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Abstract: Amaranth, a pseudocereal crop which is rich in nutrients and climate resistant, can provide
an opportunity to increase food security and nutritional content for the growing population. Farmers
rely mainly on synthetic fertilizers to improve the quality and yield of the crop; however, this overuse
harms the ecosystem. Understanding the mechanism causing this environmental deterioration is cru-
cial for crop production and ecological sustainability. In recent years, high-throughput phenotyping
using Artificial Intelligence (AI) has been thriving and can provide an effective solution for the identi-
fication of fertilizer overuse. Influenced by the strength of deep learning paradigms and IoT sensors,
a novel multimodal fusion network (M2F-Net) is proposed for high-throughput phenotyping to
diagnose overabundance of fertilizers. In this paper, we developed and analyzed three strategies that
fuse agrometeorological and image data by assessing fusion at various stages. Initially two unimodal
baseline networks were trained: Multi-Layer Perceptron (MLP) on agrometeorological data and a
pre-trained Convolutional Neural Network (CNN) model DenseNet-121 on image data. With these
baselines, the multimodal fusion network is developed, capable of adeptly learning from image and
non-image data and the model’s performance is evaluated in terms of accuracy and Area Under
Curve (AUC). Moreover, the fusion approaches that are considered outperformed the unimodal
networks remarkably with 91% accuracy. From the experimental result, it is proven that incorporating
agrometeorological information and images can substantially boost the classification performance for
the overabundance of fertilizer.

Keywords: phenotyping; fusion strategies; synthetic fertilizer overuse; MLP; DenseNet; environmental
deterioration

1. Introduction

Precision agriculture is an advanced farming approach that uses technology to op-
timize crop yields while minimizing environmental impact [1]. By leveraging such tech-
nology, farmers can make more informed decisions about crop management, resulting in
better yield and reduced environmental impact. Plant phenotyping plays a crucial role in
this process by providing data on plant growth and health, which can inform decisions on
when and how much to apply inputs such as water and fertilizers. Recent advancements in
machine learning (ML) and deep learning (DL) have enabled the development of innovative
plant phenotyping techniques that can quickly and accurately analyze large amounts of
data on plant growth and development [2]. Several studies have been carried out on the
automated phenotyping of plants and its genomic analysis [3–5], while there is still a lack of
research focusing on environmental sustainability and soil degradation due to the overuse
of inorganic fertilizers. To address this issue, in this work, a study on an Amaranthus crop is
conducted by analyzing phenotypic growth differences in different soil conditions (varying
fertilizer dosage) using DL classification techniques.
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Amaranth (Amaranthus spp.) is a highly nutritious, underutilized crop that has a
significant influence on reducing malnutrition and is widely farmed in South Asia and
Africa [6,7]. Its high nutritional value, genetic diversity, and weather resistance make it a
promising crop for nutritional stability in a rapidly evolving climate. It has a significant
commercial value [8] due to its widespread international consumption, particularly in India.
It grows well on average to rich, well-draining soil with good amounts of nitrogen and
phosphorus. Amaranthus, like most other crops, requires soil with good organic content and
an adequate nutritional reserve for maximum yield. Chemical fertilizers are commonly used
to improve crop quality by supplying nutrients essential for crop growth. These fertilizers
considerably enhance productivity and nutrient-dense plant development when used
in sufficient dosage. However, farmers are tempted to use unnecessarily large amounts
of fertilizer that is a reliable supply of nitrogen, phosphate, and potassium to increase
their profitability [9]. Although this over fertilization desire is to maximize the yield, it
results in abusing the soil quality by altering the physical, chemical, and microbiological
indicators [10]. There are also several visible and invisible symptoms such as fertilizer burn,
browning leaf, death of seedlings, and root burn, all of which eventually decrease the yield.

