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Abstract: The present study aimed to investigate the effects of a commercial phytogenic feed additive
(PFA) on the prevention of post-weaning diarrhea and oxidative stress in piglets. The concentrations
of thiobarbituric acid reactive substances (TBARS) and protein carbonyls (CARBS) were investigated
as biomarkers for oxidative damage, as were the health and performance parameters of weaned
piglets. In total, 100 weaned piglets were divided into two groups: a control group (T1), which was fed
regular weaning feed; an experimental group (T2), which was fed regular weaning feed supplemented
with a phenolic feed additive (PFA) for 3 weeks. The TBARS and CARBS concentrations in plasma
samples from 20 piglets per group were measured at 45 and 65 days of age. Fecal samples were
collected from 24 weaned piglets per group using FTA ELUTE cards. Diarrhea score, body weight
(BW) at weaning, and average daily weight gain (ADWG) were recorded. The TBARS (p < 0.001)
and CARBS (p = 0.001) concentrations were significantly higher in the T1 group compared to those
in the T2 group. The lowest diarrhea score was noted in the T2 group for the age groups of 45
(p < 0.001) and 65 days (p = 0.008). In conclusion, the use of a phenolic PFA in the current study had
beneficial antioxidative and antimicrobial effects on weaned piglets, which improved their health
and growth performance.

Keywords: piglets; antioxidant; polyphenol; olive; TBARS; protein carbonyls; BW; ADWG

1. Introduction

Weaning is a crucial stage in pig production and includes important challenges for pig
welfare and growth performance [1,2]. During the weaning period, piglets are challenged
with various environmental and psychosocial stress factors, resulting in decreased feed
intake and growth performance in addition to increased morbidity and mortality rates [3,4].
Specifically, due to the transition from a milk-based diet to a solid feed diet, weaned
piglets suffer from severe reductions in feed intake over the first days after weaning [5,6].
Furthermore, changes in feeding behavior and diet composition cause modifications to
their gastrointestinal microbiota [7]. Consequently, weaned piglets often suffer from
gastrointestinal disorders [8,9].
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Weaning stress causes an increased oxidation process and the production of high
concentrations of free radicals, which destroy the redox equilibrium in pigs [4,10–12].
This condition causes damage to epithelial cells and the morphology of the intestine,
resulting in reductions in feed intake and growth rate, as well as the induction of diarrhea
and inflammatory reactions [13,14]. Post-weaning diarrhea (PWD) is a multifactorial
gastrointestinal disease occurring over the first 2 weeks after weaning due to several
stress factors that are commonly enhanced by infection with specific pathogens, such as
enterotoxigenic Escherichia coli (ETEC) [15,16]. However, PWD with no detection of ETEC
is not unusual [17], and it has been reported that intestinal inflammation and diarrhea may
be caused by intestinal dysbiosis in weaned piglets [18].

The use of zinc oxide (ZnO) as a feed additive has been commonly proposed for the
prevention of PWD in piglets. Based on recent regulations from 2022, the application of
dietary ZnO in weaning feed has been forbidden in the European Union (EU) to reduce
the negative environmental consequences of pig manure in agricultural soils [19]. Due
to modern consumer demands and public health awareness, restrictions on the use of
antibiotics as growth promoters in pig diets have also been proposed and applied [20].
Phytogenic feed additives (PFAs) have mainly been proposed as potential alternatives to
in-feed antibiotics, based on their antibacterial activity against both Gram-negative and
Gram-positive bacteria [21–25]. In addition, PFAs have been reported to have potential
antioxidant activity, thereby removing free radicals and protecting animals from oxidative
damage [26,27]. The antioxidant properties of PFAs are mainly associated with phenolic
compounds that react strongly with peroxyl radicals, which are produced by oxidized
proteins and lipids [28,29].

Modern pig production demands the ideal combination of the reduced use of antibi-
otics, improvements in animal health as well as welfare, and increased profitability. This
being the case, herd health programs need to measure and evaluate indicators for animal
welfare and health, such as oxidative status. The oxidative status reflects the equilibrium
between pro- and antioxidant molecules in animals [30]. Oxidative status has been reported
to be an important health indicator for farm animals, as managing oxidative stress during
various infectious diseases or under stress conditions (e.g., heat stress) improves health
status [27,31]. Oxidative stress is also used as an indicator for imbalances between the
production of reactive oxygen species (ROS) in organisms and the ability of antioxidant
molecules to neutralize them [32]. Oxidative stress biomarkers, such as thiobarbituric acid
reactive substances (TBARS) for lipid peroxidation and protein carbonyls (CARBS) for
protein oxidation, are currently available for the design of epidemiological and clinical
studies [33–36]. Plasma is easily obtainable from animals and is susceptible to the oxidation
of both lipid and protein components. For this reason, plasma is considered to be an
appropriate material for the in vivo investigation of oxidative stress biomarkers [37]. The
plasma concentrations of TBARS and CARBS can be used as biomarkers for oxidative stress
in pigs [27,32,38–40].

