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Abstract: The soluble solids content (SSC) of pears is mainly composed of sugars, organic acids, and
other soluble substances and is one of the important indices used to measure the sweetness and
quality of pear juice. The SSC of pears is mainly composed of sugars, organic acids, amino acids, esters,
alcohols, phenols, flavonoids, and other compounds, and different groups within these compounds
have different characteristic absorption peaks corresponding to different characteristic wavelengths.
Traditional methods such as genetic algorithm (GA) and competitive adaptive reweighted sampling
(CARS) models used for screening characteristic wavelengths are mainly based on statistical methods,
and characteristic wavelengths are selected by finding the wavelengths related to the changes in the
concentration of the target analytes. By ignoring the molecular structure and chemical properties
of the target analytes and disregarding the influence of the groups of the compounds in the target
analytes on the spectral characteristics, wavelengths that are not related to the target analytes may be
selected, thus affecting the accuracy of the analytical results. In this paper, a partial least squares (PLS)
model was established based on the characteristic wavelengths of CARS, GA, and LASSO algorithms,
and the best least absolute shrinkage and selection operator (LASSO) was selected and compared
with the characteristic wavelengths selected by group weighted fusion (GWF). The LASSO regression
was validated by 10-fold cross-validation to select the appropriate regularization parameter, and
the 33 characteristic wavelengths correlated with the SSC of pears were selected in the full spectral
range, and the 9 characteristic wavelengths corresponding to the group response were weighted
and fused and input into the PLS regression model. Using an established model, the coefficient of
determination (R2) and the root mean square error (RMSE) of the calibration set were 0.992 and
0.177%, respectively, and the R2 and RMSE of the test set were 0.998 and 0.128%, respectively. The R2

of our LASSO–GWF–PLS prediction model was improved from 0.975 to 0.998, indicating that the
LASSO–GWF–PLS method has very good prediction ability for detection of SSC in pears.

Keywords: near-infrared spectroscopy; soluble solids content; pear; fusion variable selection
algorithm; modeling

1. Introduction

Soluble solids content (SSC) is an important index used to measure the commercial
quality of pear fruit. SSC refers to the content of soluble solids in juice, including sugars,
organic acids, amino acids, and other soluble substances [1–3]. The level of SSC directly
affects the taste, sweetness, nutritional value, and quality of pears. The traditional methods
used to determine SSC are the extraction method and the density method, and these meth-
ods require a great deal of time and effort and are easily affected by environmental and
operational factors, resulting in less accurate and less stable results [4]. In recent years, with
the development of near-infrared spectroscopy (NIRS), more and more studies have started
to explore the use of NIR spectroscopy for the rapid and accurate determination of SSC.
This method has the advantages of being non-destructive, rapid, efficient, accurate, and
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reproducible, and has become one of the most important tools in the evaluation of the com-
mercial quality of pear fruit. Vis–NIRS is a rapid and non-destructive detection technique
which integrates visible and near-infrared spectroscopy. It obtains spectral information
from a sample by detecting its reflectance spectra in the visible and near-infrared bands.
This spectral information allows a quantitative relationship to be established between the
sample spectrum and the soluble solids content [5,6]. In the determination of SSC of pears,
the NIRS technique can be used to achieve a rapid and accurate determination by using an
established quantitative relationship model.

A large number of studies have improved the model’s accuracy by picking feature
wavelengths and model combinations, etc. Chen et al. [7] optimized the feature wavelengths
and parameters of the corresponding models using a competitive adaptive reweighted
sampling method and a hybrid wind-driven differential evolutionary algorithm, and the
wavelength variables of the optimized partial least squares (PLS) and least squares support
vector machine (LS-SVM) models were reduced to 8.67% and 67.80% of the full spectrum,
respectively. The calibration coefficient of determination (Rc