In general, the detrimental effect of chemical fertilizers on crop quality and environ-
mental, genetic susceptibility is a major constraint to their usage. This leads to the emission
of hazardous greenhouse gases into the environment. Groundwater pollution is yet another
serious problem caused by inappropriate fertilizer usage [11]. High dosages of chemical
fertilizer deteriorate the organic matter content, increase in soil pH, depreciation of benefi-
cial soil microorganisms, and an increased erosion rate. Numerous studies have revealed
that applying only the necessary amount of fertilizers can significantly increase the optimal
crop yield without causing any environmental damage [12–14]. In order to achieve an
immense yield, it is customary for farmers to apply unnecessarily high dosages of fertilizers
to the soil, which has several negative effects on the environment [15]. However, there
is no proven confirmation available about how crops would respond to high fertilization
levels. A farmer may be persuaded to reduce fertilizer use if there were an easy automated
way to identify instances of abuse. Therefore, the aim of this research is to determine
how inorganic fertilizers affect the growth and yield of Amaranthus through automated
phenotyping and classification through “deep learning” (DL), a cutting-edge technology.

With significant advancements in technological power in recent years, it is now fea-
sible to make use of the massive amount data that is available from several resources in
discovering new techniques regarding agricultural tasks [16]. Advanced techniques such
as DL and Internet of Things (IoT) are cutting-edge technologies that have opened up
new possibilities for automating precision agricultural activities [17]. Data collection of
such activity can be of any form: digital images, measurements from different soil and
climate related sensors, weather data, etc. With these data, different Artificial Intelligence
(AI) techniques are developed and tested effectively. In particular, popular ML and DL
approaches offer efficient solutions for developing such integrated high-throughput pheno-
typing systems [18]. However, there exist few issues with using conventional unimodal
deep learning: with only images, the performance of the model can be degraded due to
several unexpected circumstances such as severe light illumination, background noise
or low-quality recorded images. Similarly, with sole IoT sensor data, geographical and
climatical constraints can lead to inadequate accuracy of the model.

In the context of fertilizer overuse identification, multimodal fusion strategies are
crucial for capturing a holistic view of the problem. Each imaging modality provides unique
insights into the crops, soil conditions, weather conditions, and fertilizer distribution
patterns. By fusing these modalities, one can leverage their complementary strengths,
compensate for individual limitations, and obtain a more comprehensive understanding
of fertilizer overuse. Hence, fusing these data together and moving towards multimodal
fusion could open up new avenues for a robust solution as it utilizes the advantage of each
modality. In this paper, a novel deep learning framework to phenotype the features of
Amaranthus in order to assess its adaptability in different chemically treated soil conditions
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is proposed. We investigate multimodal approaches for high-throughput phenotyping to
identify excessive fertilizer by fusing information from different modalities such as plant
images and associated non-image data. The hypothesis is that a Convolutional Neural
Network (CNN) model can learn more precisely when different modalities are fused
than that of a single trained model on individual modalities. To determine the optimum
technique to integrate data from two modalities and improve such network, experiments
are carried out using three adaptive multimodal fusion strategies.

This study makes the following significant contributions:

1. A novel CNN-based framework termed multimodal fusion network (M2F-Net) is
developed to achieve accurate fertilizer overuse identification and crop phenotyping.

2. In order to improve the effectiveness of classification, this method makes use of the
agrometeorological data gathered from sensors as an additional key feature.

3. Three different fusion approaches are investigated in order to determine the best way
to combine data from various modalities.

The remainder of the paper is structured as follows: Section 2 presents a brief review
of automated plant phenotyping, works related to over fertilization and multimodal data
fusion techniques. Section 3 elucidates the data preparation and the proposed multimodal
framework with baseline models. Section 4 exemplifies the results with the discussion, and
finally, Section 5 concludes the paper.

2. Related Work
2.1. Plant Phenotyping

The essence of emerging plant phenotyping is to provide quantitative information
on the dynamic interactions of plants in a specific environment. Plant phenotyping is the
most important step in several numerous precision agricultural tasks, such as image-based
crop weed classification [19], plant disease and pest identification [20], fruit detection [21],
crop growth monitoring [22], and yield prediction [23]. Modern technology such as image-
based high-throughput phenotyping that can evaluate plant growth and physiological
state without intrusive methods is becoming more widely available, and this has largely
been the source of recent advancements [24]. The quantitative screening protocols with
different sensors over environmental conditions can lead to form a good phenotyping
system. In this regard, much research has been carried out, much of which is discussed
here. Lee et al. proposed an automated, high-throughput plant phenotyping system for a
computerized plant-imaging analysis pipeline consisting of machine learning-based plant
segmentation [25]. Super pixel-based Random Forest (RF) was used for segmenting images
for the plant growth analysis. The performance analysis was carried out with three ML
algorithms and found RF to be more accurate. An automated image analysis system was
developed to extract plot-level vegetation indexes (CIAT PhenoI) in [26]. Using these
vegetation indices and the ground-truth data acquired from a multispectral sensor, multiple
linear regression models were built at various growth phases of cassava development. The
spectral indices/features were integrated with different ML approaches to create models
and forecast cassava root yield. Another automated phenotypic segmentation algorithm
that deals with tomatoes and its structural parameters was developed [27]. A phenotyping
framework and a Structure From Motion (SFM) method were used to generate the three-
dimensional model. The analysis results show that the daily plant growth and its height
are the most responsive trait to early water stress.

