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Abstract: The egg production rate is a crucial metric in animal breeding, subject to biological and
environmental influences and exhibits characteristics of small sample sizes and non-linearity. Cur-
rently, egg production rate prediction research predominantly focuses on single-step point prediction,
lacking multistep and interval prediction exploration. To bridge these gaps, this study proposes a
recursive, multistep interval prediction method for egg production rates, integrating environmental
variables and attention mechanisms. Initially, this study employed three gradient boosting tree
models (XGBoost, LightGBM, CatBoost) and the recursive feature elimination (RFE) method to
select critical environmental variables and reduce data dimensionality. Subsequently, by scaling the
time scale of important environmental variables and utilizing the variational modal decomposition
improved by the grey wolf optimization (GWO-VMD) method for time-series decomposition, the
volume of important environmental variable data is augmented and its complexity is reduced. Ap-
plying the long short-term memory (LSTM) neural network to obtain direct multistep predictions
on IMFs, the predicted outcomes are averaged daily to yield the environmental variables for the
upcoming two days. Finally, a multistep interval prediction model based on Seq2seq-Attention and
Gaussian distribution is proposed in this study, and parameter optimization is carried out using
the multi-objective grey wolf optimization algorithm (MOGWO). By inputting the historical egg
production rate data and environmental variables into the proposed model, it is possible to achieve
multistep point and interval prediction of egg production rates. This method was applied to analyze a
dataset of egg production rates of waterfowl. The study demonstrated the feasibility of the recursive
multistep prediction approach combined with environmental variables and guides egg production
estimation and environmental regulation in animal husbandry.

Keywords: egg production rate; multistep point prediction; interval prediction; environmental
variables selection; GWO-VMD decomposition; Seq2seq-Attention; MOGWO optimize parameter

1. Introduction

Animal husbandry is a crucial component of agriculture [1]. Nowadays, animal
husbandry is gradually moving towards intelligentization. IoT and AI technologies used
to address practical problems are the leading research directions in this field [2]. Predicting
the egg production rate can be utilized for measuring the success of the animal population,
predicting egg yields, and optimizing future income [3,4]. Therefore, predicting future egg
production rates is significant to the animal husbandry industry.
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From an environmental perspective, the environmental factors that affect egg produc-
tion rates include temperature, hydrogen sulfide, light, ammonia, carbon dioxide, humidity,
dust, etc. Kim et al. [5] investigated how various temperatures and humidity affected
laying chickens’ ability to produce eggs. Geng et al. [6] investigated the effects of separate
and combined lighting and photoperiod on egg production and quality. In [7,8], Shepherd
and Saksrithai pointed out that poultry houses are prone to producing ammonia, dust,
greenhouse gas and hydrogen sulfide, and that this can have a negative impact on how well
animals and fowl produce eggs. Therefore, this study mainly analyzes the impact of differ-
ent environmental variables on egg production rates from an environmental perspective. It
combines multiple environmental variables to predict the egg production rate.

Statistical analysis, fuzzy modeling, machine learning (ML), and deep learning (DL)
models are currently the most widely used techniques for estimating egg production
rates. Abdallah et al. [9] considered egg production data as a time series and utilized
the ARIMA statistical model to forecast egg production. An optimal fuzzy prediction
model for egg production was proposed by Omomule et al. [10] using young age, feed
quantity and quality, chicken weight, and total egg production as data points. With the
rise of artificial intelligence (AI), machine learning (ML) models have been applied to
the field of egg production rate prediction. Minlan et al. [11] used principal component
analysis (PCA) to aggregate the effects of various factors influencing egg production
rates. They then employed particle swarm optimization-least squares support vector
machines (PSO-LSSVM) to construct a weighted data regression model, obtaining better
predictions than conventional models. Gonzalez-Mora et al. [12] utilized random forest
(RF) to predict egg production by combining indoor environmental and hygrothermal
variables. In addition, the feature importance ranking function of RF allows for scenario
analysis and is a good framework for evaluation. Recently, deep learning (DL) models
have become known for their excellent problem-solving capabilities and have been used
in complex and non-linear egg production prediction problems. Ghazanfari et al. [13]
employed an artificial neural network (ANN) with two hidden layers to successfully learn
the relationship between the hen’s age and egg production. Felipe et al. [14] utilized
multiple linear regression (MLR), Bayesian networks (BN), and artificial neural networks
(ANN) to forecast the total egg production (TEP) of European quails. Their study revealed
the presence of non-linear relationships between different variables and egg production and
selecting appropriate covariates enhanced the accuracy of egg production prediction. Liu
et al. [15] employed gray relational analysis to examine the correlation between multiple
environmental variables, feed intake, and the egg production rate. They established deep
belief networks with swarm optimization algorithms (PSO-DBN), which outperformed
other existing combined models to forecast the egg production rate.

There has been some progress in research on the methods for predicting egg production
rates. However, there are still some drawbacks that need to be addressed, which are
as follows:

(1) Currently, the methods used to reduce the factors that reduce egg production rates
primarily involve statistical analysis or feature extraction, but these approaches
suffer from issues such as inadequate feature selection or low interpretability of
extracted features.

(2) Research on egg production rate prediction mainly focuses on single-step prediction,
lacking studies on multistep prediction. Multistep prediction can provide more
helpful information, which is significant for production estimation and regulation.

(3) Research on egg production rate prediction has focused solely on point prediction,
while lacking studies on interval prediction. Interval prediction can quantify the
unavoidable bias brought about by multistep point prediction and better describe the
uncertain information about egg production rate.

Feature selection reduces data dimensionality, training time and memory, while also
mitigating the effects of noise and extraneous variables, improving model performance [16].
Based on the function of feature importance calculation, gradient boosting decision trees
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(GBDT) using decision trees as weak learners have become a novel and effective feature
selection model, while XGBoost, LightGBM and CatBoost are three new models that
improve GBDT. They exhibit fast training speeds and little dependency on parameters [17].
Chen and Zhang [18,19] used XGBoost in conjunction with the RFE approach for feature
selection, demonstrating that this method produces better dimensionality reduction and
is more efficient than other feature extraction methods. In addition, in [20,21], Banga and
Karbasi employed LightGBM and CatBoost as feature selection models, respectively, and
similarly achieved excellent feature selection results. However, the efficacy of XGBoost,
LightGBM, and CatBoost models depends on the data size and model parameters [22],
necessitating careful analysis and comparison based on specific circumstances.

Environmental variables are suitable for direct prediction because of their short time
scale and large amount of data compared with the egg production rate. To achieve recursive
multistep prediction of the egg production rate, we need to first perform multiple direct-
step predictions of the screened important environmental variables, and then use future
environmental variables as input for recursive multistep prediction. Kim et al. [23] used the
LSTM neural network to achieve multistep prediction of environmental variables by setting
appropriate input and output time windows. However, environmental variables are volatile
and complex. To further improve the multistep prediction performance, preprocessing
of environmental variables is necessary to reduce complexity. Time–frequency domain
decomposition is a useful method for time-series decomposition and noise reduction.
Among the common decomposition methods, variational modal decomposition (VMD)
has better decomposition performance and is less affected by noise [24]. The total number
of decomposition modes (K) and the quadratic penalty coefficient (α) have a significant
impact on the decomposition results of the actual signal during the VMD decomposition
process and are difficult to determine. In the field of fault diagnosis, the variational
modal decomposition improved by the grey wolf optimization (GWO-VMD) method was
proposed to solve the problem of determining VMD parameters [25]. Multiple IMFs with
low complexity and high regularity can be obtained by optimizing parameters K and
α with the local minimal envelope entropy as the fitness function using the grey wolf
optimization algorithm.

Interval prediction can effectively evaluate the risks caused by point prediction errors
and provide uncertainty information [26]. In [27,28], Huang and Abbaszadeh performed
interval predictions for dissolved oxygen and crop yield, respectively, to obtain more accu-
rate and reliable predictions. Seq2seq-Attention has been widely applied in various fields
for time-series forecasting [29,30]. It can extract valid information from multidimensional
and historical data more efficiently, and thoroughly explore the cause-and-effect relation-
ship between each variable and the target [31]. However, there are fewer applications in
agriculture. This study proposes a new probabilistic recurrent neural network based on
Seq2seq-Attention and Gaussian distribution to capture the correlation between the egg
production rate and multiple environmental variables, and accomplish multistep point and
interval prediction of egg production.

Intelligent optimization algorithms have been widely used in the process of deter-
mining neural network initialization parameters to solve the problem of the difficult
determination of parameters [11,15]. This study adopted the multi-objective grey wolf
optimization algorithm (MOGWO), which is inspired by the hunting behavior of wolves in
a pack to search for the optimal initial parameter combination of the model. Two objectives
were defined for optimization, resulting in higher prediction accuracy and stability than a
single objective.

Based on the above, this study proposes a hybrid egg production rate prediction
method combining environmental variables and attention mechanisms to obtain accurate
point prediction and interval prediction results. The main contributions and innovations of
this study are as follows:

• A feature selection method is proposed in this study that combines XGBoost, Light-
GBM, CatBoost, and the RFE feature elimination approach. This method can filter
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out redundant environmental variables more thoroughly, ultimately reducing model
training time and improving prediction accuracy.

• A multistep prediction strategy for egg production rates is also proposed. Due to
limited egg production rate data, direct multistep prediction yields unsatisfactory
results. Based on the idea of recursive multistep forecasting, we first performed
autoregressive multistep forecasting of environmental variables on small time scales,
and then averaged the forecasting results daily and combined them with historical egg
production rate data to achieve multistep forecasting of future egg production rates.

• Furthermore, an egg production rate interval prediction model is introduced in this
study. Compared to the current egg production rate prediction models, this model
incorporates seq2seq architecture and attention mechanisms to enhance the utiliza-
tion of environmental and egg production rate data and improve point prediction
accuracy. Moreover, this model can output suitable prediction intervals to measure
the uncertainty of the egg production rate. Lastly, the MOGWO multi-objective algo-
rithm is used for optimization to ensure the accuracy and stability of both point and
interval predictions.

2. Materials and Methods

The method’s architecture can be divided into the following four modules: data pre-
processing and organization, feature selection, environmental variable prediction, and egg
production rate prediction. The first module focuses on preprocessing the environmental
data collected from sensors and averaging it over 6 h and 24 h to obtain two types of data
for multistep prediction of environmental variables and important feature selection. The
second module uses XGBoost, LightGBM, and CatBoost models in combination with the
RFE method to perform feature selection. The environmental variables are first sorted by
importance based on the tree’s importance calculation function. The three models are used
together with historical egg production rate data and environmental variables to find the
optimal number of features using RFE. The third module consists of the environmental
variable decomposition module and the autoregressive multistep prediction module. The
GWO-VMD algorithm decomposes complex environmental variables into multiple simple
and easily predictable IMFs. The decomposed IMFs are then passed into the LSTM neu-
ral network separately for direct multistep prediction. Finally, the predicted results are
averaged daily to obtain the future two-day environmental variables. The fourth module
predicts egg production rates by using environmental variables and historical data. It
utilizes an egg production rate interval prediction model proposed in this study to make
both point and interval predictions for the next three days. The system architecture is
shown in Figure 1.

2.1. Study Area and Data Source

This research used data collected at the Zhongcun Chinese Goose Breeding Base in the
Panyu District of Guangzhou City, Guangdong Province. As shown in Figure 2a, a remote
monitoring platform for waterfowl intensive breeding based on the Internet of Things has
been developed. To carry out this experiment, we installed several Internet of Things (IoT)
devices at the goose house to monitor environmental factors such as temperature, dust,
carbon dioxide, light, humidity, ammonia, and hydrogen sulfide, as shown in Figure 2b.

The environmental data collected by IoT sensors will be transmitted to a remote cloud
service center via a gateway and then stored in a database, making it easy for users to view
and save the data on their desktop computers and mobile devices.

To ensure consistency of the samples from different seasons and periods, the study
adopted environmental monitoring equipment provided by Guangzhou Hairui Information
Technology Co., Ltd. (Guangzhou, China). The equipment includes a network transmission
system, hub, temperature sensor, humidity sensor, CO2 concentration sensor, light sensor,
ammonia concentration sensor, noise sensor, total suspended particle sensor and H2S sensor.
The equipment has a response time of less than or equal to 30 s, repeatability of less than or
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equal to ±2%, linear error of less than or equal to ±2%, and zero drift of less than or equal
to ±1%. The specific parameters are listed in Table 1.
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Table 1. Technical data of sensors.

Environmental Variables Measurement Range Precision Agreement

Carbon dioxide (ppm) 0~50,000 ±20 PWM
Temperature (◦C) −40~105 ±0.4 IIC

Humidity (%) 0~100 ±5 IIC
Dust (ppm) 0~999.9 ±7% Modbus

Ammonia (ppm) 0~100 ±5% Modbus
Light (lx) 0~65,535 ±5 IIC

Hydrogen sulfide (ppm) 0~100 ±3% PWM

2.2. Feature Selection Method
2.2.1. Gradient Boosting Tree Model

The gradient boosting tree is an indispensable application of the gradient boosting
technique, which mainly utilizes base learners to solve problems in multiple stages while ef-
fectively preventing overfitting by optimizing the loss function. XGBoost [32] is a powerful,
flexible, and portable tool that effectively leverages resources and overcomes the previous
limitations of gradient boosting. It incorporates a regularization term in the cost function
to control model complexity and prevent overfitting. Additionally, XGBoost optimizes the
loss function using second-order Taylor expansion, thereby accelerating the optimization
process. To reduce training time, Ke et al. [33] developed LightGBM, which utilizes an
improved histogram algorithm to remove feature values before training, reducing traversal
time. Furthermore, LightGBM utilizes the Exclusive Feature Bundling (EFB) algorithm
to bundle mutually exclusive features to reduce the feature number and employs the
Gradient-based One-Side Sampling (GOSS) algorithm to retain large-gradient samples
while focusing on small-gradient samples. CatBoost [34] uses fully symmetric trees as
base models to compute leaf values, thereby addressing gradient bias, prediction shift and
overfitting issues. Moreover, CatBoost incorporates an automatic transformation algorithm
to convert categorical features into numerical features, facilitating the efficient processing
of categorical features and overall improving the model accuracy and generalization ability.

2.2.2. Filtering Methods for Important Environment Variables

Recursive Feature Elimination (RFE) is a wrapper method for feature selection that
iteratively eliminates the least essential features using a specific learning algorithm. This ex-
periment uses XGBoost, LightGBM, and CatBoost as external learning algorithms for feature
selection. By comparing and contrasting the outcomes of the three models’ feature selec-
tion, it is intended to determine the optimum number of features for the input model. The
primary process involves sorting the feature importance of each subset of features in each
round based on the external learning algorithm results, filtering out low-importance fea-
tures to reduce the feature dimensionality, and continuously updating feature importance.
The feature subset with the maximum predictive accuracy is determined by integrating the
various feature subsets and the results of the external learning algorithm.

2.3. Optimization Algorithm Based on Grey Wolf Pack
2.3.1. Grey Wolf Optimizer Algorithm

Inspired by the foraging behavior of wolf packs, Mirjalili et al. [35] proposed a single-
objective swarm intelligent optimization algorithm called the grey wolf optimizer (GWO)
algorithm. A grey wolf pack consists of four types of wolves, namely α, β, δ, andω, which
can be classified from high to low according to their rank. The α, β, and δ wolves lead the
pack’s hunting behavior, while the remainingωwolves follow their lead. The wolf pack
approaches the optimal solution in the search space through the initial solutions of the α, β,
and δwolves. The optimal solution is obtained by continuously updating the position of
the wolves and narrowing the distance to the prey.
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2.3.2. Multi-Objective Grey Wolf Optimization Algorithm

Mirjalili et al. [36] improved the single-objective grey wolf optimizer algorithm and
proposed a multi-objective grey wolf optimizer (MOGWO) algorithm that is suitable for
solving multi-objective problems. Compared with GWO, MOGWO introduces an external
population archive to store current non-dominated Pareto optimal solutions and changes
the leader selection strategy. This algorithm inherits the advantages of GWO, such as fewer
parameters, ease of implementation, and fast convergence rate.

2.4. GWO-VMD Method
2.4.1. Variational Mode Decomposition

Variational mode decomposition (VMD) [37] is an adaptive and fully non-recursive
signal processing method that effectively addresses endpoint effects and mode mixing is-
sues in decomposing raw signals that arise in EMD. It demonstrates excellent performance
in decomposing non-linear and complex signals. By pre-determining the number of de-
composed modes, VMD can adaptively match each mode’s optimal central frequency and
limited bandwidth, effectively separating the intrinsic mode functions (IMF) and achieving
signal frequency division. Finally, it obtains the practical decomposition components of
the given signal. The original signal can be decomposed into K intrinsic mode functions
(IMFs) by VMD decomposition, and K is the number of decomposed modes that need to
be predetermined.

2.4.2. Envelope Entropy

Envelope entropy is an excellent indicator of the sparsity of each IMF obtained from
the decomposition. When there is more noise in the IMF, the envelope entropy is more
prominent, and vice versa. Its fundamental concept is to extract the signal’s characteristics
by combining Hilbert transform with information entropy. The mathematical formulas are
as follows:

Ep = −
m

∑
j=1

pj lg pj (1)

pj = a(j)/
m

∑
j=1

a(j) (2)

Where Ep denotes the envelope entropy; a(j) represents the envelope signal sequence
obtained by Hilbert demodulation of the signal x(j) (j = 1, 2, . . . , m); pj is the normalized
form of a(j).