2), predicted coefficient of
determination (Rp

2), root mean square error of calibration (RMSEC), root mean square error
of prediction (RMSEP), and ratio of performance to deviation (RPD) of the two models
were 0.9708, 0.9542, 0.2586, 0.2628, 5.91, and 0.9873; and 0.9830, 0.1705, 0.1734, and 8.96,
respectively. Guo et al. [8] used NIR spectroscopy combined with data dimensionality re-
duction to develop a prediction model (competitive adaptive reweighted sampling–support
vector machine, CARS–SVM) for the soluble solids content of cantaloupe. The correlation
coefficient of the calibration set was 0.9814, and the correlation coefficient of the prediction
set was 0.9002. The model was able to predict the soluble solids content of cantaloupe
accurately. Zhang et al. [9] improved the network structure of a back propagation (BP)
neural network by using the extraction of feature bands by CARS, and the performance of
the optimized BP neural network model was significantly improved. The R2 of the test set
was improved by 0.4193 and the RMSE was reduced by 0.516 after the extraction of feature
bands by CARS. These studies indicated that the accuracy and stability of NIR spectroscopy
for detecting soluble solid content in fruits can be significantly improved through feature
wavelength selection or model optimization methods based on spectral data. However, the
existing methods only improve the accuracy of the model through mathematical analysis
and other optimization methods, without considering the chemical structure information
of the measured substance, which may lead to unfavorable optimization results.

The specific objectives of this study were to: (1) select a set of functional response
characteristic wavelengths corresponding to the soluble solids content of pears based on
the infrared characteristic absorption peaks of the functional groups; (2) weight the se-
lected characteristic wavelengths and fuse with the characteristic wavelengths selected
by mathematical analysis (LASSO algorithm); (3) establish the PLS model using the fused
characteristic wavelength group to predict the SSC of pears by considering both the dimen-
sion reduction and optimization idea of mathematical analysis and the chemical properties;
and (4) assess the performance of all models to obtain the best one for the determination of
SSC in pears.

2. Materials and Methods
2.1. Samples

In this study, all pear samples were purchased from the local fruit market in Nanchang
(China). Two varieties of pears including ‘Cuiguan’ and ‘Huanghua’ are used. On the one
hand, they are widely cultivated in China; on the other hand, they have a greater difference
in soluble solids content. Ripe and well-preserved pears were selected as samples. The
samples had a uniform mature yellow–green color and did not have any skin defects or
damage upon visual observation. A total of 240 pears (120 for each variety) were ultimately
selected. We placed all samples under laboratory conditions with an ambient temperature
of 20 ◦C and a relative humidity of 60% for 24 h to eliminate the impact of temperature on
the accuracy of the prediction model.
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2.2. SSC Measurement

Each pear was cut into small pieces with the volume of each small piece not exceeding
20 mm3, and the sample pieces were placed into a manual juicer (L18-Y915S, Joyoung, Jinan,
China) to make the pulp and then filtered using a centrifuge (LC-LX-L40B, Shanghai, China)
running at 4000 rpm for 10 min. Then, the supernatant was poured into a clean beaker as
the measurement solution and, next, the supernatant was poured into a specific gravity
meter, and the value of SSC was obtained by reading the scale of the specific gravity meter.
All experiments were performed at 25 ◦C, and air was completely prevented from entering
the mixture during the measurement, which made the measurement results more accurate.

2.3. Spectral Data Acquisition and Preprocessing

Vis–NIR spectral data of pears were obtained by a desktop infrared spectrometer (ASD,
Collegeville, PA, USA) (parameter settings: wavelength range of 350–1800 nm, spectral
sampling interval of 1 nm, 10 scans, resolution of 3 nm, detection field angle of 25◦, halogen
lamp light source of 12 V/45 W). The measurement system was arranged in reflectance
mode for collecting diffuse reflectance spectra from pears. Pears were placed steadily upon
the fruit holder, with the stem–calyx axis arranged horizontally. Three separate spectral
measurements were performed on each sample around the equator (120◦) to decrease the
errors of operator and instrument. The average spectrum of these three measurements
was used to build the model. The spectral data were exported as ASCII codes in ASD
ViewSpecPro 5.6.8 and then imported into Unscrambler V9.7 and Matlab 2021a software for
data analysis and processing. Specifically, Unscrambler V9.7 software was used for spectral
preprocessing and modeling. The statistics and machine learning toolbox in Matlab 2021a
software was used for LASSO regression and wavelength selection and optimization.

Corrected spectral data are often disturbed and affected by various factors, such as
instrument noise, baseline drift, light source fluctuation, etc. These factors can lead to
noise and unnecessary fluctuations in the spectral data, which affect the quality of the
spectral data and the analysis results. Therefore, the preprocessing of spectral data is
required to improve the signal-to-noise ratio and analytical accuracy of spectral data. The
SavitzkyGolay (SG) smoothing method is a commonly used signal-processing method
used to smooth spectral data to remove noise and unnecessary fluctuations. In the SG
preprocessing of spectral data, the raw spectral data were first baseline-corrected to remove
background noise and baseline drift. Then, SG smoothing was performed on the baseline-
corrected spectral data, using a window size of 21 and a polynomial order of 3.

2.4. Feature Wavelength Selection
2.4.1. Feature Wavelength Selection Using Different Algorithms

(1) Competitive adaptive reweighted sampling: The competitive adaptive reweighted
sampling (CARS) algorithm is a method used for feature wavelength screening, and its
basic idea is to select the optimal combination of wavelengths in the full spectrum by
iterative competition [10–13]. Specifically, the CARS algorithm sequentially selects a subset
of N wavelengths and uses an exponential decreasing function and adaptive reweighted
sampling to determine the number of wavelengths selected for each sampling. Cross-
validation is performed on each subset to calculate its minimum root mean square error
of cross-validation, and the subset with the minimum RMSECV is selected as the optimal
variable subset.

(2) Genetic algorithm: The genetic algorithm (GA) is an optimization algorithm based
on the principle of biological evolution that continuously iterates to optimize the individu-
als in a population by performing operations such as selection, crossover, and mutation
on the population and, finally, obtains the individual with the highest adaptation as the
optimal solution [14–16]. The core idea of this algorithm is to pass on good individuals
to the next generation while introducing randomness to ensure global search capability.
The genetic algorithm has the advantages of global search capability, parallel computing
capability, and self-adaptability and has a wide range of applications in solving complex
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optimization problems. The basic process of this algorithm includes the steps of initializ-
ing the population, evaluating the fitness, performing a selection operation, a crossover
operation, and a variation operation, and repeating iterations until the individual with the
highest fitness is output as the optimal solution.

(3) Least absolute shrinkage and selection operator regression: Least absolute shrink-
age and selection operator (LASSO) regression is a commonly used feature selection method
that can compress the coefficients of some features to zero by L1 regularization of the coeffi-
cient matrix B [17–19]. The LASSO regression’s least residual sum of squares expression is
shown in Equation (1):

argmin
β

{
∑q

i=1

(
yi −∑m

j=1 xijβj

)2
+ λ∑m

j=1

∣∣∣βj

∣∣∣} (1)

In the LASSO regression’s least residual sum of squares expression, λ is a hyperpa-
rameter that is a 1-paradigm penalty coefficient for the regression coefficient j to control the
complexity of the model. λ values serve to penalize the feature coefficients so that some
feature coefficients become 0 for feature selection. For each λ value, a coefficient matrix B
on the regression coefficients βj is obtained, where each column corresponds to a λ value.
A series of λ values are used to train the LASSO regression model, and the optimal λ value
is selected by k-fold cross-validation. The data set was divided into k subsets and we used
k − 1 of them as the training set and the remaining subsets as the validation set each time,
and then we calculated the performance of the model on the validation set and, finally, took
the average value as the performance index of the model and selected the λ value with
the minimum average MSE value as the optimal λ value. The optimization goal of LASSO
regression is to minimize the sum of the absolute values of the regression coefficients. This
enables the selection of features, i.e., the coefficients of some unimportant features are
reduced or even become zero, thus simplifying the model and improving its generalization
ability and interpretation.

2.4.2. Characteristic Wavelength Selection Using Chemical Group Response Spectra

The correlation between SSC and spectral characteristics is essentially caused by
the response of chemical groups in SSC to the spectrum [20]. SSC in pear is mainly
composed of monosaccharides and polysaccharides such as glucose, fructose, and sucrose,
and these compounds absorb or reflect light in a specific wavelength range, producing a
specific spectral signature [21,22]. Table 1 shows the wavelength ranges corresponding
to the response spectra of the different groups within the SSC of pears and the types of
compounds that may be present.

Table 1. Wavelengths corresponding to the response spectra of different compounds of soluble solids
of pears.

