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Abstract: Accurate detection and counting of live pigs are integral to scientific breeding and pro-
duction in intelligent agriculture. However, existing pig counting methods are challenged by heavy
occlusion and varying illumination conditions. To overcome these challenges, we proposed IO-
YOLOv5 (Illumination-Occlusion YOLOv5), an improved network that expands on the YOLOv5
framework with three key contributions. Firstly, we introduced the Simple Attention Receptive
Field Block (SARFB) module to expand the receptive field and give greater weight to important
features at different levels. The Ghost Spatial Pyramid Pooling Fast Cross Stage Partial Connec-
tions (GSPPFC) module was also introduced to enhance model feature reuse and information flow.
Secondly, we optimized the loss function by using Varifocal Loss to improve the model’s learning
ability on high-quality and challenging samples. Thirdly, we proposed a public dataset consisting
of 1270 images and 15,672 pig labels. Experiments demonstrated that IO-YOLOv5 achieved a mean
average precision (mAP) of 90.8% and a precision of 86.4%, surpassing the baseline model by 2.2%
and 3.7% respectively. By using a model ensemble and test time augmentation, we further improved
the mAP to 92.6%, which is a 4% improvement over the baseline model. Extensive experiments
showed that IO-YOLOv5 exhibits excellent performance in pig recognition, particularly under heavy
occlusion and various illuminations. These results provide a strong foundation for pig recognition in
complex breeding environments.

Keywords: object detection; live pig; SARFB; GSPPFC; Varifocal Loss; heavy occlusion; various
illumination

1. Introduction

The pig breeding industry is a crucial component of the agriculture industry as it
provides high-quality meat for the food supply chain [1]. With the help of smart agriculture
technologies, obtaining precise and real-time statistics on pig populations has become
essential. This enables more efficient and data-driven pig breeding practices, allowing for
effective distribution of feed and other necessary breeding materials to be implemented.

Traditional animal target detection relies on manual labeling [2] and visual identifi-
cation that is time-consuming, inefficient, and prone to errors. However, with the rapid
development of computer technology, object detection algorithms based on a neural net-
work have been widely implemented in various areas of agriculture [3], including insect
pest identification [4], the detection of crop diseases [5], and cattle farming detection [6].
The object detection neural network can be broadly categorized into two-stage and one-
stage algorithms. Representative of the two-stage algorithm is the R-CNN [7], while the
one-stage algorithm is epitomized by the YOLO [8]. Compared to two-stage algorithms,
one-stage algorithms such as the YOLOv5 model have a faster detection speed and fewer
background interferences, making them more widely applicable. Within the realm of pig
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recognition, Ahn et al. [9] proposed EnsemblePigDet, a pig detection model that utilizes
model ensemble techniques to improve accuracy and performance. Sa et al. [10] achieved
fast detection of pigs by exploiting complementary information between depth and infrared
images. In addition, Huang et al. [11] designed HE-YOLO, a pig recognition model based
on multiple attention mechanisms to enhance the object detection performance for pigs.
However, it should be noted that experimental datasets for pig detection may not always
work in breeding environments. During the breeding process, it is common to encounter
issues such as heavy occlusion [12], changes in illumination [13], and so on. These problems
can decrease the model’s ability to identify pigs effectively.

To improve pig identification under heavy occlusion and varying illuminations, we
proposed a new model called IO-YOLOv5 (Illumination-Occlusion YOLOv5) and trained
the model using our own collected data which includes various real-world situations. The
workflow of IO-YOLOv5 is shown in Figure 1. We utilized the CSPDarknet53 and path
aggregation network (PANet [14]) structure of the original YOLOv5 as the backbone and
neck. In the backbone of the network, we proposed a more lightweight and effective
module named Simple Attention Receptive Field Block (SARFB) inspired by the concept
of the Receptive Field Block (RBF [15]), which can enlarge the receptive field of the model
and endow different receptive fields with attention domains. Furthermore, the Spatial
Pyramid Pooling (SPP) module was optimized into the Ghost Spatial Pyramid Pooling
Fast Cross Stage Partial Connections (GSPPFC) module which is based on Ghost Convo-
lution [16] and CSPNet [17], to enhance the reuse of feature information and strengthen
the flow of information. To locate pig features under heavy occlusion, we introduced
Efficient Attention Channel (ECA [18]) modules to the generated channel attention map. In
addition, the Varifocal Loss was utilized as a substitute for the Binary CrossEntropyLoss
(BCELoss) during the training phase. This implies that the Varifocal Loss can augment
the influence of high-quality and challenging samples on the model while resolving the
problem of occlusion. To further improve the model’s robustness and generalization ability,
we incorporated model ensemble [19] and test time augmentation (TTA). Compared with
the baseline model, IO-YOLOv5 provides a lightweight and more accurate model for pig
recognition in real breeding environments.
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Figure 1. Workflow overview for our IO-YOLOv5.