2.4.3. Environmental Time-Series Decomposition Method Based on GWO-VMD

In decomposing environmental time series, the total number of decomposition modes
(K) and the quadratic penalty coefficient (α) have a significant impact on the decomposition
performance of VMD. To determine the VMD parameters, this study used variational
modal decomposition improved by the grey wolf optimization (GWO-VMD) method,
which uses the local minimum envelope entropy as the fitness function and employs the
GWO algorithm to optimize the parameters K and α. The envelope entropy can reflect
the sparsity of the IMFs obtained by decomposing the original sequence. The smaller the
envelope entropy, the less noise the IMF contains. Therefore, the more stable and favorable
it is for prediction. The main steps of GWO-VMD are as follows:

Step 1. Initialize the grey wolf population size N and set the maximum iteration of the
algorithm to M.

Step 2. Define the optimization ranges for the VMD parameters K and α, and initialize the
other VMD parameters.

Step 3. Iteratively update the grey wolf population information to find the optimal parame-
ter combination.
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Step 4. Apply the optimized parameter combination (K, α) to VMD for decomposition and
calculate the value of the fitness function pair.

Step 5. Check if the iteration conditions are met and proceed to step 6 if satisfied, or return
to step 3 otherwise.

Step 6. Stop updating the iterations and obtain the optimized combination of parameters
(K, α).

2.5. New Interval Prediction Model for Egg Production Rate
2.5.1. Long Short-Term Memory

The LSTM network [38] is neural network based on the improvement of the RNN.
It aims to introduce a cell state that stores information and three additional gates (input
gate, forget gate, and output gate) that control the amount of information flow to solve the
long-term dependency problem of RNN. Figure 3 illustrates the internal structure of an
LSTM unit. The forget gate ft determines how much information from the previous cell
state ct−1 should be retained in the current cell state ct, while the input gate it decides how
much information to include in the current cell state ct. The output gate ot controls how
much information of the current cell state ct is retained in the output ht at the current time.
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2.5.2. Seq2seq-Attention Architecture

The attention mechanism is inspired by how the human brain selectively focuses
on important information while ignoring irrelevant details, thereby improving the per-
formance and efficiency of the model. In the field of time-series forecasting, traditional
encoder–decoder architecture is used. It encodes the input time series into a fixed-length
vector, no matter its length. This may overlook important temporal information and affect
the accuracy of prediction, especially for multidimensional and multivariable data. By
contrast, the attention mechanism can capture the temporal correlation between multidi-
mensional time series and extract the relationship between input and output features, thus
improving prediction accuracy. Figure 4 illustrates the structure of incorporating the soft
attention mechanism into the seq2seq framework.
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By considering the relationship between the context vector and the encoder’s hidden
layer output hβ, the attention mechanism recreates a new context vector C, which is then
passed into the decoder. The context vector Ci is calculated by the attention weight ai,j and
the hidden layer output hβ. The formulas are as follows:

Ci =
n

∑
j=1

ai,jhβ (3)

ai,j =
exp

(
ei,j
)

∑T
k=1 exp(ei,k)

(4)

where represents the matching score between the input surrounding the position of j and
the output surrounding the position of i. The scoring model comprises a single hidden
layer neural network that is jointly trained with the other parts of the model. The non-linear
activation function tanh is employed. The formula for ei,j is as follows:

ei,j = VT
a tanh(Wa[Si−1, hβ]) (5)

where Va and Wa represent weight matrices that need to be learned in the model, while
Si−1 denotes the hidden state of the decoder.

2.5.3. Neural Networks Based on Gaussian and Seq2seq-Attention

This study proposes a supervised learning model that can perform interval prediction
using time-series data to achieve probability prediction of egg production rates. The
structure is shown in Figure 5; assuming zt is the value of the time series at time t, and
the current egg production rate data are

[
z0, z1, . . . , zt0−2, zt0−1

]
, the model’s objective is

to predict the probability distribution p of the data
[
zt0 , zt0+1, . . . , zT

]
for the subsequent T

time steps, where environmental factors are represented by the data [x0, x1, . . . , xt0 , . . . , xT].
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The time interval [0 : t0 − 1] is the training time scale, and [t0 : T] is the prediction time
scale. The model learns from the data within the training time scale to predict the values
within the prediction time scale. With these conditions, we can construct the probability
distribution p as follows:

pΘ
(
zt0:T

∣∣z0:t0−1, x1:T
)
=

T

∏
t=t0

pΘ(zt|z0:t−1, x0:T) =
T

∏
t=t0

l(zt|θ(ht, Θ)) (6)

ht = h(ht−1, zt−1, xt, Θ) (7)

where h refers to the Seq2seq-Attention network; ht denotes the neural network output
at a specific time. Θ represents the model parameters, while l represents the likelihood
function, with θ being the likelihood parameter.
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During the training phase, at each time point t, the network input includes the previous
time point’s value zt−1, the covariate xt, and the output of the neural network from the
previous time step ht−1. The model parameters are fitted by maximizing the log-likelihood
function l.

During the prediction phase, the distribution probability p for each time step t is
obtained, and the sample value zt that conforms to p is obtained through Monte Carlo
sampling. The median value of the sample value and the covariate xt+1 are jointly input
into the next time step network, and the process is iterated to obtain the sample interval
values for the time range t0 : T.

The specific form of θ(ht) depends on the likelihood function l(z|θ). In this study, we
assume that the egg production rate follows a Gaussian distribution, with the calculation
formula as follows:

l(z|µ,σ ) =
1√

2πσ2
e
−(z−µ)2

2σ2 (8)

µ(ht) = wht + b (9)

σ(ht) = lg(1 + exp(wht + b)) (10)

The symbols µ and σ represent the mean and variance. We can analyze and predict
the egg production rate with the obtained values of y, µ, and σ.

2.6. Experimental Setup

The experimental environment used in this study is Intel(R) Core(TM) I7-12700H
2.3GHz CPU, NVIDIA GeForce RTX3060 GPU, 16GB RAM, Microsoft Window11 system,
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and Anaconda3 IDE with a deep learning framework based on the PyTorch 1.8.1 framework
and Python 3.8.5. Furthermore, XGBoost, LightGBM, and CatBoost were utilized via
toolkits xgboost 1.6.1, lightgbm 3.3.2, and catboost 1.1, and the feature selection process
was conducted using default parameters for the models.

2.7. Data Acquisition and Preprocessing
2.7.1. Datasets

This study conducted experiments using Chinese goose breeding tracking data col-
lected by monitoring devices. The raw data consisted of 7 environmental variables, in-
cluding carbon dioxide, temperature, humidity, dust, light, ammonia, hydrogen sulfide,
and egg production data. These environmental variables were sampled every 2 min, re-
sulting in 159,318 data points. Egg production data were collected once daily, resulting in
223 data points.

2.7.2. Address the Issue of Missing Values

During the process of data acquisition, it is inevitable that environmental sensors
will experience minor data loss. Therefore, it is necessary to fill in the missing values to
ensure the completeness of the data. Since the data collection interval is short and the
percentage of missing values is low, accounting for only 0.7% of the total data, we employed
the last observation carried forward (LOCF) method to fill in the missing environmental
time-series data. As a result, we obtained 160,560 environmental variable data points for
our experiment.

2.7.3. Data Conversion and Division

We processed the raw data collected by environmental monitoring equipment. Initially,
we averaged the data for seven environmental variables over time intervals of 4 h, 6 h,
and 12 h to determine the amount of data required for multistep forecasting. We then
generated forecasts with 48 h time steps, using 12, 8, and 4 steps. After conducting multiple
experiments, we found that the data volume and prediction step size of the time interval of
6h were moderate compared to those of 4 h and 12 h, and the accuracy of multistep direct
prediction was higher compared to the other two time intervals. Therefore, we averaged
the data over a 6 h time interval, resulting in 892 data points for multistep prediction. We
further calculated the daily average of the environmental data, resulting in 223 data points
that were used as covariates for egg production rate prediction. Additionally, we converted
the egg production data to egg production rate data using the following formula:

Egg production rate =
Daily egg production

Number o f water f owls per day
(11)

The data were transformed into supervised learning data. Historical egg production
rate data and environmental variables were used as inputs, which output the prediction
interval of the egg production rate for the upcoming three days recursively. The median
value was considered as the point prediction result. All experiments were conducted using
60% training data and 40% testing data.

2.7.4. Normalization

As shown in Table 2 and Figure 6, there are significant differences in the dimensions
between different data, which can weaken the predictive accuracy of the model’s conver-
gence speed. This study adopts the Min–Max normalization method to map the data to the
range of [0, 1], with the following formula:

Xnew =
X− Xmin

Xmax − Xmin
(12)
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Table 2. The original data with a time interval of 24 h.

Date Egg Production
Rate

Light
(lx)

Dust
(ppm)

Carbon
Dioxide
(ppm)

Temperature
(◦C)

Humidity
(%)

Ammonia
(ppm)

Hydrogen
Sulfide
(ppm)

11 October 2018 0.9884 335.77 65.69 467.86 29.07 98.02 3.56 1
12 October 2018 0.9884 354.46 53.20 470.21 30.16 95.09 3.79 1
13 October 2018 0.9884 430.51 42.87 450.72 29.28 96.58 3.93 1
26 March 2019 0.9487 251.93 48.64 497.11 24.84 99.01 2.08 1
27 March 2019 0.9487 133.46 38.65 484.52 25.01 100.00 1.96 1
28 March 2019 0.9487 133.46 37.99 490.72 24.81 100.00 2.09 1
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2.8. Evaluation Metrics
2.8.1. Point Prediction Evaluation Metrics

To evaluate the point prediction performance of the model, root mean square error
(RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) were
employed as evaluation metrics to measure the deviation between the actual egg production
rate and expected egg production rate. The formulas for the selected evaluation metrics are
as follows:

RMSE =

√
1
n

n

∑
i=1

(Yi − yi)
2 (13)

MAE =
1
n

n

∑
i=1
|Y i − yi| (14)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣Yi − yi
yi

∣∣∣∣ (15)

where n represents the number of predicted samples; Yi represents the prediction result; yi
represents the actual value.

2.8.2. Interval Prediction Evaluation Metrics

The interval prediction performance is evaluated based on prediction interval coverage
probability (PICP), prediction interval normalized root mean square width (PINRW), and
coverage width-based criterion (CWC). The PICP metric indicates the probability of actual
values falling within the predicted interval. A higher PICP indicates greater actual values
falling within the interval and a higher reliability of interval prediction. The PINAW
and PINRW metrics are used to measure the width of the interval, mainly to prevent the
model from pursuing reliability at the expense of the width of the interval, making the
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predicted values unable to effectively describe uncertainty information. The CWC metric is
a comprehensive evaluation metric considering prediction reliability and interval width.

PICP = 1
N

(
N
∑

i=1
Ci

)
Here, Ci =

{
1, yi ∈

[
yU

i , yL
i
]

0, yi /∈
[
yU

i , yL
i
] (16)

PINAW =
1

NA

N

∑
i=1

∣∣∣yU
i − yL

i

∣∣∣ (17)

PINRW =
1
A

√√√√ 1
N

N

∑
i=1

(
yU

i − yL
i
)2 (18)

CWC = PINAW
(

1 + γe−η(PICP−µ)
)

Here, γ =

{
0, PICP ≥ µ
1, PICP < µ

(19)

where yU
i represents the predicted upper bound while yL

i indicates the predicted lower
bound, yi stands for the actual value, and A denotes the target value range used for data
normalization. The parameters γ, η and µ are hyperparameters that measure the CWC
metric. The value of µ determines the minimum acceptable parameter for the PICP metric,
which is set at 0.95. In this case, the parameter η is the penalty factor for unacceptable PICP
and is set at 1. Therefore, when the PICP metric is not met, it significantly impacts the CWC
metric more. In contrast, PINAW has a more significant impact on the CWC metric in the
opposite case.

3. Results
3.1. Feature Selection of Environmental Variables

The experiment utilized environmental data with a time interval of 24 h and employed
three models, XGBoost, LightGBM, and CatBoost, along with the RFE method for feature
selection. Firstly, to investigate the effect of different environmental variables on the
egg production rate, we used environmental variables and the egg production rate as
the inputs and outputs of the XGBoost, LightGBM and CatBoost models. Based on the
feature importance calculation function of the weak learner decision trees, we can obtain
the importance ranking of environmental variables as shown in Figure 7a and Table 3.
From the feature importance graph, it is evident that the feature importance ranking in
descending order is as follows: carbon dioxide, temperature, humidity, dust, noise, light
intensity, and hydrogen sulfide for the XGBoost and CatBoost models. However, for the
LightGBM model, the importance of temperature is higher than that of carbon dioxide,
and the ranking of other variables is the same as the other two models. In addition, we
observed that the impact of hydrogen sulfide on the egg production rate could be almost
ignored among the seven environmental variables.

Table 3. Importance score of environmental variables.

Variable XGBoost LightGBM CatBoost

Carbon dioxide 0.533 0.195 0.400
Temp 0.225 0.256 0.250

Humidity 0.207 0.162 0.169
Dust 0.017 0.155 0.066

Ammonia 0.011 0.126 0.052
Light 0.007 0.105 0.062

Hydrogen sulfide 4.16 × 10−5 0.0 0.002
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We transformed egg production rate data into supervised learning data to further
explore the optimal number of features for inputting into the model. Combining RFE
with seven environmental variables and the egg production rate from the previous period
(eight features), we gradually filtered out the low-importance features according to each
model’s feature importance sequence. We used the root mean square error as the evaluation
metric, and observed the fitting effect of the model under different feature numbers. As
shown in Figure 7b, we found that when the feature number was four (the egg production
rate from the previous time, carbon dioxide, temperature, and humidity), the RMSE of
the three models reached the lowest point, indicating that the three models achieved the
best prediction performance. Therefore, we chose carbon dioxide, temperature, humidity,
and the egg production rate from the previous time as the input for the final model. In
Section 3.4.3, we will provide additional evidence to demonstrate the effectiveness of this
feature selection method.

3.2. GWO-VMD Decomposition of Critical Environmental Variables

The time series of the environmental variables exhibited high complexity and signifi-
cant volatility, indicating a strong mutual interference among the sequences of different
frequencies within the environmental variables. To enhance the accuracy and stability of the
multistep direct prediction of environmental variables, we adopted the GWO-VMD method.
We utilized the minimum envelope entropy value as an adaptive parameter to decompose
each complex environmental variable into multiple sub-series of varying frequencies.

According to the feature selection results, the experiment employed time-series data
of carbon dioxide, temperature, and humidity with a time interval of 6 h as the data sample.
The initial and maximum numbers of iterations for the GWO algorithm were set to 20. Since
it was necessary to optimize two parameters, namely K and α, the variable dimension is set
to 2. The value range of K was set to [2, 9], and αwas set to [400, 3000]. The optimization
process of the three environmental variables using the GWO-VMD method is shown in
Figure 8. It can be observed that the GWO method shows excellent optimization ability and
fast convergence speed in optimizing VMD parameters. The total number of decomposition
modes, quadratic penalty coefficient, and decomposition results of the three environmental
variables are shown in Table 4 and Figure A1 (in Appendix A). After VMD decomposition,
the intrinsic mode functions (IMFs) of different frequencies can be evenly displayed in
the time domain. This indicates that VMD decomposition could effectively reduce the
non-linearity, non-stationarity, and randomness of complex environmental variables, and
fully extract the time-series characteristics of environmental variables.
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Table 4. VMD decomposition parameters for important environmental variables.

Variable Envelope Entropy K α

Carbon dioxide 2.8923 2897.673 7
Temperature 2.8113 3012.798 5

Humidity 2.8612 1795.127 4

3.3. LSTM-Based Multistep Prediction of Environmental Variables

The time scale of the data entered into the egg production rate prediction model
is 24 h. However, we have processed the environmental variable time interval into 6 h.
Therefore, the output steps for multistep prediction are 4 (24 h) and 8 (48 h), and we can
obtain the environmental variable data for the next two days by averaging the prediction
results daily. To achieve better multistep prediction results, we transformed the IMFs of the
three environmental variables, which have undergone GWO-VMD decomposition, into
supervised learning data. For this purpose, we needed to set the sliding window length.
Different sliding window lengths can affect the prediction performance of the LSTM model.
A window that is too short or too long will weaken the simulation effect of the LSTM
and reduce the prediction accuracy. This experiment set the LSTM input sequence’s time
window lengths to 8 and 16 and used the previous 8 and 16 time periods to predict the
following 4 and 8 time periods, respectively. The prediction results were then reconstructed
and averaged daily, and the visualized results are shown in Figure 9.

To demonstrate the necessity of the proposed approach, direct multistep prediction
was performed on the environmental variable data with time intervals of 6 h and 24 h. The
results were compared using the mean absolute error (MAE) as the evaluation metric, as
shown in Table 5. We observed that predictions for data with a time interval of 6 h and
then averaging the results, the MAE was lower than predictions using data with a time
interval of 24 h. This suggests that reducing the time scale and increasing the amount
of data can effectively improve the multistep prediction accuracy of environmental time
series. In addition, after GWO-VMD decomposition, the multistep prediction performance
was significantly improved, indicating that the VMD method can effectively reduce the
complexity of the time series and remove noise.

Table 5. Comparison of MAE prediction errors for important environmental variables under different
processing methods.

Environment
Variable

6 h Average and
GWO-VMD 6 h Average 24 h Average

1 Day 2 Days 1 Day 2 Days 1 Day 2 Days

Carbon dioxide 7.987 11.100 15.710 17.930 18.048 23.758
Temperature 0.800 0.964 1.434 1.540 1.421 1.989

Humidity 1.670 2.087 2.200 4.306 3.858 4.705
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3.4. Prediction of Egg Production Rate

After obtaining important future environmental variables (carbon dioxide, tempera-
ture, humidity) for a time interval of 24 h, they were entered into the final model together
with the egg production rate of the previous period for point and interval prediction.
For the sake of discussion, we abbreviate the model proposed in this study as SAG
(Seq2seq-Attention-Gaussian). Meanwhile, we use the multi-objective optimization al-
gorithm MOGWO to optimize the objective functions MAE and CWC, and we abbreviate
the model combined with the multi-objective optimization algorithm as MSAG (MOGWO-
Seq2seq-Attention-Gaussian).

3.4.1. Point Prediction

In this experiment, we compared the performance of the MSAG model with several
commonly used machine learning and deep learning models, including multilayer per-
ceptron (MLP), random forest (RF), least squares support vector machine (LSSVM), long
short-term memory (LSTM), gated recurrent unit (GRU), deep autoregressive (DeepAR),
mixed-quantile recurrent neural network (MQRNN), and SAG. All models are trained and
evaluated using the same input variables as MSAG. The comparative test results are shown
in Table 6 and Figure 10.
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Table 6. Comparison results of different models for point prediction.

Model
1-Step 2-Step 3-Step

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

MSAG 0.0053 0.5985 0.0089 0.0062 0.7057 0.0132 0.0068 0.7677 0.0127
SAG 0.0059 0.6640 0.0100 0.0069 0.7804 0.0139 0.0081 0.9210 0.0151

DeepAR 0.0066 0.7542 0.0130 0.0106 1.2019 0.0177 0.0111 1.2516 0.0175
MQRNN 0.0078 0.8494 0.0094 0.0111 1.2249 0.0133 0.0187 2.0598 0.0210

GRU 0.0075 0.8657 0.0156 0.0121 1.3822 0.0200 0.0172 1.9669 0.0265
LSTM 0.0079 0.9025 0.0157 0.0114 1.2994 0.0198 0.0137 1.5569 0.0245

LSSVM 0.0155 1.7488 0.0188 0.0190 2.1188 0.0222 0.0199 2.2082 0.0239
RF 0.0137 1.6159 0.0234 0.0168 1.9668 0.0271 0.0315 3.4891 0.0412

MLP 0.0262 2.9749 0.0327 0.0315 3.5526 0.0397 0.0359 4.0450 0.0438

Agriculture 2023, 13, x FOR PEER REVIEW 18 of 24 
 

 

 
Figure 10. Comparison of different models for point prediction. 

3.4.2. Interval Prediction 
To validate the effectiveness of the proposed interval prediction model, we compared 

the MSAG model with the interval prediction models DeepAR, MQRNN and SAG. A con-
fidence interval of 10% to 90% was chosen, and the results of the comparative tests are 
presented in Table 7 and Figure 11. 

Table 7. Comparison results of different models for interval prediction. 

Model 
1-Step 2-Step 3-Step 

PICP PINRW CWC PICP PINRW CWC PICP PINRW CWC 
MSAG 1.0000 0.1886 0.1688 0.9778 0.1793 0.1735 0.9778 0.2108 0.2076 
SAG 0.9888 0.2068 0.1890 0.9667 0.1893 0.1812 0.9667 0.2132 0.2099 

DeepAR 0.9667 0.1985 0.1940 0.9778 0.2085 0.1831 0.9888 0.2588 0.2348 
MQRNN 0.8666 0.1417 0.2572 0.8333 0.1995 0.3649 0.8000 0.2139 0.3980 

Figure 10. Comparison of different models for point prediction.

3.4.2. Interval Prediction

To validate the effectiveness of the proposed interval prediction model, we compared
the MSAG model with the interval prediction models DeepAR, MQRNN and SAG. A
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confidence interval of 10% to 90% was chosen, and the results of the comparative tests are
presented in Table 7 and Figure 11.

Table 7. Comparison results of different models for interval prediction.

Model
1-Step 2-Step 3-Step

PICP PINRW CWC PICP PINRW CWC PICP PINRW CWC

MSAG 1.0000 0.1886 0.1688 0.9778 0.1793 0.1735 0.9778 0.2108 0.2076
SAG 0.9888 0.2068 0.1890 0.9667 0.1893 0.1812 0.9667 0.2132 0.2099

DeepAR 0.9667 0.1985 0.1940 0.9778 0.2085 0.1831 0.9888 0.2588 0.2348
MQRNN 0.8666 0.1417 0.2572 0.8333 0.1995 0.3649 0.8000 0.2139 0.3980
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3.4.3. Prediction Using Different Feature Sets

To validate the effectiveness of the feature selection method, we utilized the feature
importance ranking based on RFE, and selected different feature subsets to input into the
MSAG model for single-step point and interval prediction. The comparative test results are
shown in Table 8, from which we can observe that MSAG-4 performs the best overall, while
MSAG-1 has only historical egg production rate data as the input and does not incorporate
environmental variables, so its prediction effect is the worst.
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Table 8. Comparison results of different feature numbers.

Metrics MSAG-1 MSAG-2 MSAG-3 MSAG-4 MSAG-5 MSAG-6 MSAG-7 MSAG-8

MAE 0.0143 0.0076 0.0067 0.0053 0.0062 0.0062 0.0069 0.0066
RMSE 0.0204 0.0115 0.0118 0.0089 0.0112 0.0101 0.0134 0.0113
MAPE 1.6029 0.8552 0.7654 0.5985 0.7066 0.6948 0.7923 0.7540
PICP 0.9333 1.0000 0.9778 1.0000 0.9889 0.9889 0.9889 1.0000

PINRW 0.3278 0.2546 0.2023 0.1886 0.1991 0.1995 0.2005 0.2304
CWC 1.1868 0.2335 0.1928 0.1688 0.1711 0.1706 0.1715 0.1941

4. Discussion

Various environmental factors have a certain degree of impact on the egg-laying
performance of poultry. However, a single environmental factor cannot determine egg
production. Therefore, it is necessary to consider multiple factors comprehensively. This
study used XGBoost, LightGBM, and CatBoost models, along with the recursive feature
elimination (RFE) method to screen seven environmental variables. By examining the
feature importance ranking chart, it can be observed that carbon dioxide, temperature,
and humidity within the goose house significantly impact egg production performance
more than the other environmental variables. Additionally, Table 8 shows that the best
point prediction and interval prediction results were achieved when using four features.
Compared to no feature selection, the mean absolute error (MAE) of the model was reduced
by approximately 19.7%, demonstrating that this method is scientifically effective for
data dimensionality reduction. This method can serve as scenario analysis to analyze
environmental variables, reduce input dimensions and data training time, and improve
prediction accuracy, which has practical significance.

The accuracy of predicting future environmental variables as covariates is also critical
for predicting egg production rates based on recursive multistep prediction methods.
Reducing the temporal scale of data, increasing the amount of data, and decomposing the
data using the GWO-VMD method can increase the predictive accuracy of environmental
variables. The method is significantly better than direct prediction, with MAE reductions
of about 53.3%, 51.5% and 55.6% for the three important environmental variables predicted.
To address the parameter optimization problem in the VMD decomposition process, a grey
wolf optimization algorithm with the local minimum envelope entropy as the objective
function was used to achieve adaptive optimization of K and α. This method effectively
decomposes the features of different frequencies in environmental variables and reduces
the influence of noise, which has good application prospects.

This study proposed a multistep point and interval prediction model for the egg
production rate based on the Gaussian distribution, seq2seq, and attention mechanism. In
addition, the multi-objective optimization algorithm MOGWO searched the initialization
parameters to ensure the effectiveness of point and interval predictions. In terms of point
prediction, as shown in Figure 12, we extracted four time periods with large fluctuations in
the egg production curves and overall prediction deviations. Compared with other models,
the prediction curve of MSAG can still closely follow the trend of egg production rate
data in areas with large fluctuations or transitions, and the fit is better. With increasing
prediction steps, the prediction curve offset is smaller, showing excellent stability and
accuracy. Compared with the worst-performing MLP model, the MSAG model predicts
a reduction in MAE of about 79.8%, 80.3%, and 81.0% for the next three time periods
respectively. In terms of interval prediction, MSAG also performs well. Compared to the
DeepAR model, although the MSAG model has a lower PICP index when the prediction
time steps are 3, the PINRW index of MSAG is much lower than DeepAR. The predicted
interval is narrower with a higher CWC index, indicating that MSAG’s predicted interval
can better describe the uncertain information of the egg production rate. Similarly, when
the prediction time step is 1, although the PINRW index of MQRNN is lower than that of
MSAG, the PICP is much lower than the penalty boundary of 0.95, indicating that MQRNN
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cannot describe the change information of the egg production rate well. Therefore, the
MSAG model has higher stability in interval prediction than the other two models and can
form appropriate prediction intervals.
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The results in Tables 6 and 7 show that SAG has good point prediction and inter-
val prediction performance compared to other models. However, MSAG optimized by
MOGWO parameters has superior performance compared to SAG, with MAE reductions
of 10.1%, 10.1%, and 16.0% for predicting the next 1–3 steps, indicating that MOGWO helps
us to search for model parameter initialization, reduce parameter tuning time and improve
prediction performance.

Overall, through Table 6 and Figure 12, we can observe that as the forecasting time
steps increase, the cumulative error leads to a rapid decline in the predictive performance of
many models, resulting in significant deviations in places with high volatility. For instance,
from step 1 to step 3, the MAE of LSTM and DeepAR increased by 42.3% and 40.5%,
respectively. However, the MSAG model exhibited a smaller increase rate of only 22.0% in
MAE compared to other models. This is because we incorporated an attention mechanism
on top of the seq2seq structure, which can better capture the correlation between the past
and future time series and reduce the loss of useful information. Similarly, the stable
performance of MSAG in interval prediction is also related to the attention mechanism.

5. Conclusions

The egg production rate is a non-linear time series influenced by various environ-
mental factors. This study proposes a novel recursive multistep prediction method for the
waterfowl egg production rate. Firstly, the XGBoost, LightGBM, and CatBoost models were
combined with the RFE feature reduction idea to screen the environmental variables that
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affect the egg production rate, reducing the dimensionality of the input model. Then, based
on the feature selection results, the time scale was reduced and the GWO-VMD method was
used for decomposition to increase the amount of data for the environmental variables and
reduce their complexity. The LSTM neural network was used for direct multistep prediction
and daily averages to obtain the environmental variables for the next two days. Finally, the
environmental variables and the egg production rate from the previous time were input
into the proposed model for point and interval predictions for the next three days. The
experimental results show that combining critical environmental variables for recursive
multistep prediction effectively predicts the egg production rate. The experimental results
show that the feature selection method employed in this study significantly reduces the
training time and improves prediction accuracy. Compared to other existing egg produc-
tion rate prediction models, the proposed model, which combines the seq2seq structure
and attention mechanism, can effectively prevent the problem of decreasing prediction
accuracy due to the increased prediction steps. Compared with the MLP model, the MSAG
model predicts a reduction in MAE of about 79.8%, 80.3% and 81.0% for the next three time
periods, respectively, showing good prediction performance.

Additionally, this study introduces interval prediction into the field of egg production
rate prediction for the first time. The prediction interval obtained from the proposed model
can cover the egg production rate curve well with a narrow coverage interval, providing
more helpful information for livestock breeders. This study provides guidance for esti-
mating egg production rates of livestock and poultry from an environmental perspective,
which is of great significance for realizing intelligent breeding and improving livestock and
poultry production efficiency.

In the future, we will continue our research mainly in the following two areas:
(1) analyzing and incorporating more factors related to egg production, such as diet, water
intake, and body weight, to build a more comprehensive and efficient egg production rate
prediction framework; (2) exploring more effective methods for predicting egg production
intervals to achieve better prediction results.
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