by splitting
the entire dataset into training and testing sets at varying ratios. Our proposed model
achieved a classification accuracy of 93.99% for rice diseases. However, the lack of standard
labelled rice disease images made it inappropriate to benchmark the proposed model
against the literature. Nevertheless, our suggested 3-Stage CNN architecture has better
performance, shorter execution time, and fewer parameters than the other architectures of
the literature on rice leaf benchmark datasets. The model took shorter execution time as we
have implemented transfer learning and fine-tuned the hyperparameters, and it has fewer
parameters as compared to other models. A larger dataset of rice disease images would
further improve the model’s performance. Framework’s application can be effectively
extended to other crops and diseases. The proposed framework can be effectively used
for more accurate detection of diseases affecting rice as well as other crops, which cause a
significant economic loss in the agricultural sector.
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Rice and Food Security: Climate Change Implications and the Future Prospects for Nutritional Security. Food Energy Secur. 2023,
12, e430. [CrossRef]

4. Agrios, G.N. Plant Diseases Caused by Viruses. In Plant Pathology, 5th ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2005;
pp. 723–824. [CrossRef]

5. Wang, Y.; Wang, H.; Peng, Z. Rice Diseases Detection and Classification Using Attention Based Neural Network and Bayesian
Optimization. Expert Syst. Appl. 2021, 178, 114770. [CrossRef]

6. Kumar, K.S.A.; Karthika, K.S. Abiotic and Biotic Factors Influencing Soil Health and/or Soil Degradation. In Soil Health; Springer:
Cham, Switzerland, 2020; Volume 59, pp. 145–161.

7. Latif, G.; Abdelhamid, S.E.; Mallouhy, R.E.; Alghazo, J.; Kazimi, Z.A. Deep Learning Utilization in Agriculture: Detection of Rice
Plant Diseases Using an Improved CNN Model. Plants 2022, 11, 2230. [CrossRef]

8. Phadikar, S.; Sil, J.; Das, A.K. Rice Diseases Classification Using Feature Selection and Rule Generation Techniques. Comput.
Electron. Agric. 2013, 90, 76–85. [CrossRef]

9. Sarker, I.H. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN
Comput. Sci. 2021, 2, 420. [CrossRef]

10. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.;
Farhan, L. Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions. J. Big Data 2021,
8, 53. [CrossRef]

11. Handa, N.; Kaushik, Y.; Sharma, N.; Dixit, M.; Garg, M. Image Classification Using Convolutional Neural Networks. Commun.
Comput. Inf. Sci. 2021, 1393, 510–517.

12. Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional Neural Networks: An Overview and Application in Radiology.
Insights Imaging 2018, 9, 611–629. [CrossRef]

13. Lu, Y.; Yi, S.; Zeng, N.; Liu, Y.; Zhang, Y. Identification of Rice Diseases Using Deep Convolutional Neural Networks. Neurocom-
puting 2017, 267, 378–384. [CrossRef]

https://doi.org/10.1038/sdata.2017.74
https://www.ncbi.nlm.nih.gov/pubmed/28556827
https://doi.org/10.3177/jnsv.65.S2
https://www.ncbi.nlm.nih.gov/pubmed/31619630
https://doi.org/10.1002/fes3.430
https://doi.org/10.1016/B978-0-08-047378-9.50020-8
https://doi.org/10.1016/j.eswa.2021.114770
https://doi.org/10.3390/plants11172230
https://doi.org/10.1016/j.compag.2012.11.001
https://doi.org/10.1007/s42979-021-00815-1
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1016/j.neucom.2017.06.023


Agriculture 2023, 13, 1505 13 of 14

14. Rajmohan, R.; Pajany, M.; Rajesh, R.; Raman, D.R.; Prabu, U. Smart Paddy Crop Disease Identification and Management Using
Deep Convolution Neural Network and SVM Classifier. Int. J. Pure Appl. Math. 2018, 118, 255–264.