With a significant focus on Amaranthus crop phenotyping, much research has been
carried out emphasizing both physiological and morphological traits. Winnie et al. studied
phenotyping morphological and nutritional attributes in Amaranthus [28]. Considering
four species, the phenotypic data were correlated with five nutrient traits using ANOVA
and found that greenness with oxalate and vitamin C contents are highly correlated. This
study ensures that nutrient quality can be ensured with the color of the leaves. Several
researchers have focused on molecular-based phenotyping in Amaranthus [29,30], genetic
diversity analysis [31], etc. Similarly, the influence of soil and light conditions on the growth
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of Amaranthus has been studied in various aspects affecting its nutrient content, growth,
and development [32].

2.2. Over Fertilization

Over fertilization is one of the primary concerns impacting both plant development
and the quality of the soil [33]. Numerous studies have been conducted regarding the
impacts of both organic and inorganic fertilizers. A comparative effect of organic (OG),
organomineral (OMF), and mineral fertilizers was proposed in a previous study. Consider-
ing soil properties, nutrient intake, growth, and yield of maize, experiments were carried
out with four classes, namely, control, OG, OMF, and NPK (Nitrogen, Phosphorus, and
Potassium) fertilizers. The analytical results prove that OG and OMF at a low level of
application could be enough to improve plant nutrients [34]. Similarly, a comparison of
the effects of NPK fertilizer and organic wastes on maize production, nutrient availability,
and the deposition of dry matter was conducted [35]. Another study was carried out by
Olowoake et al. [36] in Nigeria on developing and producing Amaranthus with different
compost, namely, unamended compost, OMF, and NPK. The experiment was conducted on
ANOVA and proved that both the yield and residual effect of Amaranthus are significantly
higher with OMF than that of NPK.

2.3. Multimodal Data Fusion

A massive amount of data is produced by the numerous methods used for precision
agricultural tasks and especially for plant monitoring [37]. To handle these data, there are
two options. One is building models on individual modals and assessing their efficacy.
The second option involves combining data on plant growth that have been gathered from
various sources [38]. Numerous studies have been conducted with the aim of multimodal
data fusion. By boosting contextual data for plant disease diagnosis, a multi-context fusion
CNN network was proposed. ContextNet is used for extracting contextual data and CNN
for visual features and integrated to the fused MCF network. The algorithm achieves an
accuracy of 97.5% with a dataset of 50,000 crop disease samples [39]. Another approach,
rice fusion for the diagnosis of rice disease, was developed utilizing multimodal fusion.
The suggested framework is capable of extracting numerical features from sensor-collected
data as well as visual features from images. A concatenation layer is employed to further
combine these features and the model achieved an accuracy of 95.31%, which is higher
than the accuracy of an alternative simple unimodal framework [40].

However, these previous studies failed to consider various methods for combining
heterogeneous information. Instead, we concentrate on several multimodal architectural
variations that may be enhanced to simultaneously learn from image and non-image data.
In summary, plant phenotyping research progress has stalled in recent years despite the
success of the existing approaches and no study has been conducted from the perspective of
the automated identification of fertilizer over usage. Furthermore, due to several difficulties
in visual inference conditions, such as illumination and complex backgrounds, most of
these methods might not attain adequate performance in real-world plant phenotyping
scenarios. A novel multimodal fusion network termed M2F-Net is therefore designed to
overcome these issues in agricultural phenotyping tasks by merging phenological data and
images to develop and strengthen the model.