There have been limited published studies regarding the use of polyphenolic com-
pounds derived from liquid olive oil byproducts (based on olive mill wastewater (OMWW)
processing) as alternatives to antibiotics. Based on the results of previous studies, the
present study aimed to investigate the possible beneficial effects of a phenolic PFA on
the prevention of post-weaning diarrhea and oxidative stress in piglets. The criteria used
to evaluate its effects were the clinical and growth performance of piglets, as well as the
plasma indicators of oxidative status as biomarkers for health status.

2. Materials and Methods
2.1. Trial Farm/Animals

This study included 100 weaned piglets from a farrow-to-finish commercial pig farm,
which were derived from the same batch of farrowing sows (Large White × Landrace,
which are commercial hybrids of DanBred).
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In the trial farm, artificial insemination was performed with purchased semen doses
from a boar stub (Duroc breed). The inseminated ear-tagged sows were kept in individual
stalls in a mating and gestation building until the 25th to 30th day of gestation, when
they were moved to group housing. One week before the expected farrowing date, the
sows were moved from the mating and gestation building to a farrowing building. Sows
were housed without enrichment material (e.g., straw) in commercial farrowing crates,
equipped with nipple drinkers and separate removable feeders for the sows and piglets.
The routine herd health program of the trial farm included the administration of 75 µg
of D-cloprostenol (Gestavet Prost®, Hipra, Amer, Girona, Spain) from 14.00 to 16.00 on
the 114th day of gestation to synchronize the farrowing of all sows during working hours,
allowing better sow and piglet support. Sows that had not farrowed by 05:30 the following
day were given 10 IU of oxytocin. In addition, cross-fostering was allowed during the trial.
Piglets were weighed 24 h after birth and assigned to a litter of 15 cross-fostered piglets.

Piglets were weaned at 25 days of age and transferred to the growing stage at 65 days
of age. The vaccination program for weaned piglets included vaccinations against My-
coplasma hyopneumoniae and porcine circovirus type 2 (PCV2) at 18 days of age. All sows
were routinely vaccinated against porcine reproductive and respiratory syndrome virus
type 1 (PRRSV-1), Suid herpesvirus 1 (SHV-1), swine influenza (H1N1, H3N2), porcine
parvovirus-1 (PPV-1), Erysipelothrix rhusiopathiae, Escherichia coli (E. coli), and Clostridia
(Clostridium perfringens type C, Clostridium novyi, and Clostridium difficile). PWD history due
to E. coli was detected in the trial farm based on microbiological and histopathological
examinations. Routine sampling as part of the applied herd health management program of
the trial farm showed that the farm was free of Brachyspira spp. (Brachyspira hyodysenteriae
and pilosicoli) and Salmonella spp.

The experimental animals were housed in the same pens because the environmental
exposure model was used in this study. All animals were housed under similar conditions
(in terms of climate, ventilation, temperature, and humidity), and their pens were equipped
with a fully automated watering system for the weaners. The indoor thermal environment
of the farrowing and weaning pens of the trial farm had a climate control system for
temperature and humidity, which was monitored hourly with a climate and management
system (ARGOS S, MICROFAN B.V., Nederweert, the Netherlands) to measure temperature
and relative humidity.

The feed was self-mixed and provided ad libitum to the piglets through the connected
drinkers. During the suckling period, piglets were fed a high-quality commercial creep
feed in the form of pellets based on highly digestible ingredients from the 7th to the 25th
day of life (weaning day).

2.2. Experimental Material

The natural polyphenolic feed additive Medoliva® (Polyhealth S.A., Larissa, Greece)
was added to the feed for weaned piglets (from 25 days to 65 days of life) at a dose
of 1 kg/tonne. Medoliva® is a commercial natural product of olive fruit polyphenols
encapsulated in maltodextrin (20% w/w polyphenolic compounds and large contents of
hydroxytyrosol and tyrosol) derived from olive mill wastewater (OMWW) processing and
based on a patented OMWW polyphenol powder [41–43].

2.3. Experimental Design

A total of one hundred (100) weaned piglets of the same batch were randomly assigned
to one of two groups (Figure 1): (a) control group (T1): 50 weaned piglets were fed normal
weaning feed; (b) experimental group (T2): 50 weaned piglets were fed normal weaning
feed supplemented with a polyphenolic feed additive (Medoliva®, 1 kg/tonne final feed)
for 40 days.
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Figure 1. Flowchart of the trial design showing the experimental groups, sampling procedure, data
recorded, and how the laboratory tests were performed.

All weaned piglets in the study were divided into two different groups of 50 piglets
in the same room and 4 pens (2 pens × 25 piglets/pen), and piglets’ ear ID tags were
recorded. The sex ratio was 50/50, according to the available number of piglets (12 male
and 13 female per pen, or vice versa in each pen). Each group included an equal distribution
of piglets by BW: light (6.2–6.7 kg), medium (6.8–7.5 kg), and heavy (>7.5 kg). Each group
included 16 light, 18 medium, and 16 heavy piglets. The selected piglets were derived from
20 litters, with an equal distribution of primiparous and multiparous sows from parity 1
to 5 (4 sows per parity). Thus, littermates were evenly distributed among groups, with
equal numbers of piglets coming from sows of parity 1–5 per group based on an even
distribution of their mean body weight (BW). No antibiotics were administrated in the feed
or parenterally to the piglets during the trial period. Weaned piglets were housed in the
same room with all-in all-out batch production. Piglets in the control group were housed in
different pens than piglets in the experimental group. Piglets in each pen had no physical
contact with piglets from another pen. All experimental pens were marked with a different
color depending on the experimental group. The piglets’ diet contained ZnO (2000 ppm)
and amoxicillin (300 ppm) only one week before and one week after weaning.

All balanced weaning diets during the trial were produced in the farm’s feed mill based on
the same raw materials and offered the same contents for all groups (Supplementary File S1).
Special measures (e.g., manufacture before the treatment feed) were taken for the control
feeds to avoid contamination. The order of daily feeding in each pen was random for all
piglets. A supplementary feed for weaned piglets with commercial premixes, containing
vitamins, minerals, micro-/macroelements, and essential amino acids, was used according
to the standards for recommended feed balance (Supplementary File S2).

2.4. Sampling

Blood was collected via jugular vein puncture from 20 weaned piglets per group
(10 samples per pen), restrained via a snout snare, at 45 and 65 days of age (same
body weight per time and their ID ear tags were recorded). Blood was collected us-
ing S-Monovette® 9 mL, Lithium-Heparin (Sarstedt AG & Co. KG, Nümbrecht, Germany),
and disposable 19G × 1.1/2” (40 mm) needles (Nipro European HQ, Mechelen, Belgium).
Plasma samples were obtained through centrifugation (5810 R, Eppendorf AG, Hamburg,
Germany) at 3000× g for 15 min, at 4 ◦C, and samples of 1.5 ml collected in microcentrifuge
tubes were stored at −80 ◦C until laboratory analyses.
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In addition, fecal samples were randomly collected from weaned piglets (24 piglets per
group, 12 samples per pen) at 25 and 45 days of age (the same piglets each time according to
their ID ear tags). Two fecal samples were collected per animal; the first was collected using
FTA ELUTE cards according to the manufacturer’s specifications (Enterocheck®, Hipra,
Amer, Girona, Spain), while the second was collected using swabs in an Amies transport
medium (Transwab®, Corsham, Wilts, UK) and stored at 4 ◦C until analysis.

2.5. Laboratory Analysis
2.5.1. Oxidative Stress Biomarkers

Biomarkers of oxidative stress in the plasma of blood samples were determined as
previously described [44,45]. A modified method, according to Keles et al. (2001), was used
for (a) the determination of thiobarbituric acid reactive substances (TBARS) [45] and (b) the
determination of protein carbonyls (CARBS) according to Patsoukis et al. (2004) [46].

2.5.2. Microbiological Examination

Fecal swabs were initially tested (12–24 h after collection) for the presence of E. coli by
spreading them on ESBL-selective media (CHROMID® ESBL, BioMérieux, Marcy l’Etoile,
France) and incubating the plates aerobically for 24–48 h at 37 ◦C. In addition, subcultures
were cultured on both MacConkey agar and 5% sheep blood agar.