15. Simhadri, C.G.; Kondaveeti, H.K. Automatic Recognition of Rice Leaf Diseases Using Transfer Learning. Agronomy 2023, 13, 961.
[CrossRef]

16. Ho, N.; Kim, Y.C. Evaluation of Transfer Learning in Deep Convolutional Neural Network Models for Cardiac Short Axis Slice
Classification. Sci. Rep. 2021, 11, 1839. [CrossRef]

17. Ali, A.H.; Yaseen, M.G.; Aljanabi, M.; Abed, S.A. ChatGPT Transfer Learning: A New Promising Techniques. Mesopotamian J. Big
Data 2023, 2023, 31–32. [CrossRef]

18. Yang, D.; Ngoc, K.M.; Shin, I.; Hwang, M. DPReLU: Dynamic Parametric Rectified Linear Unit and Its Proper Weight Initialization
Method. Int. J. Comput. Intell. Syst. 2023, 16, 11. [CrossRef]

19. Choudhary, K.; DeCost, B.; Chen, C.; Jain, A.; Tavazza, F.; Cohn, R.; Park, C.W.; Choudhary, A.; Agrawal, A.; Billinge, S.J.L.; et al.
Recent Advances and Applications of Deep Learning Methods in Materials Science. NPJ Comput. Mater. 2022, 8, 59. [CrossRef]

20. Agrawal, A.; Choudhary, A. Deep Materials Informatics: Applications of Deep Learning in Materials Science. MRS Commun.
2019, 9, 779–792. [CrossRef]

21. Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [CrossRef]
22. Khirade, S.D.; Patil, A.B. Plant Disease Detection Using Image Processing. In Proceedings of the 2015 International Conference on

Computing Communication Control and Automation, Pune, India, 26–27 February 2015; pp. 768–771. [CrossRef]
23. Sahu, P.K.; Chattopadhyay, S. A Survey on Application Mapping Strategies for Network-on-Chip Design. J. Syst. Archit. 2013, 59,

60–76. [CrossRef]
24. Mukherjee, M.; Pal, T.; Samanta, D. Damaged Paddy Leaf Detection Using Image Processing. J. Glob. Res. Comput. Sci. 2012, 3,

7–10.
25. Islam, R.; Rafiqul, M. An Image Processing Technique to Calculate Percentage of Disease Affected Pixels of Paddy Leaf. Int. J.

Comput. Appl. 2015, 123, 28–34. [CrossRef]
26. Hu, G.; Wu, H.; Zhang, Y.; Wan, M. A Low Shot Learning Method for Tea Leaf’s Disease Identification. Comput. Electron. Agric.

2019, 163, 104852. [CrossRef]
27. Chung, C.L.; Huang, K.J.; Chen, S.Y.; Lai, M.H.; Chen, Y.C.; Kuo, Y.F. Detecting Bakanae Disease in Rice Seedlings by Machine

Vision. Comput. Electron. Agric. 2016, 121, 404–411. [CrossRef]
28. Ding, W.; Taylor, G. Automatic Moth Detection from Trap Images for Pest Management. Comput. Electron. Agric. 2016, 123, 17–28.

[CrossRef]
29. Arnal Barbedo, J.G. Plant Disease Identification from Individual Lesions and Spots Using Deep Learning. Biosyst. Eng. 2019, 180,

96–107. [CrossRef]
30. Anami, B.S.; Malvade, N.N.; Palaiah, S. Deep Learning Approach for Recognition and Classification of Yield Affecting Paddy

Crop Stresses Using Field Images. Artif. Intell. Agric. 2020, 4, 12–20. [CrossRef]
31. Picon, A.; Seitz, M.; Alvarez-Gila, A.; Mohnke, P.; Ortiz-Barredo, A.; Echazarra, J. Crop Conditional Convolutional Neural

Networks for Massive Multi-Crop Plant Disease Classification over Cell Phone Acquired Images Taken on Real Field Conditions.
Comput. Electron. Agric. 2019, 167, 105093. [CrossRef]

32. Kumar, P.; Negi, B.; Bhoi, N. Detection of Healthy and Defected Diseased Leaf of Rice Crop Using K-Means Clustering Technique.
Int. J. Comput. Appl. 2017, 157, 24–27. [CrossRef]

33. Atole, R.R.; Juan Bautista, S.; Sur, C.; Daechul Park, P. A Multiclass Deep Convolutional Neural Network Classifier for Detection
of Common Rice Plant Anomalies. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 67–70.

34. Pinki, F.; Khatun, T.; Islam, S. Content Based Paddy Leaf Disease Recognition and Remedy Prediction Using Support Vector
Machine. In Proceedings of the 20th International Conference of Computer and Information Technology, Bhubaneshwar, India,
21–23 December 2017; pp. 22–24.

35. Ramesh, S.; Vydeki, D. Recognition and Classification of Paddy Leaf Diseases Using Optimized Deep Neural Network with Jaya
Algorithm. Inf. Process. Agric. 2020, 7, 249–260. [CrossRef]

36. Liang, W.-J.; Zhang, H.; Zhang, G.-F.; Cao, H.-X. Rice Blast Disease Recognition Using a Deep Convolutional Neural Network. Sci.
Rep. 2019, 9, 2869. [CrossRef]

37. Ahmed, K.; Shahidi, T.R.; Alam, S.; Momen, S. Rice Leaf Disease Detection Using Machine Learning Techniques. In Proceedings of
the International Conference of Computer Science and Renewable Energies (ICCSRE), Agadir, Morocco, 22–24 July 2019; pp. 1–5.

38. Gayathri Devi, T.; Neelamegam, P. Image Processing Based Rice Plant Leaves Diseases in Thanjavur, Tamilnadu. Clust. Comput.
2019, 22, 13415–13428. [CrossRef]

39. Nalini, S.; Krishnaraj, N.; Jayasankar, T.; Vinothkumar, K.; Britto, A.S.F.; Subramaniam, K.; Bharatiraja, C. Paddy Leaf Disease
Detection Using an Optimized Deep Neural Network. Comput. Mater. Contin. 2021, 68, 1117–1128. [CrossRef]

40. Chen, J.; Chen, J.; Zhang, D.; Nanehkaran, Y.A.; Sun, Y. A Cognitive Vision Method for the Detection of Plant Disease Images.
Mach. Vis. Appl. 2021, 32, 31. [CrossRef]

41. Aqel, D.; Al-Zubi, S.; Mughaid, A.; Jararweh, Y. Extreme Learning Machine for Plant Diseases Classification: A Sustainable
Approach for Smart Agriculture. Clust. Comput. 2022, 25, 2007–2020. [CrossRef]

42. Archana, K.S.; Srinivasan, S.; Bharathi, S.P.; Balamurugan, R.; Prabakar, T.N.; Britto, A.S.F. A Novel Method to Improve
Computational and Classification Performance of Rice Plant Disease Identification. J. Supercomput. 2022, 78, 8925–8945. [CrossRef]

https://doi.org/10.3390/agronomy13040961
https://doi.org/10.1038/s41598-021-81525-9
https://doi.org/10.58496/MJBD/2023/004
https://doi.org/10.1007/s44196-023-00186-w
https://doi.org/10.1038/s41524-022-00734-6
https://doi.org/10.1557/mrc.2019.73
https://doi.org/10.1016/j.compag.2018.02.016
https://doi.org/10.1109/ICCUBEA.2015.153
https://doi.org/10.1016/j.sysarc.2012.10.004
https://doi.org/10.5120/ijca2015905495
https://doi.org/10.1016/j.compag.2019.104852
https://doi.org/10.1016/j.compag.2016.01.008
https://doi.org/10.1016/j.compag.2016.02.003
https://doi.org/10.1016/j.biosystemseng.2019.02.002
https://doi.org/10.1016/j.aiia.2020.03.001
https://doi.org/10.1016/j.compag.2019.105093
https://doi.org/10.5120/ijca2017912601
https://doi.org/10.1016/j.inpa.2019.09.002
https://doi.org/10.1038/s41598-019-38966-0
https://doi.org/10.1007/s10586-018-1949-x
https://doi.org/10.32604/cmc.2021.012431
https://doi.org/10.1007/s00138-020-01150-w
https://doi.org/10.1007/s10586-021-03397-y
https://doi.org/10.1007/s11227-021-04245-x


Agriculture 2023, 13, 1505 14 of 14

43. Narmadha, R.P.; Sengottaiyan, N.; Kavitha, R.J. Deep Transfer Learning Based Rice Plant Disease Detection Model. Intell. Autom.
Soft Comput. 2022, 31, 1257–1271. [CrossRef]

44. Foret, P.; Kleiner, A.; Mobahi, H.; Neyshabur, B. Sharpness-Aware Minimization for Efficiently Improving Generalization. Mach.
Learn. 2021, 3, 79–89.

45. Chaudhari, M.; Thapa, N.; Ismail, H.; Chopade, S.; Caragea, D.; Köhn, M.; Newman, R.H.; KC, D.B. DTL-DephosSite: Deep
Transfer Learning Based Approach to Predict Dephosphorylation Sites. Front. Cell Dev. Biol. 2021, 9, 662983. [CrossRef]

46. Su, J.; Xu, B.; Yin, H. A Survey of Deep Learning Approaches to Image Restoration. Neurocomputing 2022, 487, 46–65. [CrossRef]
47. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.