3. Materials and Methods
3.1. Data Preparation

This section presents a detailed description of the multimodal dataset collected through
the experiment conducted on different soil conditions of an Amaranthus crop. The experi-
ment was carried out for 45 days (harvesting age) in the summer season of 2022. The soil
used in the experiment was collected from the local village of Karaikal in India, with no
prior records of fertilizer application.
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The soil was first analyzed for NPK using a standard procedure, and it was reported
that the results were significantly below the typical NPK levels for Tamilnadu soil. Opti-
mum Nutrient Treatment (ONT) entails the procedure of bringing the soil to the prescribed
NPK levels. For Amaranthus crops, the report [41] reveals that the values for ONT could
be 1.5 g of urea, 1.95 g of Diammonium Phosphate (DAP), and 0.69 g of Muriate of Potash
(MOP). Despite this being a sufficient NPK requirement, the majority of farmers overuse
fertilizers due to lack of knowledge [42]. Ten classes of nutrient treatment for Amaranthus
were developed in order to comprehensively study the impact of the fertilizers. The mea-
surements of fertilizers for each treatment are represented in Table 1. The class categories
include an optimal class (C1) with the optimal recommended amount (ONT) of NPK fertil-
izer and a control class (C10) with no fertilizer. Further, to increase the effects of fertilizers,
two levels were formed: a moderate excess level of fertilizer (C2–C5) and a high excess
level of fertilizer (C6–C9). All the experiments and data collection were carried out with
the guidance of agricultural experts.

Table 1. Measurements of fertilizers for each treatment.

Class ID Class Name/
Treatments Involved

Amount of Fertilizers Added (in Grams)
N P K

C1 Optimal 1.5 1.95 0.69
C2 N150 2.25 - -
C3 P150 - 2.92 -
C4 K150 - - 1.03
C5 N200 3.0 - -
C6 P200 - 3.9 -
C7 K200 - - 1.38
C8 N-P-K150 2.25 2.92 1.03
C9 N-P-K200 3.0 3.9 1.38

C10 Control - - -

3.2. Dataset Description

The data were acquired on two scales on a daily basis. First, the agrometeorological
sensor-related numerical values were collected. The weather- and soil-related data that were
measured on a daily basis include temperature, relative humidity, soil pH, soil moisture,
and sunlight intensity (depicted in Table 2). Temperature and relative humidity data from
the HTC1 sensor were recorded. A 4-in-1 digital soil test meter was used to gather all soil-
related data, including soil temperature, pH, moisture, and sunlight. Secondly, along with
agrometeorological data, the datasets of 750 images were captured for 45 days (represented
in Figure 1). Therefore, the dataset is ideal for multimodal data fusion. These images of
an Amaranthus crop with different chemically treated soil conditions were acquired with a
Sony optical SteadyShot DSC-WX80 camera (28 mm–22.4 mm sensor size, 16.2 megapixels
resolution, with focal distance of 5 mm, exposure time: 1/30 sec, ISO-100 captured in
natural daylight) mounted on a tripod. The image dimension is 4608 × 3456 pixels. Sample
images for each class are depicted in Figure 2.

Table 2. Samples of agrometeorological non-image data collected for 45 days through sensors.

Agrometeorological
Parameters

Classes (Treatments)
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Temperature * 29.4 29.4 29.4 29.4 29.4 29.4 29.4 29.4 29.4 29.4
Relative humidity * 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6
Soil temperature * 28.6 29.1 29.4 28.4 30.1 27.7 29.3 29.5 27.5 29.3

Soil pH * 7.5 7 6.5 7.5 6.5 7 7 8 6.5 7.5
Soil moisture # wet wet wet+ wet dry wet+ wet dry+ wet dry+

Sunlight intensity # high low+ low+ high− high low− low high− low+ high+

* Average values. # Majority values.
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3.3. Proposed Framework

To understand the multimodal fusion and to determine whether the classification
could be enhanced by integrating image and non-image information from agrometeorolog-
ical sensors, stand-alone baseline models for both non-image and image-only data were
trained. Basic MLP architecture was used for the non-image data. The popular CNN
model, DenseNet-121, was adapted for image-only data [43]. The overall illustration of the
proposed framework is shown in Figure 3. The next sub section discusses the architecture
of these baseline models and the proposed multimodal fusion technique.
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3.3.1. Baseline 1: Neural Network

MLP is a supervised neural network that is most commonly used in the decision
support system that focuses on continuous data. A typical MLP network is capable of
categorizing non-linear data with three or more layers.