Simultaneously, the fecal samples were pooled on ELUTE cards (FTA-like) according
to the manufacturer’s guidelines (Enterocheck®, Hipra, Amer, Girona, Spain). The pooled
samples were analyzed by a one-step multiplex polymerase chain reaction (PCR) to detect
the genes encoding adhesion factors F4, F5, and F6, as well as the LT toxins of E. coli,
using specific probes according to laboratory guidelines (Laboratorios Hipra, Amer, Girona,
Spain) [47]. The results were classified as negative (−) based on the cycle thresholds (Ct)
(>38.5 Ct value). The positive samples were classified into three categories according to the
Ct value: pos (+): a low detectable quantity of genetic material (35–38.5 Ct value), pos (++):
a moderate detectable quantity of genetic material (30–35 Ct value), and pos (+++): a large
detectable quantity of genetic material (<30 Ct value).

2.6. Records
2.6.1. Clinical Observations

Clinical observations were performed daily on all experimental weaned piglets by
experienced animal caretakers and 3–4 times per week by two swine veterinarians who
spent at least 20–30 minutes in each pen. All clinical observations were based on a stan-
dardized grid and all observers were trained by a specialized academic veterinarian to limit
the subjectivity of the data. At each clinical observation, the health status of all animals
was recorded on a previously printed card, including the ear ID tag for each pen (Table 1).
The scoring grid was based on the consistency of the feces and the health status of the
piglets, and was scored daily on 5 levels [48,49]: 0 = healthy piglets (solid feces), 1 = disease
onset (soft feces), 2 = mild disease (mild diarrhea with soft feces and rough hair coat),
3 = moderate disease (moderate diarrhea with soft feces, mild dehydration, and a rough
hair coat), 4 = severe disease (severe diarrhea with liquid feces, severe dehydration, and a
very rough hair coat). The mortality rate was also recorded.

2.6.2. Growth Performance Parameters

The live weight (BW; kg) of each piglet in the two groups was measured at 25 (day 0),
45, and 65 days. Average daily weight gain (ADWG; g/pig/day) was analyzed over two-
time trial periods: (a) between 25 and 45 days; (2) between 45 and 65 days. The ADWG
during the different trial periods was calculated as the difference between the initial and
final BW divided by the duration of the phase. Data for dead or removed piglets were
included in the calculation.
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Table 1. Criteria for clinical observations in piglets during the trial.

Clinical Findings

Score General Behavior Gastrointestinal Signs

0 No abnormalities Physiological feces
1 Onset of illness Soft feces

2 Mild depression, reluctance to move Pasty feces or watery mild
yellow diarrhea

3 Reduced general condition,
extended resting

Watery moderate yellow diarrhea,
reddened anal region

4 Strong depression, almost entirely resting Watery severe yellow diarrhea

2.7. Statistical Analysis

Pearson’s chi-squared test, [50] for the count data, was performed to examine statisti-
cally significant differences between the control group (T1) and the experimental group
(T2), as well as to test for possible differences between different age groups within each
group (T1 or T2), whereas the t-test was performed to examine differences in the variables
measured on a continuous scale, such as body weight. Both tests were evaluated at a
significance level of 0.05. Summary statistics and hypothesis testing were implemented in
the R programming language [51].

3. Results
3.1. Mortality

According to the records of mortality, two piglets from the control group (T1) and
three from the experimental group (T2) died during the trial period of 25–45 days. No
statistically significant differences were found between the groups during the trial period
of 25–45 days and 45–65 days.

3.2. Clinical Scoring

The assessment of clinical diarrhea between groups at different times/ages is shown
in Table 2. Statistically significant differences between control and experimental groups
were found in 45- and 65-day age groups. (Table 2). In addition, statistically significant
differences were found between all age groups in the control group, as well as between the
25- and 45-day age groups in the experimental group.

Table 2. Clinical diarrhea scoring (0 = firm feces, 1 = soft feces, 2 = mild diarrhea with soft feces,
3 = moderate diarrhea with soft feces, and 4 = severe diarrhea with liquid feces) between groups at
different times/ages; minimum, maximum, and median.

Age→ 25 d 45 d 65 d

Group→ T1 T2 T1 T2 T1 T2

Clinical Diarrhea Score

0 28 (56) 26 (52) 12 (24) 31 (62) 17 (34) 33 (66)

1 4 (8) 6 (12) 6 (12) 12 (24) 17 (34) 16 (32)

2 12 (24) 10 (20) 10 (20) 6 (12) 10 (20) 1 (2)

3 1 (2) 6 (12) 11 (22) 1 (2) 1 (2) 0 (0)

4 5 (10) 2 (4) 11 (22) 0 (0) 5 (10) 0 (0)

F4, F5, and LT toxins of E. coli levels between groups at different times/ages (minimum,
maximum, and median). No differences were observed between the control group (T1) and
the experimental group (T2), as similar levels of the F4, F5, and LT toxins of E. coli were
observed in piglets of both groups (Table 3).
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Table 3. Observed frequencies (percentages) for clinical diarrhea scoring (0 = firm feces, 1 = soft feces,
2 = mild diarrhea with soft feces, 3 = moderate diarrhea with soft feces, and 4 = severe diarrhea with
liquid feces) between groups at different times/ages.

Age 25 d 45 d 65 d

Group Min–Max Mean Min–Max Mean Min–Max Mean

T1 0–4 1.02 0–4 2.06 0–4 1.2
T2 0–4 1.04 0–3 0.54 0–2 0.36

p-value - 0.7 - < 0.001 - 0.008

The observed frequencies of the scores of the F4, F5, and LT toxins of E. coli are shown
in Table 4. Scores for the F6 toxin are not shown, because all animals, in the control group
(T1) as well as the experimental group (T2), had a negative score (−).

Table 4. F4, F5, and LT toxins of E. coli values (0 = no detectable quantity of genetic material, 1 = low
detectable quantity of genetic material, 2 = moderate detectable quantity of genetic material, and
3 = high detectable quantity of genetic material) between the control group (T1) and experimental
group (T2) at different times/ages; minimum, maximum, and median. The lower part presents the
observed frequencies (percentages).

Age 25 d 45 d

Variable Group Min–Max Mean Min–Max Mean

E. coli F4
T1 0–3 1.5 0–3 1.67
T2 0–1 0.58 0–1 0.5

p-value - 0.007 - 0.21

E. coli F5
T1 0–1 0.5 0–1 0.42
T2 0–0 0 0–0 0

p-value - 1 - 0.56

E. coli LT
T1 0–2 0.16 0–0 0.00
T2 0–0 0 0–0 0.00

p-value - 0.5 - 1

Age 25 d 45 d

Variable Group Neg (−) Pos (+) Pos (++) Pos (+++) Neg (−) Pos (+) Pos (++) Pos (+++)

E. coli F4 T1 4 (33.5) 1 (8) 4 (33.5) 3 (25) 5 (42) 2 (16.5) 3 (25) 2 (16.5)

T2 5 (42) 7 (58) 0 0 6 (50) 6 (50) 0 0

E. coli F5 T1 6 (25) 6 (25) 0 0 7 (58) 5 (42) 0 0

T2 12 (100) 0 0 0 12 (100) 0 0 0

E. coli LT T1 11 (92) 0 1 (8) 0 12 (100) 0 0 0

T2 12 (100) 0 0 0 12 (100) 0 0 0

3.3. Growth Performance Parameters

BW values (Kg) between groups at 25, 45, and 65 days of age (minimum, maximum,
standard deviation, and mean) are shown in Table 5. Statistically significant differences
between the control group (T1) and the experimental group (T2) were found for BW at
45 and 65 days of age (Table 5).

The ADWG values (g) between groups at 25–45 and 45–65 days of age (minimum,
maximum, standard deviation, and mean) are shown in Table 6. Statistically significant
differences between the control group (T1) and the experimental group (T2) were found
for the age groups of 25–45 and 45–65 days (Table 6). In addition, statistically significant
differences were found between the age groups in the control group and the experimental
group for BW and ADWG.
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Table 5. Body weight (Kg) values between groups at different times/ages; minimum, maximum,
standard deviation (sd), and mean.

Age 25 d 45 d 65d

Group Min–Max sd Mean Min–Max sd Mean Min–Max sd Mean

T1 6.7–8.1 0.28 7.1 11–17 1.31 13.3 25.7–29.3 0.52 27.13
T2 6.5–8.2 0.39 7.1 12.5–17.2 1.17 15.22 27.6–33.5 1.9 30.02

p-value - - 0.85 - - <0.001 - - <0.001

Table 6. Average daily weight gain (g) values between the control group (T1) and experimental group
(T2) at different times/ages; minimum, maximum, standard deviation (sd), and mean.