Perssad Chemical Compounds Wavelength Range (cm−1)

O-H saccharides, organic acid, amino acid 3200–3600
C-H saccharides, organic acid, amino acid, delspray 2800–3000
C=O saccharides, organic acid 1700–1750
C-O saccharides, organic acid, amino acid 1000–1300
N-H amino acid 3300–3500

These chemical groups include O-H, C-H, C=O, C-O, and N-H. The types of com-
pounds in which these groups are present in pear fruit include sugars, organic acids, amino
acids, fatty acids, and polyphenols. Correlation analysis of the SSC with the spectra can
determine which bands are related to the soluble solids content of pears, and a correlation
coefficient plot can be used to obtain the characteristic wavelengths corresponding to the
response spectra of the chemical groups of the SSC. The following Equation (2) was used to
calculate the correlation coefficient between SSC and spectra [23].
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R =
∑n

k=1(xk − x)(ck − c)√
∑n

k=1(xk − x)2 ∑n
k=1(ck − c)2

(2)

where x denotes the original spectral wavelength, c denotes the concentration of SSC, and
x and c denote the average values of x and c, respectively.

2.4.3. Feature Wavelength Selection for Group Weighted Fusion Methods

The method of group weighted fusion for selecting features is to weight and fuse
a group of characteristic wavelengths selected by a mathematical analysis method (e.g.,
LASSO, CARS, GA, etc.) with a group of characteristic wavelengths obtained by chemical
analysis of groups contained in the compounds of pear soluble solids. The specific steps
are as follows: first, a characteristic wavelength group is obtained from the mathematical
analysis method; then, another characteristic wavelength group is obtained from the chem-
ical analysis of the moieties contained in the compounds of pear soluble solids; next, these
two characteristic wavelength groups are weighted and fused to obtain a new wavelength
group; subsequently, the new wavelength group is subjected to a weighting calculation
for determining the importance of each wavelength; and finally, a final characteristic
wavelength group is obtained by weighting analysis to obtain the final characteristic wave-
length group, which is input into the PLS model as the final input variables for modeling
and prediction.

2.5. Characterization Factor-Weighting Model for Pear SSC Modified by Contribution

The characterization factor-weighting model for the SSC of pears corrected by con-
tribution is a prediction model based on feature selection and weighting. The core idea
of the model is to automatically select the most useful features for the prediction task by
calculating the contribution of each feature to the SSC and weighting them for training
the prediction model [24]. This can effectively improve the accuracy and stability of the
prediction model while also reducing the number of features and the complexity of the
model. Assuming that the measured SSC of pears is related to J characterization factors,
the SSC value can be expressed as:

c = Xjbj+ej j = 1, 2, . . . . . . , J (3)

where c represents the SSC value matrix; Xj represents the characterization factor matrix; bj
represents the correlation coefficient matrix; and ej represents the residual matrix. Since
each characterization factor contributes differently to the value of the SSC of pears, factor
weights are introduced for further weighting calculation, and then the SSC value can be
expressed as:

y = ∑J
j=1 wjXjbj (4)

where Wj is the weight of the jth characterization factor. Each factor weight can be calculated
using the least squares method, which minimizes the squared deviation between the
theoretical value and the calculated value, and it is expressed as:

minimize
∥∥∥c−∑

j
j=1 wjxjbj

∥∥∥2

1 ≥ wj ≥ 0 (j = 1, 2, . . . . . . , j)
(5)

When the calculated value of wj is not 0, it means that the corresponding characteri-
zation factor is related to the SSC value of pears, and when the calculated value of wj is
0, it means that the corresponding characterization factor is not related to the SSC value
of pears.
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2.6. Modeling Methods and Model Evaluation
2.6.1. PLS-Based Predictive Model Construction Method

Partial least square is a commonly used multivariate statistical method and mathe-
matical optimization technique for building predictive models and solving multiple linear
regression problems [25–30]. Compared with traditional multiple linear regression meth-
ods, PLS methods can effectively deal with high-dimensional data and multi-collinearity
problems and also improve the predictive power of models. A PLS method was used for
modeling in this study.

2.6.2. Model Performance Evaluation

The coefficient of determination (R2) and the root mean square error (RMSE) were
used as model evaluation criteria. They are calculated as follows:

R2 = 1−∑n
i=1(yi − ŷi)

2/ ∑n
i=1(yi − yi)

2 (6)

RMSE =
√
(1/n)×∑n

i=1(yi − ŷi)
2 (7)

where ŷi is the predicted value of the ith sample, yi is the measured value of the ith sample,
y is the mean value of the calibration or prediction set, and n is the number of samples

in the data set or the calibration or prediction set. Generally, a good model should have a
higher R2, a lower RMSE (RMSEC or RMSEP), and also a small difference between RMSEC
and RMSEP.