The proposed MLP network uses continuous data from agrometeorological sensors
(sample shown in Table 2) as its input. The input data have dimensions of 271 × 10, where
the 271 rows are the total agrometeorological features wrt. DAS and image_ID and the ten
columns of class labels. The dataset is continuous and non-linearly separable. A sequential
model is built with a custom number of layers. The input layer consists of 6 neurons
representing the sensor data, namely, temperature, relative humidity, soil temperature, soil
pH, moisture, and sunlight, which are applied to the neural network as input. The numbers
of hidden layers and neurons in each layer are more important factors when training the
features of the input data and enhancing classification accuracy. In this work, two hidden
layers were used, with five neurons in each layer. The choice of using two hidden layers
in the Baseline 1: MLP architecture was likely influenced by the insights gained from the
literature study. Given the limited size of our dataset, we opted for a relatively simple
architecture that could effectively capture the underlying patterns and relationships. The
output layer consists of 10 neurons representing the classes (set of treatments) in Figure 4.

The model was constructed with a 7:2:1 train, validation, and test data ratio. The
dense layer is included with the ReLU activation function. With each neuron, the set
of weights and its updation in backpropagation is a crucial step for minimizing the loss
function or maximizing the learning efficiency. Optimization and hyperparameters are
the essential aspects for such good network convergence. The learning rate chosen was
0.01. The categorical cross-entropy loss function was used for our multi-class problem, and
the optimizer is Adam. The SoftMax activation function was employed as the last layer to
categorize multiple classes (ten classes here). The model was trained with batch size 64,
and the number of epochs is set to 300.
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Finally, this unimodal baseline model’s performance was evaluated with the metrics
such as accuracy, precision, recall, and F1 score, and achieved a validation accuracy of 76%.
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3.3.2. Baseline 2: CNN

Image classification is a fundamental computer vision task. CNN is the most success-
ful approach for automated image-based precision agricultural tasks. Using the training
dataset that has been previously defined for the neural network, it predicts possible future
classifications. Utilizing its advantages, this neural network tackles the curse of dimension-
ality problem. The accuracy and speed of classification could be enhanced with a robust
model. Therefore, a feasible DL model architecture is needed. However, building a deep
CNN model from scratch and training could be computationally very expensive. Transfer
learning-based models have been suggested by several researchers as a solution to these
problems [44–46]. These models were developed and trained using the ImageNet dataset
that contains 1000 categories of images. Due to the similarity of visual characteristics like
edges and contours across datasets, these transfer learning models can be trained on any
dataset. The transfer learning strategy has therefore been proven to be the most effective
and reliable model for classification tasks. Prominent CNN models including VGG-16 [47],
MobileNet [48], and DenseNet [43] are frequently utilized for the transfer learning ap-
proach. DenseNet is among the most widely used and powerful pre-trained models that
can make use of dense connections within layers using dense blocks. The benefit of this
network is that it addresses the gradient problem and reuses features, and thus exploits
the benefits of the dense layers. In this work, DenseNet-121 architecture is used as the
baseline CNN for the classification task. An ablation study of several state-of-the-art CNN
architectures was carried out and DenseNet-121 was found to perform the best on our
dataset. As a result, we selected it as our baseline CNN model for further experiments with
multimodal data.
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3.3.3. DenseNet-121

DenseNet-121 is one of the deep CNN models developed for classification tasks that
utilizes dense layers [43]. In this network, each layer transfers its constructed feature
maps to the subsequent layer along with the inputs from each layer. Each layer performs
concatenation, which allows the next layer to obtain the cumulative knowledge of all the
previous layers. These feature mappings of the previous layer are transferred to the later
layers, further resulting in a narrow and confined network leading to fewer channels in
dense blocks. The general architecture of DenseNet-121 is represented in Figure 5.
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DenseNet-121 captures input images with a dimension of 224 × 224. All of the images
were consequently rescaled to the appropriate 224 × 224 dimension. The train, validate,
and test ratio was set to 7:2:1. With the batch size of 128, the learning rate was fixed to
0.001 and the momentum was fixed to 0.9. To address the limited number of samples in
the dataset, data augmentation techniques were utilized, which involved applying various
transformations such as rotation (both horizontal and vertical), scaling, and flipping. The
optimizer and loss function are the key elements that provide the network with the ability
to handle large amounts of data and regulate the learning speed [49]. