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Abstract: This study aims to analyze the spatial distribution characteristics and innovation efficiency
of national agricultural science and technology parks (NASTPs) and identify the main influencing
factors on the parks’ innovation and development. The goal is to optimize the allocation of science and
technology innovation resources in these parks, promote national agricultural science and technology
innovation, and enhance the quality of agricultural development. To achieve this, the paper employs
spatial analysis methods and a three-stage DEA-Tobit model to conduct both macro and micro-level
analyses. The research findings are as follows: (1) Distribution characteristics: NASTPs tend to
exhibit a uniform distribution at the national scale, but at the provincial level, their distribution
appears clustered and uneven. Specifically, three high-density areas and two sub-high-density
areas have emerged on the eastern side of the Hu line, displaying a decreasing trend from east to
west. (2) Innovation efficiency: By excluding the influence of environmental factors and random
interference, the lack of scale efficiency (SE) emerges as the primary reason for the generally low
innovation efficiency of NASTPs. (3) Environmental factors: Science and technology training exhibits
a negative correlation with innovation efficiency in NASTPs. Leading enterprises, income level,
innovation support, and demonstration and promotion show positive correlations with IE in NASTPs.
To promote national agricultural science and technology innovation and enhance the quality of
agricultural development, it is recommended, based on a central-level development perspective, to
focus on the layout of the northeast and northwest regions. At the local level, expanding the scale of
key enterprise inputs and increasing the demonstration and promotion of scientific and technological
achievements are recommended. Additionally, at the NASTPs level, guiding the construction of a
national agricultural high-tech industry demonstration zone is advised.

Keywords: national agricultural science and technology parks; distribution characteristics; innovation
efficiency; influencing factors

1. Introduction

Currently, China is actively pursuing a rural revitalization strategy aimed at achiev-
ing modernization of agriculture and rural areas. The central focus of this strategy is to
shift agricultural production from a focus on quantity to one that prioritizes quality. In
this context, national agricultural science and technology parks (NASTPs) serve as cru-
cial platforms and catalysts for driving high-quality agricultural development through
the integration of innovative scientific and technological elements. It is of great practical
significance to study the distribution characteristics, innovation efficiency (IE), and influ-
encing factors of park development. By doing so, policymakers can formulate effective
recommendations to enhance quality and increase efficiency, ultimately realizing China’s
agricultural goals. In 2001, the Ministry of Science and Technology (MOST) spearheaded
the establishment of NASTPs with the aim of industrializing scientific and technological
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achievements and fostering a globally competitive agricultural advanced technology in-
dustry cluster. Operating as a vital link between the market and patents, NASTPs utilize
projects as vehicles and enterprises as pillars to facilitate the transformation of agricultural
scientific and technological breakthroughs. By consolidating scientific and technological
resources and elements, NASTPs drive the advancement of regional agricultural industries
and promote rural economic development [1,2]. Over the course of more than two decades,
NASTPs have emerged as vital enablers, playing a crucial role in ensuring national food
security, expediting the transformation of agricultural scientific and technological break-
throughs, facilitating agricultural structural adjustments, and driving innovation in the
institutional mechanisms of agricultural science and technology. Currently, China’s agricul-
tural sector is transitioning towards a phase of high-quality development. This transition
poses both opportunities and challenges for the further advancement of NASTPs, which
necessitates a reliance on scientific and technological progress to foster innovation-driven
and endogenous development.

China’s agricultural science and technology parks were established in the late 1980s and
have undergone five distinct stages of development: “Nascent start (1980s–1993)→Rapid de-
velopment (1994–2000)→Adjustment and development (2001–2009)→Comprehensive de-
velopment (2010–2016)→Quality improvement and Upgrading (2017–present)” [3]. These
stages have witnessed the evolution of the parks, from local governments independently
exploring new models of agricultural and rural development, to the central government
issuing regulations for park construction, to the central government taking the lead in
promoting agricultural science and technology innovation within the parks, and finally to
collaborative efforts between the central and local governments to enhance the construction
level and innovation capacity of the parks [4]. Currently, the spatial structure of NASTPs
primarily follows the “Core zone + Demonstration zone + Radiation zone” model. The core
zone serves as the central area where economic entities within the NASTPs are concentrated,
the demonstration zone provides raw materials and experimental demonstrations for the
core zone, and the radiation zone promotes the large-scale dissemination of agricultural
science and technology achievements related to the leading industries of the NASTPs. This
development model plays a crucial role in China’s agricultural science and technology
innovation. However, despite the rapid progress of NASTPs, they also face challenges,
such as an imperfect monitoring and evaluation system and limited support capacity for
scientific and technological innovation. Therefore, an accurate assessment of the innovation
level of NASTPs is essential for optimizing resource allocation within the zones, promoting
agricultural science and technology innovation, fostering the vigorous development of
agricultural high-tech industries, and facilitating the high-quality development of China’s
agriculture in the future.

The remarkable success of the Stanford Science and Technology Park has spurred the
construction of science and technology parks in numerous countries and regions world-
wide, aiming to bolster their innovation capacity [5]. Leveraging the parks’ key attributes
of agglomeration, openness, innovation, and demonstration, these endeavors drive high-
level regional innovation, knowledge-intensive business incubation, and the development
of high-tech industries, facilitating the transformation of scientific knowledge into tech-
nological practice [6]. In the realm of agricultural research, scholars have thoroughly
analyzed the inherent operational mechanisms of industry–university–research interaction
within agricultural science and technology parks, exploring various perspectives such as
industrial clusters, multi-principal collaboration, and innovation ecosystems. This holds
both practical and theoretical significance in promoting the development of innovation
capacity within agricultural science and technology parks [7]. From an industrial clusters
perspective, agribusiness agglomeration plays a crucial role in driving the advancement
of science and technology innovation, serving not only as an innovation applicator, but
also as an innovation creator [8–10]. Henriques [11] asserted that science and technol-
ogy parks can serve as breeding grounds for innovation, fostering and nurturing novel
science and technology enterprises. Additionally, they facilitate collaboration among in-
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dustry, academia, and research, thereby promoting the transfer of university expertise to
enterprises. This fosters the transformation of scientific and technological achievements
and facilitates commercialization. From the perspective of multi-subject collaboration,
regional cooperation and exchange play a pivotal role in enhancing social relationships be-
tween entities while concurrently bolstering the efficiency and effectiveness of cooperation.
Furthermore, innovation-intensive zones can achieve regional synergistic innovation devel-
opment by strengthening spatial linkages [12,13]. Through the examination of Kazakhstan
and Russia as case examples, Mingaleva [14] employed descriptive statistics and analogy
to assess the significance of innovative agribusiness projects in terms of agro-industry and
overall economic development. Their findings highlight that the multi-agent model of
financing innovative projects serves as an effective mechanism for promoting the develop-
ment of agro-industrial complexes in both countries. The “government guidance, enterprise
operation, farmer participation” management mechanism plays a vital role in ensuring
the sustainable development of agricultural science and technology parks [15,16]. Taking
China as a case study, Huo [17] conducted spatial autocorrelation analysis and employed
the DEA model to investigate the value chain perspective. Their findings highlighted that
agricultural science and technology parks serve as critical platforms for agricultural innova-
tion and integrated transformation. Moreover, the government’s involvement in innovation
resource allocation, along with fostering linkages among enterprises and integrating agri-
cultural elements, emerged as a significant model for driving science and technology-led
agricultural development. Adopting an innovation ecosystem perspective, institutions
such as firms, universities, research centers, and development organizations establish re-
gional innovation networks and foster innovation ecosystems. These ecosystems facilitate
talent development, cultivate innovation, enhance competitiveness, and promote the flow
and diffusion of knowledge through learning [18,19]. Scholars emphasize the pivotal role
of innovation in driving the development of agricultural science and technology parks.
They extensively analyze the internal mechanisms of agricultural science and technology
innovation within these parks from various perspectives. This analysis holds significant
importance for the advancement of agricultural science and technology parks in China.

China’s agricultural science and technology parks aim to aggregate innovative re-
sources, promote scientific and technological innovation, facilitate the transformation of
research outcomes, and elevate the agricultural industry. Presently, research predominantly
centers on innovation capacity, spatial patterns, and operational mechanisms [20,21]. Schol-
ars commonly employ data envelopment analysis, the AHP model, and cluster analysis to
assess the parks’ innovation capacity, attributing differences in innovation to park construc-
tion and development [22,23]. However, existing studies lack comprehensive analyses of
spatial distribution and efficiency evaluation in parks. While some macro-level literature
exists, it falls short in exploring distribution characteristics and internal differences based
on spatial scales. At the micro level, research on innovation capacity and mechanisms
is predominantly qualitative, and further exploration in quantitative research is needed.
The traditional DEA model overlooks environmental factors and random disturbances
when measuring park innovation efficiency [24,25]. This limitation hinders a profound
understanding of spatial distribution patterns in NASTPs and impedes the comprehension
of actual innovation efficiency levels and influencing factors. Conversely, the three-stage
DEA model accounts for environmental exogenous variables and random shocks, offering
efficiency values between 0 and 1. This suitability allows for the application of the truncated
Tobit regression model, examining factors influencing park development.