3. Results and Discussion
3.1. Sample Division

The calibration and prediction sets were divided using the SPXY (sample set partition-
ing based on joint x–y distance) algorithm [31]. When calculating the inter-sample distance,
the X variable (spectral data) and Y variable (SSC of pear) are taken into account simultane-
ously to calculate the inter-sample distance to ensure the maximum characterization of the
sample distribution. Based on the SPXY method, the inter-sample distance dxy(i, j) can be
expressed by Equation (8) as follows:

dxy(i, j) =
dx(i, j)

maxi,j∈(1,z)[dx(i, j)]
+

dy(i, j)
maxi,j∈(1,z)[dy(i, j)]

, i, j ∈ [1, z] (8)

where dx(i, j) and dy(i, j) denote the distance between each sample with only spectral or
mass attributes as the characteristic parameter statistics, respectively. As shown in Table 2,
a division ratio of 2:1 was set, 160 samples were used for modeling, and 80 samples were
used for prediction.

Table 2. Summary statistics of SSC values of pears in calibration and prediction sets.

Sample Sets No. of Samples Mean (%) Min. (%) Max. (%) S.D. (%)

Calibration set 160 10.899 9.411 12.670 0.817
Prediction set 80 10.316 9.549 11.945 0.667
Total sample 240 10.826 9.411 12.670 0.709

Table 2 provides an overview of SSC distributions of pears in the calibration and
prediction sets. Statistical values include number of samples, range, mean, and standard
deviation (S.D.). As can be seen, the SSC measurements of 240 samples were fairly normally
distributed around the mean values (mean = 10.826%), with a standard deviation of 0.709.
In this study, samples were divided into calibration and prediction sets. The range of the
calibration set was from 9.441% to 12.670% and the range of the prediction set was from
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9.549% to 11.945%. The SSC range of the calibration set is larger than that of the prediction
set, which is helpful in developing a good model.

3.2. Preprocessing Spectral Data

Figure 1 shows the preprocessed spectral data of some typical samples from the two
pear varieties. As shown in Figure 1, the smoothing of spectral data not only removes
the noise and unnecessary fluctuations but also retains the trends and features of the
original data. It can also be found that the two varieties of samples have similar spectral
curve variation trends throughout the entire spectral region, but there is a very significant
reflection difference around 680 nm, mainly due to differences in skin reflection of different
varieties of pears. Compared to ‘Cuiguan’ pears, ‘Huanghua’ pears have a yellower
surface color and higher reflection in the spectral range of 600–700 nm. The negative
reflection phenomenon of pears in the 700–1100 nm wavelength range may be related to the
absorption of components and pigments in pears. For example, some components (such as
moisture and sugar content) in the tissue and pigments (such as chlorophyll) in the pear
skin can better absorb the light in the visible and short-wave NIR region.
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3.3. Results Obtained by Different Characteristic Wavelength Selection Methods
3.3.1. CARS

The three plots (as shown in Figure 2) created in MATLAB in the process of feature
wavelength selection using the CARS algorithm depict the number of variables, the ten-
fold cross-validation RMSECV values, and the variation in regression coefficients for each
variable. These three plots can be used to analyze the feature wavelength selection process
and the results of the CARS algorithm. Figure 2a shows the variation in the number of
variables as the number of samples increases. It can be seen that the CARS algorithm
has two processes: ‘coarse selection’ and ‘fine selection’. In the early stages of sampling,
the number of variables decreases rapidly and then slowly as the number of samples
increases. This indicates that the CARS algorithm can quickly filter out the characteristic
wavelengths associated with the target variables. Figure 2b shows the change in the ten-
fold cross-validated RMSECV values of a single PLS model as the number of samples
increases, and it can be seen that the RMSECV values show a trend of decreasing and
then increasing, where the subset of variables with the smallest number of samples for
the RMSECV values can be identified as the key subset of variables associated with the
target variables. This indicates that the CARS algorithm can effectively remove irrelevant
information from the target variables and improve the prediction performance of the
model. In Figure 2c, the position marked by the vertical line indicates that the subset
of variables with the smallest RMSECV value is identified as the key subset of variables
associated with the target variable. Before this subset of variables is identified, the CARS
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algorithm removes a large amount of irrelevant information by quickly filtering out feature
wavelengths that are not relevant to the target variable. Therefore, the RMSECV values
show a trend of decreasing and then increasing in sampling operations 1–29, indicating that
the CARS algorithm can effectively remove irrelevant information from the target variables
and improve the prediction performance of the model. Starting from the 30th sampling
operation, the RMSECV value increases, which indicates that some critical information
is removed, and the model performance become worse. This may be due to the CARS
algorithm being too strict in the selection process and removing some feature wavelengths
related to the target variables, which leads to a decrease in the model’s performance.
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3.3.2. GA

The genetic algorithm was used to determine the number of modeling variables
by frequency values with an overall size of 30, a maximum number of iterations of 100,
a crossover probability of 50%, and a variance probability of 1%. Figure 3a represents
the frequency of the selected wavelengths; the red line in the figure is the automatically
generated frequency threshold after the completion of the genetic algorithm, and the green
horizontal line shows the cutoff value for the model with the minimum RMSECV. Figure 3b
shows the cross-validation (CV)-explained variance as a function of the number of included
variables. The CV-explained variance is a metric used to assess the predictive performance
of a model and indicates the model’s ability to explain the observed data. When the
number of variables increases to 29, the red asterisks represent the number of variables
corresponding to the F-test results that are significant in the model. When the number
of variables increases to 124, the CV-explained variance increases to a maximum value
of 96.67% and remains relatively constant or decreases, and the green asterisks indicate
the global maximum, i.e., the model with the largest CV-explained variance among all
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the numbers of variables, a value that corresponds to the optimal number of variables
that provides the best model prediction performance. Figure 3c shows the variation in the
cross-validation’s root mean square error (RMSECV) with the number of selected feature
wavelengths. The RMSECV decreases with an increase in the number of selected feature
wavelengths. The red and green asterisks’ horizontal coordinate corresponds to Figure 3,
where the red asterisk’s position has an RMSECV of 0.1663 and the green asterisk’s position
has an RMSECV of 0.161, which remains constant thereafter, indicating that the number of
the selected feature wavelength is more appropriate.
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Figure 3. Results of feature wavelength extraction by GA. (a) Frequency plot of selected variables
(b) CV change curve with the number of variables. (c) RMSECV change curve with the number of
variables. The red line is the frequency threshold automatically generated after the completion of
the genetic algorithm, and the green horizontal line indicates the cutoff value for the model with the
smallest RMSECV. Red asterisks represent the number of variables corresponding to significant F-test
results in the model. The green asterisk indicates the global maximum, i.e., the model with the largest
variance explained by the CV among all the number of variables.

3.3.3. LASSO

Figure 4 shows the LASSO regression path diagram, indicating how the different coef-
ficients vary with the regularization parameter λ. In the LASSO regression path diagram,
the horizontal axis is log(λ) and the vertical axis is the absolute value of the LASSO regres-
sion coefficients. MSE with error bars is a commonly used method for visualizing model
performance, which can help us understand more intuitively the predictive performance
and stability of different models. The method represents the MSE value of each model
and its confidence interval by plotting the error bars so that it can show both the mean
error and the error range of the model. The MSE value of each model and its confidence
interval are calculated first, using 10-fold cross-validation to calculate 10 MSE values for
each model, and then their mean and standard error are calculated as the MSE value and
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confidence interval of the model. As shown in the figure, the error bars consist of a central
point and two line segments, with the central point representing the average MSE value
of the model and the vertical line segments representing the confidence intervals, which
extend up and down from the central point to represent the upper and lower limits of the
confidence intervals.
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In this study, both Lambda1 and LambdaMinMSE methods are used to more com-
prehensively assess the performance and stability of the LASSO model. In this figure, the
dashed lines of different colors correspond to different features. The blue dashed line in
the figure shows the optimal regularization parameter for the LambdaMinMSE method
by calculating the MSE values at different λ values, corresponding to the λ = 0.0046 that
minimizes the MSE value. The green dashed line in the figure shows the MSE value and
the standard error of the MSE value by calculating the MSE value at different λ values by
the Lambda1SE method and finding the λ = 0.0467 that makes the MSE value less than the
minimum MSE value plus the standard error as the optimal regularization parameter. The
cross-validation error curve is used to determine the optimal λ value, and the optimal λ
value is the path diagram that minimizes the cross-validation error for the LambdaMinMSE
method, corresponding to λ = 0.0046. The features with non-zero coefficients in matrix B at
a value of λ = 0.0046 are selected as the final set of features. The final LASSO regression
screening yielded the following feature wavelengths: 350, 368, 392, 412, 413, 522, etc., for a
total of 32 feature wavelengths.

3.3.4. Result and Analysis of Different Models

The choice of modeling method has a great impact on the performance and stability
of the model. As shown in Table 3, it can be seen that the predictive performance and
stability of the CARS–PLS, GA-PLS, and LASSO-PLS models are better than those of the
raw-data PLS model. This indicates that the appropriate modeling method can improve
the predictive ability and stability of the models. However, these characteristic wavelength
selection methods only optimize the models by means of mathematical analysis. Neglecting
the characteristic absorption peaks of different groups of compounds in pear soluble solids
for different wavelength spectra may result in unfavorable model enhancement. A total
of 33 characteristic wavelengths were selected by the LASSO–PLS method, which had the
best predictive performance and stability compared with CARS–PLS and GA–PLS, with an
r2

pre of 0.9754 and RMSEP of 0.135. Therefore, in order to further improve the modeling
effect, the most effective mathematical analysis method (LASSO) was chosen to select
the characteristic wavelengths, which were weighted and fused with the characteristic
wavelengths corresponding to the response spectra of the chemical groups in the pear
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SSC selected through the correlation analysis of the pear SSC with the spectra to build the
LASSO–GWF–PLS model.

Table 3. Results obtained from different models with different wavelength number.

Models Wavelength Number
Calibration Set Prediction Set

r2
cal RMSEC r2

pre RMSEP

PLS 1451 0.9491 0.184 0.9321 0.154
CARS–PLS 29 0.9751 0.173 0.9736 0.131

GA–PLS 19 0.9662 0.162 0.9637 0.151
LASSO–PLS 33 0.9762 0.178 0.9754 0.135

3.4. Correlation Analysis between Near-Infrared Spectral Characteristics and SSC of Pears

The method of picking the characteristic wavelengths of pear SSC chemical group
response spectra uses spectroscopic techniques to analyze the chemical composition, molec-
ular structure, and other information in pear samples to determine the characteristic
wavelength related to the SSC and improve the accuracy and stability of the prediction
model. Firstly, the information was checked to determine all groups of compounds in
pear soluble solids and the absorption peaks of these groups and, secondly, the correlation
coefficients of each characteristic wavelength with pear soluble solids were calculated, and
the characteristic wavelengths were selected by the peaks and valleys of the correlation
coefficient plot. Figure 5 shows the correlation coefficient plot between pear soluble solids
and spectral data, which reflects the correlation between the spectral response at different
wavelengths and the content of pear soluble solids. The spectral responses at 465 nm
and 522 nm correspond to the π-π leap absorption peaks of aromatic compounds. The
spectral response at 980 nm corresponds to the vibrational absorption peak of the hydroxyl
functional group in the pear, because the hydroxyl functional group can vibrate in this
wavelength range to produce an absorption peak. The spectral responses at 657 nm and
695 nm correspond to the absorption peaks of carotenoids and chlorophylls in pears be-
cause carotenoids and chlorophylls absorb light energy in this wavelength range, resulting
in absorption peaks. The spectral responses at 1230 nm and 1260 nm correspond to C-H
stretching vibration absorption peaks in pears, because the C-H bonds in fatty acids and
lipids undergo stretching vibrations in this wavelength range, resulting in absorption peaks.
The spectral response at 1460 nm corresponds to the C-H bending vibration absorption
peak in pears, because the C-H bonds in proteins and amino acids undergo bending vi-
brations in this wavelength range, resulting in absorption peaks. The spectral response at
1729 nm corresponds to the C=O stretching vibration absorption peak in pears, because the
C=O bonds in esters and ketones undergo stretching vibrations in this wavelength range,
resulting in absorption peaks.

From the response relationship between pear quality attributes and spectra, it can
be determined that there is a high correlation between SSC and some group spectra.
LASSO selected characteristic wavelength set S1, pear SSC chemical group response spectra
corresponding to wavelength set S2, and LASSO-GWF characteristic wavelength set S, as
shown in Table 4.