In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015;
pp. 1026–1034.

48. Gogoi, M.; Begum, S.A. Progressive 3-Layered Block Architecture for Image Classification. Int. J. Adv. Comput. Sci. Appl. 2022, 13,
499–508. [CrossRef]

49. Bera, S.; Shrivastava, V.K. Analysis of Various Optimizers on Deep Convolutional Neural Network Model in the Application of
Hyperspectral Remote Sensing Image Classification. Int. J. Remote Sens. 2019, 41, 2664–2683. [CrossRef]

50. Shabana, Y.M.; Abdel-Fattah, G.M.; Ismail, A.E.; Rashad, Y.M. Control of Brown Spot Pathogen of Rice (Bipolaris oryzae) Using
Some Phenolic Antioxidants. Braz. J. Microbiol. 2008, 39, 438. [CrossRef] [PubMed]

51. Nettleton, D.F.; Katsantonis, D.; Kalaitzidis, A.; Sarafijanovic-Djukic, N.; Puigdollers, P.; Confalonieri, R. Predicting Rice Blast
Disease: Machine Learning versus Process-Based Models. BMC Bioinform. 2019, 20, 514. [CrossRef]

52. Niones, J.T.; Sharp, R.T.; Donayre, D.K.M.; Oreiro, E.G.M.; Milne, A.E.; Oliva, R. Dynamics of Bacterial Blight Disease in Resistant
and Susceptible Rice Varieties. Eur. J. Plant Pathol. 2022, 163, 1–17. [CrossRef]

53. Chancellor, T.C.B.; Holt, J.; Villareal, S.; Tiongco, E.R.; Venn, J. Spread of Plant Virus Disease to New Plantings: A Case Study of
Rice Tungro Disease. Adv. Virus Res. 2006, 65, 1–29. [CrossRef]

54. Galdi, P.; Tagliaferri, R. Data Mining: Accuracy and Error Measures for Classification and Prediction. In Reference Module in Life
Sciences; Elsevier: Amsterdam, The Netherlands, 2018; Volume 3, pp. 431–436, ISBN 9780128114322.

55. Liu, S.; Wang, X.; Liu, M.; Zhu, J. Towards Better Analysis of Machine Learning Models: A Visual Analytics Perspective. Vis.
Inform. 2017, 1, 48–56. [CrossRef]

56. Brahimi, M.; Boukhalfa, K.; Moussaoui, A. Deep Learning for Tomato Diseases: Classification and Symptoms Visualization. Appl.
Artif. Intell. 2017, 31, 299–315. [CrossRef]

57. Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using Deep Learning for Image-Based Plant Disease Detection. Front. Plant Sci. 2016,
7, 1419. [CrossRef]

58. Picon, A.; Alvarez-Gila, A.; Seitz, M.; Ortiz-Barredo, A.; Echazarra, J.; Johannes, A. Deep Convolutional Neural Networks for
Mobile Capture Device-Based Crop Disease Classification in the Wild. Comput. Electron. Agric. 2019, 161, 280–290. [CrossRef]

59. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

60. Cubuk, E.D.; Zoph, B.; Mané, D.; Vasudevan, V.; Le, Q.V. AutoAugment: Learning Augmentation Strategies from Data. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20
June 2019; pp. 113–123.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.32604/iasc.2022.020679
https://doi.org/10.3389/fcell.2021.662983
https://doi.org/10.1016/j.neucom.2022.02.046
https://doi.org/10.14569/IJACSA.2022.0130360
https://doi.org/10.1080/01431161.2019.1694725
https://doi.org/10.1590/S1517-83822008000300006
https://www.ncbi.nlm.nih.gov/pubmed/24031243
https://doi.org/10.1186/s12859-019-3065-1
https://doi.org/10.1007/s10658-021-02452-z
https://doi.org/10.1016/s0065-3527(06)66001-6
https://doi.org/10.1016/j.visinf.2017.01.006
https://doi.org/10.1080/08839514.2017.1315516
https://doi.org/10.3389/fpls.2016.01419
https://doi.org/10.1016/j.compag.2018.04.002

	Introduction 
	Materials and Methods 
	Model Selection for Early Detection of Rice Diseases 
	Data Collection and Training 
	System Model 
	Transfer Learning 
	Progressive Re-Sizing 
	PreLU Activation 

	Dataset and Implementation Setup 

	Results and Discussion 
	Conclusions and Future Work 
	References