Our main contributions are listed as follows:

• We introduce the GSPPFC module and Simple Attention Receptive Field Block (SARFB)
module into YOLOv5 to improve the utilization of features and information transfer,
as well as to increase the model’s receptive field.

• To the best of our knowledge, this paper presents the first attempt to construct a pig
recognition task that involves both various illuminations and heavy occlusions.

• We have gathered and assembled a pig dataset in a real breeding environment with
heavy occlusion and various illuminations.
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2. Materials and Methods
2.1. Data Acquisition

The images used in this study were collected from pig farms located in Yunfu and
Dongguan, Guangdong Province, China. Surveillance cameras were placed about 2–3 m
above ground level to capture the images. To ensure the high quality of the dataset, images
were collected at different times and from different livestock areas. Additionally, we utilized
various data augmentation techniques, such as Cutout, Mosaic, brightness adjustment, and
random HSV augmentation [20,21], to improve the robustness of our model. This resulted
in a total of 1270 RGB images and 15,672 pig labels. On average, each image contains
roughly 10–40 pigs. The images were annotated using labeling software labelImg (version
1.8.1), generating individual XML-format files with coordinate markers for each image.
These files were then converted into the TXT format required by the YOLO model. Finally,
the images and label files were divided into a training–validation set and a testing set at a
ratio of approximately 9:1. The training–validation set was further divided into a ratio of
approximately 9:1.

In this study, the degree of occlusion between pigs was classified into two categories
based on the proportion of the visible area of each pig’s characteristics in the image, namely
slight occlusion (0–40% occlusion area) and heavy occlusion (over 40% occlusion area).
For slight occlusions, as shown in Figure 2a, most pigs were clearly visible with only a
few being blocked by other pigs or fences. In contrast, for heavy occlusions, as shown in
Figure 2b, the body features of most pigs were obstructed by other pigs or buildings.
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(a) (b) 

Figure 2. A schematic diagram of the live-pig occlusion: (a) The schematic diagram of slight occlusion
shown in the picture; (b) The picture is a schematic diagram of severe occlusion. The pig selected by
the red bounding box in the image is either occluded by the pig selected by the green bounding box
or obstructed by other factors.

In addition to analyzing different occlusion conditions, we also evaluated the effective-
ness of pig detection under different illuminations. We classified illumination conditions
into three categories based on their strength: regular light (such as early morning), bright
light (such as noon), and darkness (similar to nighttime). Examples for each category are
demonstrated in Figure 3.
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Figure 3. A Schematic diagram of the different illumination condition images: (a) The figure shows
image data under regular illumination, with clear edges; (b) The image data under high light
irradiation; (c) The image data in the dark.

2.2. Analysis of the Dataset

The generated tag file can calculate the center point coordinates of the dataset’s labels,
as shown in Figure 4a. Based on color depth analysis, the pigs are mostly located in the
surround center and the lens edge. Additionally, the length and width of the data tags, as
demonstrated in Figure 4b, indicate that the anchor boxes for the pigs, which represent
their posture, are mostly vertically oriented.
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2.3. Baseline Model YOLOv5

YOLOv5 is an object detection algorithm developed by Ultralytics and it was released
in May 2020. It is a one-stage object detection algorithm that can detect multiple types of
objects in real-time. Furthermore, YOLOv5 can be divided into four models based on the
width and depth of the network: YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. Because
real-time monitoring of pigs requires efficient models, the smallest YOLOv5s is selected as
the basic of model improvement in this paper.