Table 4. Different feature wavelength sets.

Wavelength Sets Wavelength Number Feature Wavelength

S1 33 350, 368, 392, 412, 413, 522, 523, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656,
657, 678, 682, 735, 736, 743, 744, 1460, 1461, 1473, 1474, 1475, 1482, 1729, 1740

S2 9 465, 522, 657, 695, 980, 1230, 1260, 1460, 1729

S 38
350, 368, 392, 412, 413, 465, 522, 523, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655,
656, 657, 678, 682, 695, 735, 736, 743, 744, 980, 1230, 1260, 1460, 1461, 1473, 1474,
1475, 1482, 1729, 1740
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3.5. Analysis of the Results of the Weighted Model

In this study, nine response spectra with high correlation with pear soluble solids
were selected, and four of these wavelengths, namely 522 nm, 695 nm, 1460 nm, and
1729 nm, were consistent with the wavelengths selected by the LASSO algorithm, so the
remaining five highly correlated wavelengths were fused with the thirty-three wavelengths
selected by the LASSO algorithm to construct a wavelength set (containing thirty-eight
wavelengths in total). Subsequently, each wavelength was considered an independent
characterization factor of pear soluble solids, and the results were analyzed by the weighted
model as shown in Figure 6 (Note: weighting value is zero at a wavelength of 648 nm,
so only 37 wavelengths are shown in Figure 6). A total of 37 characterization factors
were correlated with pear soluble solids, and their weight values wj were in the range
of 0.181–0.948.
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3.6. LASSO–GWF–PLS Model Analysis

The LASSO algorithm selects the feature wavelengths with predictive power from
a large number of wavelengths to obtain a feature subset S1. The feature wavelengths
corresponding to the response spectra of pear soluble groups are obtained by correlation
analysis between pear soluble solids and spectra to obtain a feature subset S2. The obtained
S1 and S2 are combined to obtain a feature set S that contains all feature wavelengths. For
each feature wavelength λi, its weight wi is calculated, and the weight wi of each feature
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wavelength is used as its weight in the model for the weighted fusion of features. The set
of feature wavelengths after weighted fusion is input into the PLS model to establish the
prediction model between the feature variables and the target variables. In this study, the
most relevant feature wavelengths were selected by LASSO regression, combined with
the soluble solids group response spectra of pears, and PLS was used to establish the
relationship model between the response variable (i.e., soluble solids content of pears)
and the predictor variable (i.e., the feature wavelengths selected by LASSO regression and
the wavelengths corresponding to group response spectra). The most relevant features
selected by LASSO regression were used, and the effect of the wavelength corresponding
to the group response spectra was also taken into account to establish a more accurate
prediction model.

The results of the LASSO–GWF–PLS model are shown in Figure 7. The quantitative
analysis model has a good prediction effect, and the coefficients of determination of the
calibration set (a) and the prediction set (b) are 0.992 and 0.998, respectively. The model
is robust and adaptable for detecting SSC in pears. It can be also found that the R2 of the
prediction set improved from 0.975 to 0.998 compared with the LASSO–PLS prediction
model, indicating that the LASSO–GWF–PLS method has better predictive ability.
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4. Conclusions

In this study, the LASSO–PLS method with the best prediction effect was developed
to realize the fast and accurate assessment of SSC in pears. Compared with a PLS model
with the original data, r2

cal was improved from 0.949 to 0.976, and r2
pre was improved from

0.932 to 0.975. In order to further improve the model’s effect, the characteristic wavelength
groups selected by the LASSO algorithm were weighted and fused with the pear soluble
solids group response spectra and, finally, the LASSO–GWF–PLS model was proposed.
Compared with the LASSO–PLS method employing mathematical analysis only, the r2

cal
of the LASSO–GWF–PLS model was improved from 0.949 to 0.992, and r2

pre was improved
from 0.932 to 0.998. This indicated that the fusion of the spectra of the group responses of the
compounds in pear soluble solids had an enhancing effect on the model. The performance
of the prediction model was optimized by selecting an appropriate mathematical analysis of
the characteristic wavelength selection method fused with the group response spectra. The
method can be applied for the other fruits’ quality analysis, such as sugar content, acidity,
etc., which provides a new idea for the quality analysis of fruits and other food products.
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