The primary objective of this study is to analyze the spatial distribution character-
istics and innovation efficiency of NASTPs. Additionally, this study seeks to identify
the key environmental factors that influence the innovation and development of these
parks. The findings will be used to propose appropriate development strategies aimed at
enhancing the innovation capacity of NASTPs, promoting agricultural scientific and tech-
nological innovation at the national level, and improving the overall quality of agricultural
development.
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In this study, we focus on 287 parks in China at the macro level and employ spatial
analysis to examine their distribution characteristics. At the micro level, we select a sample
of 85 parks participating in the MOST assessment in 2021. We utilize a three-stage DEA-
Tobit model to assess the parks’ innovation efficiency and investigate the environmental
factors influencing this efficiency. The Discussion and Conclusion section summarizes the
spatial distribution characteristics of the parks and the factors influencing their innovation
efficiency, while also acknowledging the limitations of existing research. Lastly, we propose
recommendations for strategically planning park construction, enhancing park innovation
efficiency, and guiding park development at the developmental level.

2. Research Framework

The research framework of this paper, presented in Figure 1, aims to analyze the
spatial distribution characteristics and evaluate the IE of China’s NASTPs. It also aims to
identify the environmental factors that affect the IE of these parks. The specific research
steps are divided into three parts. In the first part, the macro level explores the distribution
characteristics of parks. The analysis includes the nearest neighbor index to examine the
types of spatial distribution of NASTPs at the national scale, the geographical concentration
index, the imbalance index, and the Lorenz curve to assess the degree of balanced distribu-
tion of NASTPs at the provincial scale, and the kernel density estimation to analyze the
spatial agglomeration of NASTPs. The second part focuses on evaluating the innovation
capacity of NASTPs from a micro level. This involves constructing a system of indicators
for input, output, and environmental variables and utilizing a three-stage DEA model to
analyze the overall IE evaluation, returns to scale (RTS) analysis, and IE improvement. The
third part employs the Tobit model to study the influence of environmental variables on the
IE of NASTPs. It investigates the main factors affecting IE, pure technical efficiency (PTE),
and scale efficiency (SE). Finally, drawing upon the findings from both macro and micro
analyses, this paper presents policy recommendations from three perspectives: the central
government, local government, and park management. These recommendations aim to
enhance the innovation efficiency of NASTPs and promote China’s agricultural science and
technology innovation capabilities for achieving high-quality agricultural development.
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3. Materials and Methods
3.1. Data Source

To analyze the distribution characteristics, this study abstracted 287 NASTPs from
across China as point elements, obtaining the list of parks from the website of the MOST.
Geographical coordinate information for these parks was collected using the Baidu Maps
Geocoding System to establish a spatial database. For the evaluation of IE and environmen-
tal factors, a sample of 85 NASTPs was selected. These parks are scheduled to be evaluated
by the MOST in 2021, with a total of 87 parks participating (two parks had missing data).
The data for the selected input, output, and environmental variables were obtained from
official sources, including the website of the MOST, the National Science and Technology
Assessment Centre, and the CSMAR database.

3.2. Data Methods
3.2.1. Spatial Analysis Methods

1. Nearest neighbor index

The nearest neighbor index is a useful tool for assessing the spatial arrangement of
point-like elements and determining the type of their distribution [26]. This index provides
a measure of the proximity between neighboring elements. The formula for calculating the
nearest neighbor index is as follows:

R =
r1

rE
(1)

rE =
1
2

√
n
A

(2)

where R is the nearest neighbor index, r1 represents the observed nearest neighbor distance,
rE is the expected nearest neighbor distance, n is the total number of NASTPs, and A
denotes the area of the study region. The nearest neighbor index provides insights into the
spatial distribution pattern of NASTPs in China. When R = 1, it means that the distribution
type of NASTPs in China is random; when R > 1, it suggests a uniform distribution; when
R < 1, it signifies an agglomerative distribution.

2. Analysis of the degree of spatial equilibrium

The Geographic Concentration Index is a metric used to assess the concentration
level of point-like elements within a specific region. It provides insights into the spatial
distribution pattern of these elements [27]. The calculation formula for the geographic
concentration index is as follows:

G = 100×

√√√√ n

∑
i=1

(
Pi
Q

)2

(3)

where G represents the geographical concentration index, Pi indicates the number of
NASTPs in the i-th province, n represents the total number of provinces, municipalities,
and autonomous regions, and Q represents the total number of NASTPs in China. G takes
the values of [0, 100], with higher values indicating a more concentrated distribution of
NASTPs and lower values indicating a more dispersed distribution.

The Imbalance Index is a useful tool for analyzing the distribution equilibrium of
point-like elements within a region [28]. It is commonly calculated using the Lorenz curve
method, which can be expressed by the following formula:

S =

n
∑

i=1
Yi − 50(n + 1)

100× n− 50(n + 1)
(4)
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where S represents the Imbalance Index, n represents the number of provinces, municipali-
ties, or autonomous regions, and Yi represents the number of NASTPs in each province,
municipalities, or autonomous region, sorted by the cumulative percentage of national
agricultural science and technology parks in descending order. The value of S ranges
between 0 and 1, with a higher value indicating a more uneven distribution of NASTPs. A
value of S = 0 signifies an even distribution of NASTPs across each province, municipalities,
or autonomous region. Conversely, if S = 1, it indicates that all NASTPs are concentrated in
a specific province, municipalities, or autonomous region.

3. Kernel Density Analysis

Kernel density analysis is utilized to examine the density of spatial distribution of
point-like elements within a region, enabling the assessment of the spatial cohesion among
these elements [29]. The calculation formula for kernel density analysis is as follows:

fh(x) =
1

nh

n

∑
i=1

(
x− xi

h

)
(5)

where fh(x) represents the kernel density function, where x − xi denotes the distance
between x to xi, and h represents the width and is a positive value. The magnitude of
fh(x) indicates the density of NASTPs, with larger values indicating a more concentrated
distribution.

4. Spatial autocorrelation analysis

(1) Global Moran’s Index
The first law of geography posits that anything on the Earth’s surface is correlated,

with stronger correlations observed among similar things [30]. This analysis of correla-
tions between the distribution of elements based on spatial location is known as spatial
autocorrelation analysis. The global Moran’s I index is commonly employed to determine
the presence of spatial autocorrelation among geographic elements [31]. The formula for
Moran’s I index is as follows:

I =

n
n
∑

i=1

m
∑

j=1
[ωij(xj − x)(xj − x)]

(
n
∑

i=1

n
∑

j=1
ωij)

n
∑

i=1
(xi − x)2

(6)

where n represents the total number of provinces (municipalities and autonomous regions)
in China, m denotes the number of neighboring regions of region I, xi and xj stand for the
number of parks in regions i and j, respectively, x represents the average value of the num-
ber of parks in each region, and ωij represents the value of spatial weights. The index value
ranges from −1 to 1. A Moran’s I value greater than 0 indicates positive spatial correlation
among parks (i.e., high values clustered with high values, or low values clustered with low
values); a Moran’s I value less than 0 indicates negative spatial correlation among parks
(i.e., high values clustered with low values, or low values clustered with high values); a
Moran’s I value equal to 0 suggests a random spatial distribution of parks. The magnitude
of the value reveals the spatial aggregation and differentiation characteristics of areas with
a high (or low) number of parks; a larger Moran’s I value signifies more pronounced aggre-
gation characteristics, whereas a smaller value indicates more pronounced differentiation
characteristics.

(2) Local Moran’s Index
The global Moran’s I can only determine whether the research object exhibits aggre-

gation in the study area as a whole. It cannot pinpoint the specific location or identify
abnormal situations within the aggregated area. In contrast, the local Moran’s I allows for
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the measurement of spatial correlation and differences between each area and its surround-
ing regions [32]. The calculation formula for the local Moran’s I is as follows:

Ii =

(xi − x)
m
∑

j=1
ωij(xj − x)

n
∑

i=1
(xi − x)2

(7)

where xi and xj represent the number of parks in regions i and j, respectively, ωij denotes
the spatial vector matrix, and the value of Ii indicates the spatial relationship between
area i and its surrounding units. If Ii is greater than 0, it signifies that both area i and the
surrounding spatial units exhibit either high or low values. Conversely, if Ii is less than 0, it
indicates that area i has a high (low) value while the surrounding spatial units exhibit low
(high) values.