For YOLOv5, it can be mainly divided into two parts: backbone and neck. The
backbone is mainly responsible for extracting image features, while the neck is mainly
responsible for predicting and outputting features. In YOLOv5, the backbone is mainly
constructed using the Cross-Stage Partial Network (CSPNet). This network draws on the
idea of skip connections in Resnet [22] but improves upon its shortcomings, resulting in
better performance and scalability through the CSP block and the Spatial Pyramid Pooling
(SPP [23]) block. The neck is also an important part of the multilevel feature fusion in
YOLOv5, mainly composed of the path aggregation network (PANet). Using the PANet
module can achieve upsampling of low-level features and downsampling of high-level
features, so that information between different stage features can complement each other
and work together to achieve better object detection and recognition performance.
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2.4. Architecture of IO-YOLOv5

The schematic diagram of IO-YOLOv5 is shown in Figure 5. We optimized YOLOv5
to better adapt to pig recognition tasks with heavy occlusion and various illuminations.
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Specifically, we proposed and introduced SARFB modules into the P4 and P5 layers of
the network, where SARFB is composed of Conv, Batch Normalization, activation function,
and DilatedConv. Additionally, we replaced the SPP module with the GSPPFC module
we proposed to enhance feature fusion. The GSPPFC module can maintain the original
model’s receptive field and the model’s inference speed, achieving a lightweight design
of the model. The SPP module performs convolution operations on the input feature
map using 5 × 5, 9 × 9, and 13 × 13 convolution kernels, followed by Maxpooling for
output. In contrast, the GSPPFC module sequentially inputs the input feature map into
three 5 × 5 convolution kernels, and then merges the results after Maxpooling. The merged
output is then fused with the input feature map to preserve the original features.

The training and inference process of the IO-YOLOv5 is presented in Algorithm 1.

2.4.1. Ghost Spatial Pyramid Pooling Fast Cross Stage Partial Connections (GSPPFC)

In YOLOv5, the Spatial Pyramid Pooling (SPP) module is mainly used to merge
multiple feature maps and extract spatial features of different scales, enabling the model
to acquire diverse receptive fields and enhance its robustness against various objects and
scenes. Therefore, we proposes a more effective Ghost Spatial Pyramid Pooling Fast Cross
Stage Partial Connections (GSPPFC) module based on the SPP module. First of all, we
replace the parallel pooling layers in the original module with cascading pooling layers,
to reduce the computational complexity while maintaining similar receptive fields. Then,
a CSP module is introduced to establish connections between different network layers,
allowing low-level features and high-level features to exchange information and enhancing
the model’s representation ability. In addition, we introduce a more lightweight convolution
module called Ghost Convolution.
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Algorithm 1: IO-YOLOv5 training and inference process

Input: Pig image, target box
Output: Predicted box

1 Initialization (learning rate, epochs)
2 for i in epoch do
3 for train_image, target in train_dataloader do
4 train_image = augment(train_image)
5 output = IO-YOLOv5(train_image)
6 loss = VariFocal Loss(output, target)
7 loss.backward()
8 optimizer.step()
9 end
10 for val_image, target in val_dataloader do
11 output = IO-YOLOv5(val_image)
12 metrics(output, target)
13 end
14 lr_scheduler.step()
15 save_model()
16 end
17 for test_image in test_dataloader do
18 for image in TTA(test_image) do
19 output = model_ensemble(IO-YOLOv5(image), YOLOv7-tiny(image))
20 merger_output(output)
21 end
22 save_result(merger_output)
23 end

This module can extract redundant features obtained using some convolutional op-
erations through grouped convolutions, i.e., linear mappings and merge them with key
features to obtain the output feature map. Ghost Convolution can obtain redundant fea-
tures at a smaller computational cost while maintaining important features, with higher
computational efficiency and comparable extraction performance. The structure of the
Ghost Convolution is shown in Figure 6.
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For a regular convolutional module and a Ghost Convolution module, assuming
their input channel number is cin, output channel number is cout, and the size of the
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convolution kernel is k × k that is not fixed, the parameter of the regular convolution
module (paramsConv) is

paramsConv = cout × k× k× cin, (1)

due to the fact that the feature map of Ghost Convolution is constructed by concatenating
the feature maps of regular convolution and its linear projection. Assuming that the group
convolution uses a convolution kernel size of k′ × k′, which was set equal to 5 in the
experiment, the parameter of one Ghost Convolution module (paramsGhost) is

paramsGhost =
cout

2
× k× k× cin + k′ × k′ × cout

2
× cout

2
× 2

cout
. (2)

According to Formulas (1) and (2), we can derive that the parameter quantity of Ghost
Convolution modules is almost halved compared to that of regular convolutional modules.
Similarly, the ratio between floating point operations (FLOPs) is also approximately 1:2.

By combining the Ghost Convolution module and CSP module with the Spatial
Pyramid Pooling fast module, this paper proposes a lightweight optimized Spatial Pyramid
Pooling module called GSPPFC, whose architecture is shown in Figure 7.
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Overall, this module replaced the parallel pooling layers with cascading pooling layers
and introduced regular convolution with Ghost Convolution on the basis of incorporating
the CSP module. On the one hand, this strengthened information exchange between
features and, on the other hand, it maintained the lightweight nature of the module.

2.4.2. Simple Attention Receptive Field Block (SARFB)

In the backbone of the network, in addition to optimizing the SPP model, we also
proposed a new convolution module inspired by the concept of the Receptive Field Block.
We combined regular convolutions and dilated convolutions [24] to extract features and
concatenated their feature maps as weights to increase the receptive field of the model.
Additionally, we integrated a Simple Attention Module (SimAM [25]) to enhance features
under different receptive fields and outputted to the SiLU [26] activation function lastly.
By leveraging the environment features surrounding individual pigs, this module can
effectively capture the interdependency between features in high-density situations. The
schematic diagram of the SARFB module is shown in Figure 8.
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However, increasing the receptive field also lead to feature blurring, which could
adversely affect the detection of small objects. To address this issue, we only applied the
SARFB module on the two large object detection layers P4 and P5 within the network.

In this module, we utilized a novel Simple Attention Module (SimAM) with a dis-
tinctive 3D weight attention mechanism. Compared to other attention mechanisms such
as Efficient Channel Attention (ECA) and Squeeze-and-Excitation (SE [27]), SimAM has
several advantages, including better performance, and an increased focus on feature weight
factors without introducing additional parameters. By employing the SimAM, we can
take advantage of the relationships between pixels to capture key features under different
receptive fields.

SimAM employs an energy function to assess the significance and interrelation among
neurons (i.e., features or pixels) in order to compute the weight. The formula for the energy
function can be expressed as

et(wt, bt, y, xi) =
(
yt − t̂

)2
+

1
M− 1

M−1

∑
i=1

(yo − x̂i)
2 (3)

where t̂ = wtt + bt, x̂i = wtxi + bt, t, and xi are the target neuron and other neurons in a
single channel of the input features, respectively. M represents the number of neurons,
which is the multiplication of the length and width of the feature maps, while wt and bt
represent the weight and bias values, respectively.

2.4.3. Efficient Channel Attention (ECA)

In addition to improving the backbone of network, we also made improvements to the
network’s neck. The Efficient Channel Attention (ECA) module is a simple and effective
channel attention that improves upon the Squeeze-and-Excitation (SE) attention mechanism
by avoiding the effects of dimensionality reduction on learning the dependencies between
channels. The ECA module employs one-dimensional convolution to extract interchannel
interactions, enabling local interactions across channels. Moreover, the ECA module is a
more lightweight module compared to other attention mechanisms. This module’s network
structure is illustrated in Figure 9. On a feature map, the ECA module obtains an attention
map through channel pooling and fully connected layers, which are then weighted onto
the feature map for adaptive feature refinement.

In images with heavy obstruction, the physical features of pigs often get occluded
due to overlap between the pigs or obstacles in the buildings. To tackle this issue, the ECA
module improves the ability of YOLOv5 to pay more attention to visible pig body features,
while also reducing the influence of environmental factors on pig target identification.
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2.4.4. Loss Function Improvement—Varifocal Loss

In addition to enhancing the network model, we have also made significant improve-
ments to the loss function used during the network training process. To calculate the loss
in YOLOv5, we usually used the Binary CrossEntropyLoss (BCELoss), which follows the
formula shown below:

Ln = −wn[ynlogσ(xn) + (1− yn)log(1− σ(xn))]. (4)

In this case, y indicates the ground truth label, w represents the weight parameter, and
x represents the predicted result obtained through the Sigmoid activation function.

Based on the Binary CrossEntropyLoss (BCELoss), Varifocal Loss incorporates and
optimizes the modulation factor introduced in Focal Loss. By dynamically adjusting the
weight of negative samples, the impact of abundant negative samples in prediction is
balanced, which, in turn, enhances the model’s learning capability for high-quality samples.
The calculation formula for VariFocal Loss is shown as follows:

VariFocal Loss(p, q) =

{
−q(qlog(p) + (1− q)log(1− p)) q > 0
−αpγlog(1− p) q = 0

(5)

where p is the predicted probability of foreground classes, q is the ground truth, and α and γ
both are hyperparameters adjusted manually that relate to the influence of negative examples.

In this paper, due to the high-density distribution of pigs, heavy occlusions lead to
more negative samples. Varifocal Loss can reduce the impact of these negative examples,
effectively improving the model’s learning effect.

2.4.5. Model Ensemble and Test Time Augmentation

During the inference phase, we first applied test time augmentation (TTA) to improve
the accuracy of predictions. Specifically, TTA consists of the following two steps: (1) Scaling
the image to 1.3 times. (2) Horizontally flipping the image. Then, we inputted the three
generated images into the model for prediction and used non_max_suppression (NMS) to
fuse the results.

Additionally, we performed model ensemble by combining the IO-YOLOv5 and
YOLOv7-tiny models [28] that were trained. Similarly, we applied TTA to each model and
used NMS to output the fused final prediction results.
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3. Results
3.1. Experimental Environment and Configuration

The main experimental environment is Python3.8.10, Pytorch1.10.0, CUDA11.3. The
specific host configuration is shown in Table 1, and some experimental parameters are
shown in Table 2.

Table 1. Host configuration.

Hardware Specific Configuration

Operating System Ubuntu 9.4.0
CPU Intel(R) Silver 4310
GPU RTX A4000

Table 2. Experimental parameters.

Experimental Parameters Specific Parameters

Image scaling size 640 × 640
Number of iterations 200

batch_size 8
Optimizer SGD

Initial learning rate 0.01
Weight decay 0.0005

3.2. Evaluation Metrics

To compare the performance difference between various models and validate the fea-
sibility and effectiveness of proposed improvements, we employ Recall, F1-score, Precision,
mean average precision (mAP50), frames per second (FPS), and parameters of the model as
evaluation metrics to measure a model’s performance.

The calculation formulas for the important metrics AP and mAP in object detection
are as follows:

AP =
∫ 1

0
p(r)dr, (6)

mAP =
∑n

i=1 APi

n
; (7)

where p(r) represents the maximum precision at a recall value of r, which can be obtained
by calculating the highest precision point on each recall segment of the standard PR curve.
n represents the total number of categories to be evaluated. The mAP value is usually
calculated using Intersection over Union (IoU) with a threshold of 0.5. Therefore, this paper
adopts the mAP50 when evaluating the performance indicator, which is based on the IoU
threshold of 0.5.

3.3. Analysis
3.3.1. Comparison of Different Spatial Pooling Pyramids

To evaluate whether the GSPPFC module used in this experiment performs better
than other spatial pooling pyramid modules, we conducted comparative experiments with
SPP, SPPF, Atrous Spatial Pyramid Pooling (ASPP [29]), SPPFC, and GSPPC. Additionally,
we evaluate the performance using various metrics.

Referring to Table 3, the detection performance of SPP and SPPF is similar, but the
detection speed of SPPF is significantly faster than SPP. The SPPFC module that adopts
a CSP structure, outperforms the SPP, SPPF, and ASPP modules in two key performance
metrics (F1-score and mAP50). In terms of the lightweight GSPPFC and GSPPC modules,
the former has a lower parameter count than SPPFC, achieves comparable performance in
terms of F1-score and mAP50 with the original model, and also has a higher FPS score than
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all other modules except for SPPF. Moreover, the detection speed and mAP50 of GSPPFC
are higher.

Table 3. Comparison of different space pooling pyramid.

Module Precision/% Recall/% F1-Score mAP50/% FPS/f·s−1

SPP 88.0 79.0 0.833 88.7 85.47
SPPF 82.7 82.2 0.825 88.6 94.34
ASPP 82.5 84.3 0.834 89.1 71.43
SPPFC 87.0 80.9 0.838 89.5 78.74
GSPPC 86.9 81.4 0.840 89.3 81.47

GSPPFC 84.1 83.4 0.838 89.5 86.21

3.3.2. Comparison of Different Attention Mechanisms in the Neck

To verify the positive effect of attention mechanisms in the neck on experimental
results, and to compare the differences in performance among different attention mecha-
nisms, we conduct a horizontal comparison of four attention mechanisms, including SE,
the Convolutional Block Attention Module (CBAM [30]), and ECA. The structure of the SE
module is shown in Figure 10.
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The SE module compresses the feature maps into a feature vector, and learns a weight
vector for each channel through fully connected layers and activation functions to achieve
channel-wise weighting. The structure of CBAM is shown in Figure 11.
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The CBAM module consists of two submodules, namely the channel attention module
and the spatial attention module. Compared to the SE module, CBAM can not only learn
the feature information between channels but also learn the attention regions within the
feature map.

We use various metrics to evaluate these attention mechanisms and determine the
best-performing one for use in the neck.

Table 4 shows that the metrics of different attention mechanisms are very similar.
After an evaluation of F1-score, mAP50, and FPS indicators, we selected ECA as the atten-
tion mechanism for the neck in our network due to its outstanding performance. After
integrating three ECA modules into the neck, we also perform Class Activation Mapping
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(CAM [31]) on both the baseline model and the ECA-YOLOv5 model. The results of CAM
are shown in Figure 12. The red highlighted area represents a greater impact on object
recognition, while the blue area represents a smaller impact.

Table 4. Comparison of different attention mechanisms in the neck.

Attention Precision/% Recall/% F1-Score mAP50/% FPS/f·s−1

SE 82.8 82.3 0.826 89.1 93.46
SimAM 83.9 83.4 0.836 89.3 93.46
CBAM 83.7 82.7 0.832 89.5 91.74
ECA 82.4 84.5 0.834 89.5 95.24
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It can be seen from Figure 12 that, after incorporating ECA modules into the neck, the
model’s focus on pig aggregation areas has increased (the color has become brighter and
deeper). Additionally, the model also assigns a higher attention weight to areas that were
not focused on in the original model but contain pigs.

3.3.3. Ablation Studies of IO-YOLOv5

To verify the impact of different modules on model performance, we conducted abla-
tion experiments on the aforementioned modules for a more comprehensive comparison.
“×” denotes the nonuse of a module or method, while “

√
” indicates the inclusion of a

module or method in the model. We compare the results to demonstrate the effectiveness
and feasibility of the proposed method and module in improving model performance.

The experiment was based on the baseline model. As shown in Table 5, with the
addition of the GSPPFC module, the model’s indicators improved overall, including a
0.9% increase in mAP50. This proved that the GSPPFC module can effectively improve the
backbone’s feature extraction ability. By replacing convolution modules in P4 and P5 of
the backbone with SARFB modules, the mAP50 increased from 89.5% to 90.1%, which also
demonstrates that the SARFB module can better extract features of large target pig under



Agriculture 2023, 13, 1349 13 of 18

largescale sensitivity fields. After adding the ECA module to the neck of the model and
introducing the Varifocal Loss, the final IO-YOLOv5 model was obtained, with an mAP50
value of 90.8%, which is 2.2% higher than the baseline model. Finally, after performing
model ensemble and using TTA, the mAP50 of the model reached 92.6%, which is 1.8%
higher than the model without them and 4.0% higher than the baseline model. This ablation
experiment effectively demonstrated the effectiveness of the optimization methods and
modules proposed in this paper.

Table 5. Comparison table of the ablation experiments.

Strategies YOLOv5s Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

GSPPFC ×
√ √ √ √ √ √

SARFB × ×
√ √ √ √ √

Varifocal Loss × × ×
√ √ √ √

ECA × × × ×
√ √ √

Model Ensemble × × × × ×
√ √

TTA × × × × × ×
√

Precision/% 82.7 84.1 84.7 85.7 86.4 86.3 85.1
Recall/% 82.2 83.4 83.3 81.7 82.4 87.1 87.6
mAP50/% 88.6 89.5 90.0 90.4 90.8 92.2 92.6
FPS/f·s−1 94.34 86.21 83.33 83.33 82.64 49.26 17.18

3.4. Algorithm Contrast Experiment

To further evaluate the performance of the model in pig detection after optimization,
we conducted comparison experiments with other network models. Specifically, we com-
pare the optimized model with the Single Shot MultiBox Detector (SSD [32]), YOLOv3,
YOLOv4, YOLOv4-tiny, YOLOv7-tiny, and YOLOv7, and the experimental results are
shown in Table 6.

Table 6. Contrast experiment results of different models.

Model Precision/% Recall/% mAP50/% Params (M) FPS/f·s−1

SSD 85.4 73.6 84.1 35.007 23.26
YOLOv3 86.8 81.6 89.0 61.529 24.63
YOLOv4 81.9 72.8 89.2 64.363 31.89

YOLOv4-tiny 60.3 81.2 82.6 6.057 111.40
YOLOv5s 82.7 82.2 88.6 7.022 94.34

YOLOv7-tiny 84.2 80.4 87.7 6.018 101.01
YOLOv7 83.9 85.5 90.4 37.202 28.74

IO-YOLOv5 86.4 82.4 90.8 12.338 82.64
IO-YOLOv5 + Ensemble 86.3 87.1 92.2 18.335 49.26

IO-YOLOv5 + Ensemble + TTA 85.1 87.6 92.6 18.335 17.18

According to experimental results, our proposed lightweight model IO-YOLOv5
almost perform better than other large network models in all metrics, including SSD,
YOLOv3, and YOLOv4. Specifically, for the mAP50 metric, IO-YOLOv5 outperforms
YOLOv4, which has the best performance among the three, by 1.6%. Additionally, IO-
YOLOv5 has a much faster detection speed compared to these three models. Compared
to lightweight network models including YOLOv4-tiny, YOLOv5s, and YOLOv7-tiny,
IO-YOLOv5 exhibited better accuracy and mAP50 performance metrics, with a precision
higher than YOLOv7-tiny by 2.2% and mAP50 higher than YOLOv5s by 2.2%. Moreover,
the FPS of IO-YOLOv5 was more than enough to meet the smooth detection requirements.
Finally, after model ensemble with YOLOv7-tiny and using TTA, the FPS of the model
decreased, but the detection performance demonstrated significant improvements, making
it applicable for scenarios that have different requirements of detection speed and accuracy.
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3.5. Performance Comparison on the Duck Dataset

To further validate the effectiveness of our experimental model, we conducted further
testing on the Duck dataset [33]. The results are shown in Table 7.

Table 7. Contrast experiment results of Duck dataset.

Method Precision/% Recall/% mAP/% FPS/f·s−1 1

YOLOv5s 95.50 88.70 66.70 84.75
YOLOv7 95.80 93.64 65.50 30.48

CBAM-YOLOv7 [33] 96.84 94.57 66.10 29.32
IO-YOLOv5 95.23 90.26 67.17 74.62

1 FPS is measured again in the local environment to ensure that it is not affected by hardware conditions. The
metric may have some fluctuations.

As shown in Table 7, although IO-YOLOv5 has slightly lower precision and recall than
CBAM-YOLOv7, it outperforms CBAM-YOLOv7 in terms of mAP, which is an important
indicator. In addition, the detection speed of IO-YOLOv5 is approximately 2.5 times faster
than that of CBAM-YOLOv7.

3.6. Performance Comparison on Different Pig Dataset

We also investigated the performance comparison of different models under different
task challenges that included various illuminations or heavy occlusion. The result is shown
in Table 8.

Table 8. Contrast experiment results of Duck dataset.

Model Occlusion Illumination Precision/% Recall/% mAP50/%

[34] slight regular 94.2 95.4 -
[10] slight various 92.0 86.0 -
[12] heavy regular 90.1 92.7 -

IO-YOLOv5 heavy various 85.1 87.6 92.6

As shown in Table 8, complex lighting variations and heavy occlusions can significantly
degrade the performance of the models, which is the problem we have explored and
addressed in this paper.

4. Discussion
4.1. Different Occlusion

In the experiments presented in this paper, we also discuss the effect of live pig
recognition under different occlusion. It can be divided into two situations: slight occlusion
and heavy occlusion, and the results are shown in Table 9.

Table 9. Result of different occlusion.

Occlusion
YOLOv5s Ours

Precision/% Recall/% mAP50/% Precision/% Recall/% mAP50/%

slight 88.0 85.2 90.8 88.1 89.7 94.4
heavy 86.6 74.6 86.6 84.2 81.4 89.6

According to the result in Table 9, the optimized model shows better recognition results
than the baseline model under both slight occlusion and heavy occlusion. Specifically, the
optimized model achieved a 3.6% and 3.0% increase in mAP50 for slight occlusion and
heavy occlusion, respectively, compared to the baseline model. This conclusion strongly
indicates that our experiment model has superior pig recognition performance under
heavy occlusion.
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4.2. Different Illumination

We also examined the impact of different illuminations on pig detection. According to
the specific breeding environment, it can be divided into three situations: bright, regular,
and dark illumination. The specific results are shown in Table 10.

Table 10. Result of different illumination.

Illumination
YOLOv5s Ours

Precision/% Recall/% mAP50/% Precision/% Recall/% mAP50/%

bright 82.8 84.5 87.2 84.3 85.2 90.8
regular 86.5 83.9 90.1 86.9 88.3 94.0

dark 82.5 81.2 87.2 86.6 85.2 90.1

Based on the result of Table 10, it can be observed that the optimized model performs
better in pig recognition than the baseline model under different illumination. Specifically,
the optimized model achieved a 3.6%, 3.9%, and 2.9% higher mAP50 than the baseline
model under bright, normal, and dark illuminations, respectively. This conclusion strongly
demonstrates the superior performance of our experiment model in pig detection under
various illuminations.

4.3. Some Detection Result

The models we trained allow us to obtain the detection results of some images from
YOLOv5 and IO-YOLOv5 on the testing set. Figure 13 shows some pictures of live pig
detection results under different illumination and occlusion.
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IO-YOLOv5. The red bounding box represents the recognized object, and the number of recognized
pigs is annotated in the upper left corner.
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The experimental result demonstrates that our model is more capable of identifying
pigs in images fairly well across a variety of real-world scenarios than the baseline model.

5. Conclusions

This paper proposed a method for recognizing pigs under heavy occlusion and various
illuminations based on IO-YOLOv5. The backbone of the network was formed by SARFB
modules and a GSPPFC module, and the neck introduced the ECA modules. Meanwhile,
the model adopted Varifocal Loss in the training process. The SARFB module consisted
of two convolution operations with different kernel sizes and dilation coefficients, which
were weighted by SimAM. This allows the model to expand its receptive field and acquire
feature highlights from different receptive fields. The GSPPFC used cascade pooling and
incorporated the CSP module and Ghost Convolution to enhance the model’s information
flow. Adding the ECA module enhances the attention domain of features under high
occlusion. Ultimately, the IO-YOLOv5 model used Varifocal Loss to improve its ability to
learn from high-quality samples.

The experiments showed that IO-YOLOv5 achieved a mAP of 90.8%, which further
increased to 92.6% through model ensemble and TTA. Compared to seven other models, IO-
YOLOv5 had the highest mAP and its detection speed was three times faster than YOLOv7,
the model with the highest mAP among the seven. Furthermore, the mAP of IO-YOLOv5
was 94.4% and 89.6% under slight and heavy occlusion, respectively, and the mAP was
90.8%, 94.0%, and 90.1% under bright, regular, and dark illuminations, respectively, all of
which were higher than the baseline model.

IO-YOLOv5 improves the accuracy of pig recognition under heavy occlusion and
various illuminations, indicating that the model has good performance. However, com-
pared to the baseline model, the detection speed of this model has decreased somewhat,
but it still maintains a high level of 82.64 f·s−1 and can meet the detection needs of most
production environments.

This experiment has optimized the accuracy of pig recognition under high occlusion
and different lighting conditions by expanding the model’s receptive field, enhancing the
model’s feature fusion, and strengthening the model’s learning of high-quality samples. In
addition, we can further explore the possibility of model optimization by using covariance
pooling to introduce second-order features and finding differences in channel features. This
is also the direction we hope to continue exploring in our next step.
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