Age 25–45 d 45–65 d

Group Min–Max sd Mean Min–Max sd Mean

T1 234.5–351.0 26.24 332.6 625.0–655.0 7.29 641.8
T2 330.5–355.5 5.56 350.2 645.5–657.2 2.92 653.3

p-value - - <0.001 - - <0.001

3.4. Assessment of Oxidative Stress Markers in Blood

Figures 2 and 3 show plasma TBARS and CARBS levels in the 45- and 65-day age
groups, respectively. Statistically significant differences between the T1 and T2 groups
were found for both TBARS and CARBS levels in plasma at 45 and 65 days of age (Table 7).
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Table 7. Thiobarbutic acid reactive substance (µmol/L) and protein carbonyls (nmol/mL) levels
in plasma between the control group (T1) and experimental group (T2) at different times/ages;
minimum, maximum, standard deviation (sd), and mean.

Age 45 d 65 d

Variable Group Min–Max sd Mean Min–Max sd Mean

TBARS (µmol/L)
T1 18.28–19.94 0.61 19.18 17.82–18.88 0.41 18.18
T2 14.62–15.58 0.42 15.09 15.13–16.43 0.48 15.86

p-value - - <0.001 - - <0.001

CARBS (nmol/mL)
T1 21.82–29.09 3.41 26.18 21.36–23.64 0.87 22.64
T2 14.09–17.73 1.41 15.55 18.18–20.00 0.73 18.73

p-value - - 0.001 - <0.001

4. Discussion

During the weaning period, piglets are exposed to the effects of nutritional, psycho-
logical, environmental, and social stressors [1,52]. Post-weaning stress is usually associated
with decreased feed intake and growth performance in addition to increased susceptibility
to infections [6,7]. PWD is considered a major health problem with a significant economic
impact due to decreased BW and ADWG as well as increased morbidity and mortality
rates [53,54]. Many studies have focused on investigating the most ideal prevention strategy
for PWD. In view of the increasing resistance to antibiotics and the limitation of their use
in pig diets [19,20], pig nutrition plays a key role in future prevention strategies [55,56].
For example, previous studies reported the beneficial effects of adding vegetable oils to
weaners’ diets against pathogens, including E. coli, which can cause gastrointestinal dis-
eases [21,22]. The results of these studies are consistent with our results, as we found that
the incidence of diarrhea was significantly lower in the treated group. In addition, several
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studies have shown that the addition of vegetable oils to the diet leads to an increase in
BW and ADWG [26,56,57]. The present study confirmed these results, as piglets in the T2
group had higher BW and gained more ADWG. In addition, several studies have demon-
strated the anti-inflammatory, antimicrobial, and antioxidant effects of herbal products
from various plants and herbs, such as Origanum vulgaris, Allium sativum, Macleaya cordata,
Emblica officinalis, Foeniculum vulgare, Citrus sinensis, Andrographis paniculate, Glycyrrhizia
glabra, Tinospora cordifolia, Capsicum annuum, and Curcuma longa [23–25,27,58].

In addition, the weaning of piglets is known to be an extremely stressful condition [59],
generating high concentrations of free radicals, which lead to severe oxidative damage [10];
however, feed supplements containing antioxidants have been suggested to reduce the
negative effects of oxidative stress on pig health [10,27,60]. The results of the current study
support these previous reports, as the tested polyphenolic olive PFA exhibited potent antiox-
idant activity in weaning pigs. In addition, a previous study found that the addition of the
tested PFA to the diet of broiler chickens improved their redox status, resulting in decreased
lipid peroxidation, as evidenced by decreased TBARS levels in plasma and tissues [42].
Previous studies have also reported that phenolic PFA can increase weanling resistance
to stressors and improve meat’s growth performance as well as oxidative stability [61,62].
Similar effects on the reduction in TBARS and CARBS have been observed in studies with
polyphenolic PFA OMWW in pigs, poultry, and small ruminants [42,43,63]. These findings
are consistent with the present results, as it was found that feeding weaned piglets with
polyphenolic PFA can significantly reduce oxidative-stress-induced damage to proteins
and lipids, as evidenced by the reduction in CARBS and TBARS levels, respectively.