3.2.2. Three-Stage DEA Model

The three-stage DEA model analyzes the IE of NASTPs, allowing for the exclusion of
environmental factors and random disturbance terms, and provides an accurate measure
of the efficiency level for each decision-making unit (DMU) [33].

Stage 1: generalized DEA performance evaluation
Taking constant RTS into consideration, researchers such as Banker and Cooper discov-

ered that by incorporating constraints into the CCR model, it becomes possible to exclude
situations with constant RTS [34]. This led to the formulation of the DEA-BCC model,
which can be expressed as follows:

min
[

θ − ε

(
n
∑

i=1
s−i +

s
∑

r=1
s+r

)]
s.t.

n
∑

j=1
xijλj + s−i = θxij0, i ∈ (1, 2, · · · , m)

n
∑

j=1
Yrjλj + s+r = θyrj0, r ∈ (1, 2, · · · , s)

n
∑

j=1
λj = 1

θ, λj, s−i , s+r ≥ 0, j = 1, 2, · · · , n

(8)

where s−i and s+r represent slack variables, m and s denote the number of input and
output indicators, and xij and yrj0 represent the i-th input item and j-th output item of
the j0-th DMU. Additionally, a commonly used value is 10−6, which represents a positive
infinitesimal. θ is the PTE of the DMUj. When θ = 1, s−i = 0, and s+r = 0, it indicates that
DMUj is strongly effective, signifying that the production factors of DMUj have reached
their optimal combination and the output effect is at its best. This implies optimal technical
efficiency. When θ = 1, s−i = 0, and s+r = 0, it suggests that DMUj is weakly effective in DEA,
and the relative comprehensive efficiency is weakly effective. For values between 0 and 1,
DMUj is deemed ineffective in DEA, and the closer the value is to 1, the closer the efficiency
is to being effective.

Stage 2: SFA regression model
The dependent variables in this study are the slack variables, while the independent

variables are the environmental variables. The model was constructed through regression
using Stochastic Frontier Analysis (SFA) as follows:

Sni = f n(zi; βn) + νni + uni, n = 1, · · · , N, i = 1, · · · , I (9)

The deterministic feasible relaxation frontier, denoted as fn(zi; βn), is characterized by
the coefficient βn that needs to be estimated. The error mixture term vni + uni is assumed to
follow a normal distribution vni~N+(0, σ2

vn), representing statistical noise, while uni ≥ 0
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reflects managerial inefficiency. Additionally, it is assumed that uni~N+(un, σ2
un), and that

vni, uni, and zi are independent of each other.
The formula is adjusted by manipulating the input variables to ensure that all DMUs

operate under the same external conditions. The adjusted formula is given below:

xA
ni = xni + [max{z, βn} − ziβ

n] + [max{νni} − νni], n = 1, · · · , N, i = 1, · · · , I (10)

where xA
ni and xni represent the input quantity after adjustment and before adjustment,

respectively. The first bracket on the right side of Equation (10) is used to adjust the
environment variables, while the second bracket ensures that all DMUs are placed at the
same luck level.

Stage 3: The adjusted input data (denoted as xA
ni) replace the original input data xni,

while the output data yni remain unchanged. Subsequently, the BCC model is applied using
these adjusted inputs to obtain the actual efficiency values that account for the effects of
environmental factors and statistical noise.

3.2.3. Tobit Model

Considering that the IE value of the NASTPs falls within the range of 0 to 1, the
appropriate regression model to use when the dependent variable is truncated or censored
is the Tobit regression model [35]. This model utilizes maximum likelihood estimation and
is capable of analyzing both continuous numerical variables and dummy variables. In the
Tobit model, truncation occurs at the lower bound when L = 0, and at the upper bound
when U = 1. The formulation of the Tobit model employed in this paper is presented below:

Ya =


1, βTZa + ea ≥ U

βTZa + ea, L < βTZa + ea < U
0, βTZa + ea < L

(11)

where Ya represents the IE value of the a-th park obtained through the three-stage DEA
method, Za denotes the observable environmental variable, T represents the coefficient
to be estimated, and ea represents the residual term, which is an independent variable
satisfying ea~N(0, σ2).

4. Results
4.1. Spatial Distribution Characteristics of NASTPs
4.1.1. Types of Spatial Distribution

On a national scale, most of the NASTPs in China are concentrated in the eastern
region, east of the Hu line, while the western side exhibits less distribution and greater
dispersion. Figure 2 illustrates that the NASTPs exhibit an even spatial distribution pat-
tern. The analysis of the nearest neighbor index indicates an average observed distance of
96,895.52 km, with an expected observed distance of 90,886.75 km, resulting in a nearest
neighbor index (R) of 1.07 (>1). Geographically, 73% of the country’s NASTPs are located in
four regions: East China, Central China, Northwest China, and Southwest China. Among
these regions, East China has the highest number of NASTPs, benefiting from significant ad-
vantages in terms of agricultural resource endowment and geographical location. Notably,
the provinces of Shandong, Jiangsu, Anhui, and Zhejiang alone account for 21.95% of the
country’s NASTPs. Central China, Northwest China, and Southwest China follow closely,
each accounting for 16.03% of the country’s NASTPs. On the other hand, North China,
Northeast China, and South China have a relatively lower number of parks, accounting for
12.89%, 7.32%, and 6.27% respectively.
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4.1.2. Balanced Spatial Distribution

At the provincial scale, the distribution of NASTPs exhibits a relatively higher concen-
tration but with less pronounced unevenness. The geographic concentration index, calcu-
lated using Formula (3), assumes an even distribution of 287 NASTPs among 31 provinces
(including municipalities and autonomous regions). The theoretical number of NASTPs
in each province is 9.26, resulting in a geographical concentration index of G0 = 17.96. In
reality, the geographical concentration index of NASTPs is G = 20.01, indicating a higher
concentration than the theoretical distribution (G > G0). Assessing the imbalance index
of NASTPs using Formula (4), we find that S = 0.28 (<1), indicating a relatively lighter
imbalance in the distribution. The Lorenz curve (Figure 3) displays an upward convex
trend, but with a less pronounced curvature, further supporting the notion of a lightly
imbalanced distribution of NASTPs.
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4.1.3. Spatial Distribution Density

The kernel density analysis (Figure 4) reveals the formation of three primary high-
density zones and two secondary high-density zones in the nationwide distribution of
NASTPs. The first high-density zone encompasses the Beijing-Tianjin-Hebei region, the
Yangtze River Delta, and the Chengdu-Chongqing region. Within the Beijing-Tianjin-Hebei
region, the core is Beijing, and it extends southward to include Tianjin, Baoding, and
Langfang. The Yangtze River Delta is centered around Nanjing and extends northward
to include Xuzhou, Chuzhou, Wuhu, and Xuancheng. The Chengdu-Chongqing region,
with Chongqing as its core, radiates to the surrounding areas, encompassing Chongqing
municipality, as well as Nanchong, Suining, Guang’an, and Yibin in Sichuan province. The
two secondary high-density areas are the Hunan-Hubei-Jiangxi region and the Jiangsu-
Shandong-Henan-Anhui intersection. The density of the Hunan-Hubei-Jiangxi region
gradually decreases in a circular pattern at the junction of the three provinces, forming a
spreading area in central China. The Jiangsu-Shandong-Henan-Anhui intersection zone
is located between the Beijing-Tianjin-Hebei region and the Yangtze River Delta. It is
influenced by these two high-density zones and forms a “Circular agglomeration zone of
the lower Yangtze River plain and the Yellow Huaihai plain” [36]. Overall, NASTPs are
primarily concentrated in regions characterized by abundant agricultural resources, dense
populations, and economic development.
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4.1.4. Spatial Autocorrelation Analysis

Using Chinese provinces as the fundamental spatial units, the global Moran’s I was
computed using Geoda software for the overall spatial distribution of NASTPs. The
calculated index was found to be 0.151, with a Z-value of 1.548 and a p-value of 0.067.
These results passed the significance test at the 10% level, signifying a significant global
spatial autocorrelation characteristic in the distribution of NASTPs. However, since global
autocorrelation analysis alone cannot effectively reveal the local state, further analysis is
necessary. Figure 5 illustrates the use of LISA cluster analysis to explore the local spatial
autocorrelation level. The findings indicate that four provinces, namely Shandong, Henan,
Hubei, and Anhui, exhibit high spatial agglomeration characteristics, while Guangdong
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Province demonstrates both high and low agglomeration. Additionally, 18 provinces
(municipalities and autonomous regions), including Shanghai and Beijing, do not exhibit
significant agglomeration, aligning with the results of the global spatial autocorrelation
analysis.

Agriculture 2023, 13, x FOR PEER REVIEW 12 of 28 
 

 

 
Figure 5. Local indices of spatial association (LISA) aggregation diagrams. 

4.2. Analysis of Innovation Efficiency in NASTPs 
4.2.1. Selection of Variables 

Input–output variables. Regarding input variables, the innovation inputs in parks 
primarily consist of land, capital, and public service resources that facilitate the operation 
and production of NASTPs. This study incorporates insights from existing literature [37–
39] and identifies park area, R&D input, and service platform as key indicators of input 
variables. In terms of output variables, in this paper, the assessment of the innovation 
output of parks focuses on two key variables: economic performance and R&D outcomes. 
We adopt the criteria used by scholars in the United States and Japan to measure this in-
novation output [40,41]. Considering data availability, the annual gross output value and 
the number of authorized patents are chosen as indicators to represent the economic per-
formance and R&D achievements of the parks, respectively. 

Environmental variables. This study draws on Simar and Wilson’s research [42], 
which suggests that environmental variables should adhere to the “separation hypothe-
sis”. The following environmental variables have been selected. (1) Leading enterprises: 
These enterprises serve as primary drivers of industrial innovation and play a crucial role 
in the evolution of industrial structure within NASTPs [43–45]. They also serve as im-
portant channels for the transformation of technological achievements in NASTPs. The 
selection of the number of leading enterprises above the municipal level in the park can 
effectively indicate the park’s development level. (2) Income level: The development of 
NASTPs requires substantial human and financial resources, and variations in the availa-
bility of production factors across different NASTPs can affect IE. The per-capita disposa-
ble income of farmers in the park was selected to indicate the income level, which not only 
characterizes the effectiveness of the park’s economic development, but also reflects the 
impact of the park’s technological achievements in integrating and involving farmers. (3) 
Innovation support is crucial for NASTPs, with high-tech enterprises serving as the core 
driving force behind innovation, thereby enhancing their innovation capacity. The num-
ber of high-tech enterprises selected is indicative of the park’s innovation quality and de-
velopment [46–48]. (4) Science and technology training: Compared with other countries, 
China’s system of scientific and technological specialists stands out as a unique institu-
tional innovation. Its purpose is to guide diverse scientific and technological innovators 

Figure 5. Local indices of spatial association (LISA) aggregation diagrams.

4.2. Analysis of Innovation Efficiency in NASTPs
4.2.1. Selection of Variables

Input–output variables. Regarding input variables, the innovation inputs in parks
primarily consist of land, capital, and public service resources that facilitate the operation
and production of NASTPs. This study incorporates insights from existing literature [37–39]
and identifies park area, R&D input, and service platform as key indicators of input
variables. In terms of output variables, in this paper, the assessment of the innovation
output of parks focuses on two key variables: economic performance and R&D outcomes.
We adopt the criteria used by scholars in the United States and Japan to measure this
innovation output [40,41]. Considering data availability, the annual gross output value
and the number of authorized patents are chosen as indicators to represent the economic
performance and R&D achievements of the parks, respectively.

Environmental variables. This study draws on Simar and Wilson’s research [42], which
suggests that environmental variables should adhere to the “separation hypothesis”. The
following environmental variables have been selected. (1) Leading enterprises: These
enterprises serve as primary drivers of industrial innovation and play a crucial role in the
evolution of industrial structure within NASTPs [43–45]. They also serve as important
channels for the transformation of technological achievements in NASTPs. The selection
of the number of leading enterprises above the municipal level in the park can effectively
indicate the park’s development level. (2) Income level: The development of NASTPs
requires substantial human and financial resources, and variations in the availability of
production factors across different NASTPs can affect IE. The per-capita disposable income
of farmers in the park was selected to indicate the income level, which not only characterizes
the effectiveness of the park’s economic development, but also reflects the impact of the
park’s technological achievements in integrating and involving farmers. (3) Innovation
support is crucial for NASTPs, with high-tech enterprises serving as the core driving force
behind innovation, thereby enhancing their innovation capacity. The number of high-tech
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enterprises selected is indicative of the park’s innovation quality and development [46–48].
(4) Science and technology training: Compared with other countries, China’s system of
scientific and technological specialists stands out as a unique institutional innovation. Its
purpose is to guide diverse scientific and technological innovators and entrepreneurial
talents to engage in scientific and technological entrepreneurship and services within
rural areas. This system aims to address the talent and science and technology gaps in
the countryside. Practice has proved that the implementation of science and technology
training programs in the park facilitates the effective integration of patents and modern
agriculture through technical training [49]. This integration is beneficial for enhancing the
park’s agricultural science and technology innovation capacity. (5) Geographical distance:
Previous studies have highlighted the impact of geographical location on the development
of economic entities [50]. Consequently, the geographical distance between NASTPs and
the prefecture-level city to which they belong may influence the innovation capacity of
enterprises within NASTPs [51]. (6) Research projects: Drawing on research conducted by
German scholars, it has been revealed that government funding for major R&D projects can
effectively mobilize the participation of high-level research teams and scientific research
platforms. Furthermore, it motivates business entities such as high-tech enterprises, leading
enterprises, and small and medium-sized enterprises (SMEs) within the park to actively
engage in project research, development, and cooperation. Consequently, this funding
is conducive to promoting the innovation output of enterprises in the park. Therefore,
the number of R&D projects was selected as an environmental variable that influences
the innovation efficiency of the park [52,53]. (7) Demonstration and promotion: The
introduction and dissemination of new technologies, products, and facilities within the park
play a crucial role in enhancing the efficiency of technology diffusion and strengthening
technological innovation capacity [54,55]. This contributes to the high-quality development
of NASTPs. The specific variables are described in Table 1.

Table 1. Definition of variables.

Type Name Symbol Description

Input variables

Park area km2 Land area of the NASTPs

R&D input CNY 10 thousand Total R&D investment by enterprises and government in
the NASTPs

Service platform number

The sum of the number of academician workstations,
investment and financing platforms, agricultural products

monitoring, and inspection platforms and agricultural
products e-commerce platforms in the NASTPs

Output variables Economic performance CNY 10 thousand Annual gross output of the NASTPs
R&D achievements number Number of authorized patents

Environmental
variables

Leading enterprises number Number of leading enterprises above municipal level in
the NASTPs

Income level CNY Per-capita disposable income of farmers in the NASTPs
Innovation support number Number of high-tech enterprises in the NASTPs

Science and
technology training number Number of science and technology correspondent

Geographical distance km Distance from the prefecture-level city

Research projects number Number of major R&D tasks at provincial and ministerial
level or above

Demonstration
extension number Number of new technologies, products. and facilities

introduced and promoted in the NASTPs

4.2.2. Stage 1: DEA Model Empirical Results

The findings from the initial stage indicate that SE plays a predominant role in the IE
of NASTPs, highlighting the need for improvement in technology resource allocation and
technological R&D innovation within these parks. Table 2 presents the measurement of
the IE for 85 NASTPs using DEAP2.1 software, without considering environmental factors



Agriculture 2023, 13, 1459 13 of 26

and random disturbances. The mean IE value for the parks was found to be 0.566, with a
mean PTE value of 0.649 and a mean SE value of 0.873. Notably, the SE value surpasses the
PTE value.

Table 2. Innovation efficiency (IE) of the 85 national agricultural science and technology parks
(NASTPs) in stages 1 and 3.

NASTPs
IE PTE SE RTS

Stage 1 Stage 3 Stage 1 Stage 3 Stage 1 Stage 3 Stage 1 Stage 3

Beijing Fangshan 0.767 0.343 0.801 0.635 0.957 0.54 IRS IRS
Beijing Miyun 0.381 0.259 0.413 0.62 0.922 0.418 IRS IRS

Hebei Dachang 1 0.766 1 0.957 1 0.8 - IRS
Hebei Gu’an 0.431 0.186 0.439 0.381 0.984 0.488 IRS IRS

Hebei Zhuozhou 0.886 1 1 1 0.886 1 DRS -
Hebei Luanping 0.512 0.618 0.575 0.623 0.89 0.991 DRS DRS
Hebei Fengning 0.206 0.301 0.207 0.373 0.993 0.808 DRS IRS

Hebei Xinji 0.379 0.445 0.38 0.539 0.997 0.827 IRS IRS
Hebei Weixian 0.253 0.264 0.267 0.502 0.95 0.526 IRS IRS

Inner Mongolia Bayan Nur 0.538 0.471 0.538 0.586 1 0.804 - IRS
Inner Mongolia Tongliao 0.069 0.179 0.075 0.3 0.922 0.596 IRS IRS

Inner Mongolia Erdos 0.2 0.28 0.213 0.428 0.936 0.653 IRS IRS
Liaoning Jinzhou 1 0.587 1 0.858 1 0.684 - IRS

Jilin Bai Shan 0.617 0.672 0.848 0.748 0.728 0.898 DRS DRS
Heilongjiang Jiamusi 1 1 1 1 1 1 - -
Shanghai Chongming 0.611 0.5 0.643 0.733 0.95 0.681 IRS IRS

Jiangsu Zhenjiang 0.646 0.748 0.684 0.82 0.945 0.913 DRS IRS
Jiangsu Yangzhou 0.164 0.228 0.194 0.391 0.848 0.583 IRS IRS

Anhui Bozhou 1 1 1 1 1 1 - -
Anhui Xuancheng 0.265 0.372 0.331 0.419 0.801 0.89 DRS IRS

Anhui Lu’an 0.282 0.249 0.421 0.603 0.671 0.414 IRS IRS
Anhui Huainan 0.452 0.328 0.493 0.585 0.916 0.561 IRS IRS
Fujian Longyan 0.303 0.43 0.303 0.486 0.998 0.885 DRS IRS
Fujian Shaowu 0.336 0.216 0.381 0.556 0.883 0.388 IRS IRS
Fujian Sanming 0.786 0.516 0.808 0.763 0.973 0.677 IRS IRS
Jiangxi Yichun 0.235 0.202 0.265 0.436 0.887 0.464 IRS IRS

Shandong Weihai 0.637 0.706 0.637 0.781 1 0.904 - IRS
Shandong Heze 0.442 0.323 0.443 0.449 0.998 0.718 IRS IRS
Shandong Jinan 1 0.555 1 0.881 1 0.631 - IRS

Shandong Zaozhuang 0.483 0.369 0.625 0.616 0.774 0.6 IRS IRS
Shandong Weifang 1 1 1 1 1 1 - -

Shandong Liaocheng 0.472 0.5 0.485 0.646 0.974 0.774 IRS IRS
Shandong Qixia 0.588 0.377 0.627 0.728 0.938 0.518 IRS IRS

Shandong Zoucheng 1 0.777 1 0.909 1 0.855 - IRS
Shandong Bincheng 0.353 0.423 0.353 0.485 1 0.873 - IRS

Shandong Junan 0.49 0.412 0.542 0.639 0.903 0.644 IRS IRS
Henan Shangqiu 0.388 0.48 0.486 0.513 0.798 0.936 DRS DRS

Henan Luohe 0.33 0.289 0.426 0.589 0.774 0.49 IRS IRS
Henan Jiaozuo 0.492 0.749 0.825 0.876 0.596 0.855 DRS DRS
Henan Anyang 0.843 0.961 1 0.967 0.843 0.994 DRS DRS

Henan Zhumadian 1 0.743 1 0.761 1 0.977 - DRS
Henan Zhoukou 0.669 0.838 1 0.947 0.669 0.885 DRS DRS
Hubei Yichang 1 1 1 1 1 1 - -

Hubei Huangshi 1 1 1 1 1 1 - -
Hunan Ningxiang 1 1 1 1 1 1 - -
Hunan Chenzhou 0.881 0.947 0.901 1 0.977 0.947 DRS IRS
Hunan Shaoyang 0.811 0.641 0.838 0.854 0.968 0.751 DRS IRS

Guangdong Shaoguan 1 1 1 1 1 1 - -
Guangxi Hezhou 0.486 0.187 0.601 0.667 0.808 0.281 IRS IRS
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Table 2. Cont.

NASTPs
IE PTE SE RTS

Stage 1 Stage 3 Stage 1 Stage 3 Stage 1 Stage 3 Stage 1 Stage 3

Hainan Lingshui 1 0.886 1 1 1 0.886 - IRS
Chongqing Changshou 0.517 0.333 0.762 0.618 0.678 0.539 IRS IRS

Chongqing Jiangjin 1 0.452 1 0.824 1 0.549 - IRS
Chongqing Yongchuan 1 0.995 1 1 1 0.995 - IRS

Chongqing Fuling 1 0.767 1 0.816 1 0.94 - IRS
Sichuan Bazhong 0.181 0.388 0.236 0.389 0.766 0.999 DRS -

Sichuan Mianyang 0.573 0.829 1 1 0.573 0.829 DRS DRS
Sichuan Suining 0.167 0.25 0.169 0.359 0.986 0.696 IRS IRS

Guizhou Tongren 0.074 0.121 0.078 0.243 0.946 0.501 IRS IRS
Guizhou Liupanshui 0.566 0.397 0.567 0.519 0.998 0.764 IRS IRS

Guizhou Chishui 0.331 0.545 0.336 0.667 0.985 0.817 DRS IRS
Yunnan Xuanwei 0.802 0.457 0.833 0.695 0.963 0.658 IRS IRS

Yunnan Dali 0.54 0.558 0.647 0.61 0.835 0.914 DRS IRS
Yunnan Baoshan 0.215 0.567 0.806 0.812 0.266 0.698 DRS DRS

Yunnan Mile 0.064 0.106 0.124 0.548 0.513 0.193 IRS IRS
Tibet Naqu 0.232 0.028 1 1 0.232 0.028 IRS IRS

Shaanxi Tongchuan 0.212 0.076 0.853 0.533 0.248 0.143 IRS IRS
Gansu Baiyin 0.435 1 0.678 1 0.643 1 DRS -

Gansu Gannan 0.093 0.152 0.144 0.402 0.646 0.379 IRS IRS
Gansu Linxia 0.386 0.552 0.451 0.576 0.856 0.958 DRS IRS
Qinghai Haixi 0.245 0.434 0.249 0.589 0.983 0.736 DRS IRS

Qinghai Hainan 1 0.576 1 0.707 1 0.815 - IRS
Qinghai Haibei 0.185 0.053 1 0.619 0.185 0.085 IRS IRS

Ningxia Zhongwei 1 0.797 1 1 1 0.797 - IRS
Xinjiang Shawan 0.712 0.438 0.769 0.797 0.926 0.55 IRS IRS
Xinjiang Wensu 0.535 0.348 0.589 0.67 0.909 0.519 IRS IRS

Xinjiang Hu Yanghe 0.936 0.877 0.959 0.914 0.975 0.959 DRS IRS
Beijing Yanqing 0.596 0.352 0.651 0.9 0.915 0.391 IRS IRS

Inner Mongolia Hellinger 0.341 0.426 0.342 0.476 0.995 0.895 DRS IRS
Jilin Yanbian 0.368 0.294 0.383 0.534 0.961 0.551 IRS IRS

Henan Puyang 0.235 0.238 0.291 0.506 0.807 0.47 IRS IRS
Guizhou Bijie 0.774 0.492 0.783 0.816 0.989 0.603 DRS IRS

Yunnan Chuxiong 0.242 0.291 0.266 0.446 0.909 0.652 IRS IRS
Ningxia Yinchuan 1 0.124 1 0.809 1 0.154 - IRS

Xinjiang Hami 0.18 0.071 0.28 0.804 0.642 0.088 IRS IRS
Shenzhen Bao’an 0.722 0.823 0.872 0.871 0.828 0.946 DRS IRS

Mean value 0.566 0.512 0.649 0.703 0.873 0.704

4.2.3. Stage 2: Empirical Results of SFA Model

The findings from the second stage of analysis indicate that the selection of environ-
mental indicators has been refined, and it has been identified that the redundancy in park
inputs primarily stems from management inefficiency. Consequently, it is necessary to
eliminate certain environmental variables. To address this, the SFA model was employed in
this study, employing the first-stage input redundancy as the explanatory variable and the
seven environmental variables as covariates in a regression analysis. Table 3 demonstrates
that the LR values of all three SFA models successfully passed the 1% significance test.
Furthermore, the majority of environmental variables exhibited significance at the 1% or
5% level. Based on these results, the following conclusions can be drawn.
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Table 3. Stage 2 stochastic frontier analysis (SFA) estimation results.

Environment
Variables

Park Area
Redundancy

R&D Input
Redundancy

Service Platform
Redundancy

Constants −28.788 ***
(2.403)

−18,480.622 ***
(61.758)

−4.340 ***
(1.135)

x1
41.578 ***

(3.388)
5027.254 ***

(15.508)
1.511

(1.021)

x2
13.488 ***

(3.617)
13,841.022 ***

(223.597)
2.940 ***
(0.770)

x3
−625.229 ***

(31.791)
−42,477.730 ***

(14.191)
−15.796 ***

(0.996)

x4
40.893 ***

(4.970)
19,753.214 ***

(88.108)
5.542 ***
(2.123)

x5
39.067 ***

(3.011)
2537.944 ***

(2.541)
2.420 ***
(0.905)

x6
10.330
(4.841)

8470.789 ***
(98.243)

−3.871 ***
(0.999)

x7
0.996 ***
(6.544)

16,932.444 ***
(290.831)

5.059 ***
(1.192)

σ2 363,383.360 ***
(1.003)

818,995,890 ***
(1.000)

138.084 ***
(1.002)

γ
1.000 ***

(1.37964 × 10−7)
1.000 ***

(5.3593 × 10−7)
1.000 ***

(5.6266 × 10−6)
Log −585.315 −931.840 −268.737
LR 83.966 *** 43.136 *** 46.927 ***

Note: *** denote significant at the 1% statistical levels, with standard deviations in parentheses.

Leading enterprises (x1). The number of leading enterprises has a significantly positive
impact on the redundancy of park area and R&D inputs, whereas it does not have a
significant impact on the redundancy of service platforms. This suggests that an increase in
the number of leading enterprises leads to higher redundancy in the park’s land area and
R&D capital investment. This tendency towards resource concentration hinders the full
utilization of certain input factors, leading to resource wastage.

Income level (x2). The effect of income level on park area, R&D inputs, and service
platform redundancy was significantly positive. This finding suggests that higher per-
capita disposable income of patents leads to increased redundancy of input factors in the
NASTPs. Moreover, it indicates the presence of a threshold effect on IE [56–58]. Once the
threshold is reached, higher per-capita disposable income of patents can further promote
the IE of the NASTPs.

Innovation support (x3). Innovation support has a significantly negative effect on the
redundancy of park area, R&D investment, and service platform. This suggests that an
increase in the number of high-tech enterprises can reduce the redundancy of input factors
in the NASTPs and effectively utilize resources such as land, R&D funds, and public service
platforms, leading to cost savings in input factors.

Science and technology training (x4). Science and technology training has a signifi-
cantly positive effect on the redundancy of park area, R&D investment, and service platform.
This demonstrates that an increase in the number of science and technology correspondent
leads to an increase in the redundancy of input elements in the park. As the primary
beneficiaries of science and technology correspondent are farmers, the park must allocate
significant resources for their support. However, the utilization efficiency of farmers’ key
resources is relatively low, resulting in the inevitable wastage of certain input elements.

Geographical distance (x5). Geographical distance has a significantly positive effect
on the redundancy of park area, R&D inputs, and service platform. This suggests that a
greater distance from the prefecture-level city reduces the possibility of inter-organizational
cooperation and innovation [59], thereby increasing the redundancy of input factors in the
NASTPs and leading to management inefficiency.
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R&D projects (x6). R&D projects had a significantly positive effect on the redundancy
of R&D inputs, while the effect on the redundancy of service platforms was significantly
negative. This indicates that despite the gathering of science and technology innovation
resources in the NASTPs and the improvement of operational efficiency in service platforms
such as academician workstations and testing centers, the increase in the number of major
R&D tasks has led to certain R&D inputs being underutilized, resulting in increased input
redundancy.

Demonstration and promotion (x7). Demonstration and promotion have a significantly
positive effect on the redundancy of park area, R&D inputs, and service platforms. This
suggests that the demonstration and promotion of new technologies, products, and facilities
lead to an increase in the redundancy of input factors in the NASTPs. This increase is
attributed to the differences in resource endowment and administrative jurisdiction among
parks [60], which serve as important constraints on the demonstration and promotion of
agricultural technologies, resulting in the wastage of certain input factors.

The analysis above indicates that environmental variables play a crucial role in shaping
the direction and intensity of the impact of IE generated by various NASTPs across different
environments. Consequently, it is necessary to eliminate the influence of random factors
associated with environmental variables and readjust the original input–output variables.

4.2.4. Stage 3: Empirical Results of Adjusted DEA Model

The results of Stage 3 were analyzed across three areas: overall IE, RTS, and improve-
ments in IE. The IE of the 85 NASTPs was reassessed by comparing the results of Stage 1
and Stage 3 using adjusted input variables and the original output variables (Table 2).

Analysis of overall IE. The overall management level of the park is relatively low,
resulting in a moderate level of IE. This lower IE can be attributed to a combination of
PTE and SE, both of which are influenced by significant environmental factors. Overall, in
comparison to Stage 1, the average IE of the 85 NASTPs decreased from 0.566 to 0.512 in
Stage 3. The average PTE increased from 0.649 to 0.703, while the average SE decreased
from 0.873 to 0.704. (1) Specifically, after adjusting inputs, the IE of 37 industrial parks,
including Hebei Zhuozhou and Jilin Baishan, increased, accounting for 43.53%. However,
the IE of 42 other industrial parks, such as Beijing Fangshan and Shanghai Chongming,
decreased. The remaining industrial parks showed no change in efficiency. (2) Following
the adjustment of inputs, the PTE of 48 industrial parks increased. The largest increase of
341.94% was observed in Yunnan Mile. On the other hand, 24 industrial parks experienced
a slight decrease, with the smallest decline of only 0.11% recorded in Shenzhen Baoan.
Additionally, 13 industrial parks remained unchanged, accounting for 15.29% of the total.
(3) After adjusting inputs, the SE of 15 industrial parks increased. The largest increase of
162.41% was observed in Yunnan Baoshan. However, 63 industrial parks experienced a
decrease, with the largest decline of 87.93% recorded in Tibet Nagqu. This was followed
by Xinjiang Hami and Ningxia Yinchuan, which saw decreases of 86.29% and 84.6%,
respectively. Additionally, seven parks remained unchanged, accounting for 8.24% of
the total.

Analysis of RTS. After adjusting inputs, among the 85 NASTPs, 66 NASTPs have
shown an increase in RTS, accounting for 77.65%. Additionally, 10 NASTPs have remained
unchanged in RTS, while 9 NASTPs have experienced a decrease in RTS. These findings
align with the reality of the study’s subjects, which mainly consist of the seventh batch of
NASTPs established in December 2015, as well as some renovated NASTPs. Given their
relatively short time of establishment, the management and resource allocation of these
NASTPs have not yet reached optimal levels, which hinders the improvement of their IE.
For instance, the Xuancheng NASTP in Anhui Province has focused on agricultural science
and technology innovation since its establishment. However, the park faces challenges such
as low efficiency, lack of experience in industrial system construction, inadequate incubation
of leading enterprises in agricultural product processing, and limited introduction of high-
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level science and innovation teams. To enhance the IE of the park, it is recommended to
moderately expand the scale of R&D.

IE improvement analysis. To assess the innovation status of different NASTPs, this
study adopts the approach of Meng Tao [61] and Xu Shubin [62]. It establishes the PTE
value of 0.9 as the critical point and the SE value of 0.75 as the critical point. Based on these
criteria, the NASTPs are classified into five types, as presented in Table 4 and Figure 6:
(1) “Innovation Pioneer” NASTPs exhibit frontier-level PTE and SE values, serving as
benchmarks for other NASTPs to strive for improvement. (2) “Innovation Good” NASTPs
have high levels of both PTE and SE, but still fall short of optimal efficiency. To enhance
their performance, these NASTPs should focus on rational allocation of scientific and
technological resources and improving management practices. (3) “SE Improvement”
NASTPs have low IE primarily due to inadequate SE. The key improvement area for these
NASTPs lies in enhancing their SE. (4) “PTE Improvement” NASTPs experience low IE
primarily due to sub-optimal PTE. These NASTPs should prioritize strengthening park
mechanism innovation and system construction. (5) “Innovation Lag” NASTPs have low
PTE and SE values. To improve their performance, these parks should optimize innovation
resources, enhance the design of their management systems, and appropriately expand
their scale of R&D.

Table 4. Distribution of the 85 national agricultural science and technology parks (NASTPs).

Types Grading Criteria National Agricultural Science and Technology Park

Innovation Pioneer
PTE = 1 Hebei Zhuozhou, Heilongjiang Jiamusi, Anhui Bozhou, Shandong

Weifang, Hubei Yichang, Hubei Huangshi, Hunan Ningxiang, Guangdong
Shaoguan, Gansu BaiyinSE = 1

Innovation Good
0.9 ≤ PTE < 1 Hebei Dachang, Shandong Zoucheng, Henan Anyang, Henan Zhoukou,

Hunan Chenzhou, Hainan Lingshui, Chongqing Yongchuan, Sichuan
Mianyang, Ningxia Zhongwei, Xinjiang Huyanghe0.75 ≤ SE < 1

SE Improvement 0.9 ≤ PTE < 1 Beijing Yanqing, Tibet Naqu
0 ≤ SE < 0.75

PTE Improvement

0 ≤ PTE < 0.9 Hebei Luanping, Hebei Fengning, Hebei Xinji, Inner Mongolia Bayannur,
Jilin Baishan, Jiangsu Zhenjiang, Anhui Xuancheng, Fujian Longyan,
Shandong Weihai, Shandong Liaocheng, Shandong Bincheng, Henan

Shangqiu, Henan Jiaozuo, Henan Zhumadian, Hunan Shaoyang,
Chongqing Fuling, Sichuan Bazhong, Guizhou Liupanshui, Guizhou

Chishui, Yunnan Dali, Gansu Linxia, Qinghai Hainan, Inner Mongolia
Hellinger, Shenzhen Baoan