Minimizing oxidative stress in pigs in intensive production systems is essential for
optimizing health and productivity, which contributes to achieving One Health and envi-
ronmental sustainability goals in pork production [19]. As mentioned earlier, the weaning
of piglets is a stressor that causes oxidative stress and the subsequent manifestation of
intestinal disorders [10,31]. In particular, the increased oxidative stress in weaned pigs
may destroy their redox balance and consequently damage their epithelial cells as well as
intestinal morphology and structure [64]. Oxidative stress could thus lead to PWD, which is
the main cause of a reduced growth rate [16]. Liu et al. (2014) reported that the addition of
PFA to the diet can act as an antioxidant and remove free radicals, which protects pigs from
oxidative damage [26]. Our study confirmed the above results as shown by the decrease
in the plasma concentrations of TBARS and CARBS between the control group (T1) and
the experimental group (T2). In addition, our study showed that the administration of
polyphenolic PFA in the weaning diet resulted in improved clinical performance of weaned
piglets, as piglets in the T2 group had a lower frequency of PWD than piglets in the control
group. Therefore, it is reasonable to assume that the reduction in oxidative stress in weaned
piglets, achieved by the addition of PFA, also improved their health status.

Since the ban on the use of antibiotics as growth promoters in the EU feed industry,
research interest in natural feed additives, such as phenol additives, has increased. The re-
search community has focused on natural phenolic compounds as potential alternatives to
antibiotics and as natural antioxidant sources for feed additives in swine production [65,66].
Our study provides new information on the use of polyphenolic compounds obtained
from liquid olive oil byproducts (based on the processing of olive mill wastewater) as
alternatives to antibiotics. In addition, the use of the tested additive helps to reduce pollu-
tion from the disposal of olive mill wastewater into the environment (soil or waterways),
an important environmental problem in Mediterranean countries and the protection of
ecological systems [66]. For the prevention of PWD in piglets, the wide use of ZnO as a feed
additive in weaning diets is a common practice [67]; however, most of the ZnO used in pig
diets is disposed of as manure, which leads to the severe metallization of soil, accumulation
in pork, and increased antimicrobial resistance [68]. Since June 2022, the EU has banned the
use of high-dose ZnO in pig feed. In this direction, various alternative feeding strategies are
proposed and investigated for the purpose of maintaining farm productivity and reducing
ZnO excretion in pig manure through the strategic use of high doses of ZnO, both of which
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are of great importance for modern environmentally friendly pig production systems [19].
Therefore, new strategies and alternative products for the prevention of PWD are urgently
needed. Based on our results, the tested polyphenolic feed additive could be proposed as an
alternative method to administer ZnO in weaning diets for the prevention of PWD. Further
studies are needed to investigate possible dosages as well as the duration of application
under field and experimental conditions; however, a shortcoming of our study was the
investigation of the possible beneficial effects of the tested PFA at different dosages and
production stages, including the finishing stage as well as the duration of the trial period
(no external funding to support our trial). In addition, antibiotics were used during the trial
at the weaning stage, which has an effect on reducing diarrhea. However, it is important to
evaluate the additional effect of using the tested PFA under standard field conditions in
commercial pig farms. In addition, future researchers could investigate the effects of PFA
on the bioactivity of microbiota. In addition, the bioavailability and action of microbiota
are essential mimetic factors associated with the prevention of diarrhea and oxidative
stress [69]. It is suggested that the indirect regulation of gut microbiota composition can
be considered a biological mechanism for antioxidant natural products. The composition
of the gut microbiota is directly related to the production of ROS. For this reason, ROS
can cause serious damage to the gut [70]. Previous studies reported that natural products
with antioxidant properties can alter the abundance and composition of the gut microbiota,
which ultimately decrease the production of ROS by activating antioxidant enzymes and
signaling pathways [71,72].

5. Conclusions

In conclusion, our study revealed the beneficial effects of polyphenolic olive PFA on
the antioxidant properties of weaned piglets, due to the reduced plasma concentrations of
TBARS and CARBS.

In conclusion, our study demonstrated that a polyphenolic olive PFA has important
antimicrobial and antioxidant properties for weaned piglets that improve their health
status and growth performance, including a reduced diarrhea score, decreased plasma
concentrations of TBARS and CARBS, and improved BW as well as ADWG parameters.
Further studies are needed to investigate the beneficial effects of polyphenol addition and
supplementation at different doses and stages of production, as well as the duration of
the trial period. In addition, future studies could investigate the effects of PFA on the
bioactivity of the gut microbiota.
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