0.75 ≤ SE < 1

Innovation Lag

0 ≤ PTE < 0.9 Beijing Fangshan, Beijing Miyun, Hebei Gu’an, Hebei Weixian, Inner
Mongolia Tongliao, Inner Mongolia Erdos, Liaoning Jinzhou, Shanghai
Chongming, Jiangsu Yangzhou, Anhui Lu’an, Anhui Huainan, Fujian

Shaowu, Fujian Sanming, Jiangxi Yichun, Shandong Heze, Shandong Jinan,
Shandong Zaozhuang, Shandong Qixia, Shandong Junan, Henan Luohe,
Guangxi Hezhou, Chongqing Changshou, Chongqing Jiangjin, Sichuan
Suining, Guizhou Tongren, Yunnan Xuanwei, Yunnan Baoshan, Yunnan

Mile, Shaanxi Tongchuan, Gansu Gannan, Qinghai Haixi, Qinghai Haibei,
Xinjiang Shawan, Xinjiang Wensu, Jilin Yanbian, Henan Puyang, Guizhou

Bijie, Yunnan Chuxiong, Ningxia Yinchuan, Xinjiang Hami

0 ≤ SE < 0.75
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4.3. Analysis of Factors Influencing IE in NASTPs

In this study, we investigate the influence of environmental variables on the inno-
vation efficiency of parks using the cross-section Tobit model for regression analysis and
marginal effect analysis on the adjusted efficiency. Before conducting regression, this paper
performs simple descriptive statistics for each variable, and presents the statistical results in
Table 5. Moreover, it is found that there are no outliers among the variables. Subsequently,
a series of tests, including the multicollinearity test, normality test, autocorrelation test, and
heteroskedasticity test, are sequentially carried out for the selected variables. The results
demonstrate that the VIF values for all variables are below 5, with an average VIF value of
1.55, indicating the absence of multicollinearity. The Jarque Bera test results support the
original hypothesis, confirming that the sample probability follows a normal distribution.
The value of the Durbin–Watson (DW) statistic, close to 2, suggests independence between
the model residual and independent variables, indicating a well-constructed model. Ad-
ditionally, homoscedasticity and heteroscedasticity are tested using the rank correlation
coefficient method, and the results show no significant correlations between the absolute
value of residual error and the respective variables, thereby indicating the absence of
homoscedasticity and heteroscedasticity. Consequently, the model has successfully passed
all the tests, and the regression results are presented in Table 6 and Figure 7.

Leading enterprises exert a significant positive influence on the IE of the NASTPs, as
confirmed by passing the 1% significance test. This positive impact is primarily attributed
to the SE. As depicted in Figure 7, the marginal effect of an increasing number of leading en-
terprises stimulates the park’s innovation capacity, fostering the progressive enhancement
of the associated agricultural industrial system and the application of agricultural technol-
ogy in the NASTPs. This, in turn, generates a scale effect, facilitating the improvement of
industrial quality and the optimization of the industrial structure within the park.
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Table 5. Variables descriptive statistics.

Variables N Min Max Mean Standard Deviation

IE 85 0.028 1 0.512 0.285
PTE 85 0.243 1 0.703 0.213
SE 85 0.028 1 0.704 0.253
x1 85 0 1 0.190 0.188
x2 85 0 1 0.222 0.173
x3 85 0 1 0.034 0.110
x4 85 0 1 0.124 0.182
x5 85 0 1 0.222 0.215
x6 85 0 1 0.094 0.153
x7 85 0 1 0.105 0.171

Note: IE is the innovation efficiency; PTE is the pure technical efficiency; SE is the scale efficiency; x1 is the leading
enterprises; x2 is the income level; x3 is the innovation support; x4 is the science and technology training; x5 is the
geographical distance; x6 is the R&D projects; x7 is demonstration and promotion.

Table 6. Tobit model regression analysis results.

Variables IE PTE SE

x1
0.627 ***
(0.198)

0.245
(0.172)

0.587 ***
(0.180)

x2
0.448 **
(0.183)

0.419 **
(0.165)

0.234
(0.165)

x3
2.139 *
(1.147)

0.538
(0.538)

2.653 **
(1.028)

x4
−0.479 **

(0.213)
−0.139
(0.191)

−0.472 **
(0.190)

x5
0.171

(0.138)
0.002

(0.124)
0.195

(0.124)

x6
0.050

(0.255)
0.106

(0.236)
−0.038
(0.228)

x7
0.421 **
(0.179)

0.320 *
(0.169)

0.278 *
(0.161)

Constants 0.226 ***
(0.071)

0.544 ***
(0.063)

0.482 ***
(0.064)

Log likelihood −13.650 −10.936 −3.281
Prob > chi2 0.000 0.025 0.000

Note: ***, **, and * denote significant at the 1%, 5%, and 10% statistical levels, respectively, with standard
deviations in parentheses.
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Income level positively impacts the IE of the park, as evidenced by passing the 5%
significance test, with PTE being the primary driver of this positive effect. The rise in farm-
ers’ income levels indicates the park’s commendable development in terms of system and
management levels, enabling the rational allocation of scientific and technological resources
and fostering enhanced efficiency in agricultural science and technology innovation within
the park.

Innovation support positively influences both IE and SE in the NASTPs, passing
significance tests at the 10% and 5% levels, respectively. Figure 7 highlights the substantial
contribution of high-tech enterprises to the IE of the NASTPs, underscoring their significant
advantage in technological innovation. This advantage facilitates resource conservation
within the NASTPs, eases capital pressure, and enables the utilization of surplus resources
to support the scale production of park enterprises.

Science and technology training negatively affects the IE and SE of the park, with
statistically significant results at the 5% level. This can be attributed to the need for
optimization in the team structure of science and technology personnel within the park.
Moreover, the limited presence of science and technology personnel at the provincial and
municipal levels makes it challenging to mitigate entrepreneurial risks during the process
of guiding farmers in innovation and entrepreneurship, resulting in resource wastage.

Neither geographical distance nor research projects exhibited statistical significance.
This can be attributed to two factors. Firstly, the park’s geographical location is well-suited,
thereby mitigating the influence of geographical distance on the park’s IE. Secondly, the
park has a limited number of major R&D projects, which restricts significant advancements
in its innovation capabilities.

Demonstration and diffusion exert a positive influence on the IE, PTE, and SE in the
NASTPs, with statistical significance levels of 5%, 10%, and 10%, respectively. This implies
that greater demonstration and extension efforts in the NASTPs enhance the adoption
of novel technologies, products, and facilities by farmers, and strengthen the technology
diffusion effect. As a result, the management level of the NASTPs improves, leading to
higher land output rates, better resource utilization, and the attainment of optimal labor
production scales.

5. Discussion

To enhance the innovation capacity of China’s national agricultural science and tech-
nology parks, foster national agricultural science and technology innovation, and improve
agricultural development, this paper adopts a comprehensive approach based on three
levels: macro, micro, and development. Utilizing spatial analysis methods and econometric
empirical models, the study explores the spatial distribution characteristics, innovation effi-
ciency, and influencing factors of these parks. The primary goal is to gain insights into the
overall innovation and development of national agricultural science and technology parks.
Furthermore, the research aims to optimize the allocation of scientific and technological
innovation resources within the parks and propose relevant measures and suggestions for
the future. This includes rational site planning for the parks, refining their operations and
management, and clearly defining their development direction. The paper focuses on three
main points.

5.1. Integration with Previous Studies

Currently, academics primarily focus on studying the development effects of the park,
which include industrial agglomeration, the demonstration and promotion of agricultural
science and technology, regional economy, and ecological and environmental impacts. Most
scholars utilize comprehensive evaluation methods to assess the development effectiveness
of agricultural science and technology parks. The findings indicate that several factors
hinder the development of agricultural high-tech industries and the transformation of
scientific and technological innovations in these parks. These constraints include a lack of
human and financial resources, imperfect operation and management mechanisms, and
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small-scale operations, all of which impede the sustainable development of agricultural
science and technology parks [5,63].

The research on assessing the Innovation capacity of agricultural science and technol-
ogy parks predominantly relies on qualitative theoretical analyses. Regarding quantitative
research, it mostly involves constructing an index system for quantitative assessment, lack-
ing in-depth empirical and mechanism analyses. There is a significant dearth of literature
focusing on quantitative investigations into the distributional characteristics, efficiency
evaluation, and influencing factors of agricultural science and technology parks. Con-
sequently, this paper aims to contribute to the field in three significant ways. Firstly, it
utilizes geographic information to examine the distributional characteristics of 287 parks
in China, employing spatial analysis methods to gain a macro-level understanding of the
parks’ spatial layout across the country. Secondly, it selects data from 85 parks participating
in the 2021 assessment by the MOST to study their actual innovation efficiency at a micro
level, while accounting for environmental factors. By classifying parks according to their
efficiency levels, the study proposes improvement directions. Lastly, the research analyzes
the impact of environmental factors on the innovation efficiency of parks and identifies key
influencing factors to clarify the future direction for improvement.

5.2. Comparative Study with Internationally Relevant Agricultural Parks

Both China’s national agricultural science and technology parks and international
agricultural parks share a common objective of advancing agricultural science and technol-
ogy research and innovation, enhancing agricultural production efficiency, and promoting
sustainable agricultural development [1,64]. Regarding technological innovation, demon-
stration, and promotion, both domestic and foreign parks emphasize agricultural science
and technology innovation, industrial synergy, and commercial promotion. They encourage
farmers to adopt new technologies and varieties by introducing advanced agricultural
technologies and implementing demonstrations. Additionally, concerning resource gath-
ering and cooperation, both domestic and foreign parks serve as platforms for collecting
innovation resources from agricultural research institutions, universities, enterprises, and
expert teams, fostering the sharing and collaboration of agricultural science and technology
resources.

However, China’s national agricultural science and technology parks exhibit unique
development characteristics compared to other countries and regions. Regarding scale and
layout, Chinese parks tend to be larger, encompassing a wide range of agricultural indus-
tries, and aligned with the geographical distribution of China’s population. In contrast,
international agricultural science and technology parks may be smaller, with a focus on
specific agricultural fields or technology clusters, as observed in Japan and the Nether-
lands [65,66]. Policy support and management mechanisms also vary across countries and
regions. China’s parks receive robust government backing, as they are expected to serve as
centers for radiating and driving high-quality agricultural development in surrounding
areas. For better-developed regions, the government optimizes the regional industrial
structure and enhances industry quality through the diffusion and spatial spillover effects
of the parks. In contrast, for less-developed regions, the government improves park man-
agement and enhances the scale effect of the regional agricultural industry through the
aggregation of elements in the parks and their demonstration and promotion functions.
In the international arena, policy support for agricultural parks may differ depending
on each country’s legal and administrative systems and economic environment. As for
management mechanisms, China’s national agricultural science and technology parks are
typically government-led and -supported, with the government playing a pivotal role in
park planning, policy formulation, and resource allocation. Conversely, parks in other
countries and regions may adopt a more market-oriented approach, relying on private
enterprises and market mechanisms for development. Additionally, China’s parks operate
with a multi-tiered management system, involving a hierarchical structure between the
central government, local governments, and park management committees to ensure policy
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coordination and implementation, whereas international park management systems tend
to be relatively simpler and more flexible.

5.3. Research Limitations and Future Prospects

This study has two main limitations. Firstly, the data used for the NASTPs are based
on sectional data, which lack analysis of the temporal dimension. Additionally, different
types of NASTPs exhibit significant variations in operational scale and development mode,
necessitating the examination of changes in construction effectiveness and IE over time.
Secondly, the index system for measuring the IE of NASTPs requires improvement, as
it does not encompass factors such as information construction, brand cultivation, and
industrial integration. Future research should integrate these factors and comprehensively
explore the spatial evolution and influence mechanisms of IE in NASTPs over time. This
will provide valuable insights for optimizing the allocation of science and technology
innovation resources in NASTPs.

6. Conclusions and Policy Implications
6.1. Conclusions

This study employs a combination of the nearest neighbor index, geographic concen-
tration index, imbalance index, kernel density analysis, and spatial autocorrelation analysis
to investigate the spatial distribution characteristics of 287 NASTPs throughout China.
The research focuses on 85 NASTPs evaluated by the MOST in 2021. Furthermore, the
three-stage DEA model and Tobit model are utilized to analyze the factors influencing IE
and environmental impact in NASTPs. The findings are summarized as follows.

At the national scale, the distribution of NASTPs tends to be relatively even, while at
the provincial level, it appears clustered and uneven. Overall, the regions of East China,
Central China, Northwest China, and Southwest China have the highest concentration
of NASTPs, with relatively minor variations among them. At the provincial level, the
distribution of parks is more concentrated, with an imbalance index of only 0.28, suggesting
a tendency toward even distribution across all provinces (municipalities and autonomous
regions). However, the distribution of parks exhibits significant variation, displaying a
spatial pattern of denseness in the east and sparseness in the west.

The NASTPs exhibit three high-density zones and two sub-high-density zones on the
east side of the Hu line. The high-density areas include the Beijing-Tianjin-Hebei region,
radiating southward with Beijing as the center; the Yangtze River Delta region, radiating
northward with Nanjing as the center; and the Chengdu-Chongqing region, radiating
around Chongqing as the center. The secondary high-density areas consist of the Hunan-
Hubei-Jiangxi region and the Jiangsu-Shandong-Henan-Anhui convergence zone, which
form a ring-shaped agglomeration known as the “Lower Yangtze River Plain—Yellow
Huaihai Plain”. These zones follow a decreasing circle pattern. In general, the park’s spatial
density distribution decreases from east to west, with all high-density areas situated on
the east side of the Hu line. This distribution aligns with China’s geographic population
distribution and reflects the region’s abundant agricultural resources, dense population,
and developed economy.

There are notable variations in the IE among different types of NASTPs, with SE being
a predominant factor in most cases. After adjusting the input–output variables, the PTE of
most parks improves, but the IE and SE decline, resulting in an overall lower efficiency level.
Particularly, low SE appears as the main reason for the parks’ sub-optimal IE. By employing
the three-stage DEA method for correction, the average IE of the parks decreases by 0.054,
while the average PTE increases to 0.703, and the average SE decreases to 0.704. These
findings suggest that most parks have not yet achieved the optimal resource allocation,
management level, and scale effect. Based on the specific efficiency values of each park,
they can be categorized into “Innovation pioneer”, “Innovation good”, “SE improvement”,
“PTE improvement”, and “Innovation lag” groups, which will guide the direction of future
improvements for each type of park.
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Strengthening enterprise cultivation support and increasing demonstration and pro-
motion efforts in NASTPs can effectively enhance the park’s science and technology IE. The
IE of the park is positively correlated with leading enterprises, income level, innovation
support, demonstration, and promotion. On the other hand, it is inversely proportional
to science and technology training. This suggests that providing adequate material and
financial support can alleviate management inefficiencies in the park, thereby promoting
the improvement of PTE and SE, which is an effective approach at this stage. The study
reveals that high-tech enterprises and leading enterprises play pivotal roles in driving the
IE of the park, with high-tech enterprises displaying the strongest innovation capacity and
making significant contributions to the park’s overall IE. Leading enterprises, in turn, have
a positive and active impact on enhancing the park’s SE. Furthermore, effective demon-
stration and promotion activities in the park lead to greater adoption of new technologies
by farmers, resulting in increased labor productivity and higher incomes, consequently
bolstering the park’s IE.

6.2. Policy Implications

Based on the aforementioned findings, three policy insights can be derived. In the
future, the central government should consider the spatial distribution balance and priori-
tize the establishment of NASTPs in the northeast and northwest regions. The Northeast
region, being China’s primary grain-producing region, can leverage the agricultural sci-
ence and technology innovation within the park to enhance the efficiency of agricultural
resource utilization, thereby fostering the integrated development of grain production
in both quantity and quality. The Northwest region possesses a vast territory, abundant
sunlight, and diverse biological resources, making it well-suited for the development of
specialized agriculture. Establishing NASTPs in this region can effectively cater to the high
technological requirements of specialized agriculture.

Local governments should prioritize the cultivation of high-tech enterprises and indus-
try leaders, while also enhancing the demonstration and promotion of agricultural science
and technology achievements. Firstly, NASTPs should moderately increase investment in
innovation for high-tech enterprises and industry leaders. Furthermore, they can foster
the integration of capital, technology, markets, and other factors by introducing incubation
platforms such as hackerspace. This will enhance the competitiveness of the park’s leading
industries and their capacity for technological innovation. Secondly, there should be an
increase in the appointment of provincial and municipal science and technology correspon-
dents, optimization of the structure of the correspondent team, and active promotion of the
establishment of a science and technology information service platform. These efforts will
facilitate both online and offline science and technology training activities to broaden the
reach of agricultural science and technology demonstration and promotion.

At the management perspective of NASTPs, they are crucial to adopt the national
agricultural high-tech industry demonstration zones as the development direction and
goal. This strategic approach aims to address the challenges hindering regional agricultural
development. The national agricultural high-tech industry demonstration zones are led by
scientific and technological innovation, driven by reform and innovation, guided by na-
tional strategies, focused on improving quality and increasing efficiency, and in accordance
with the model of “one leading industry in one park”. They foster the development of
distinctive industrial clusters with strong competitiveness, effectively showcasing the lead-
ership and demonstration of leading industries with regional advantages. This represents
the main development direction for NASTPs.
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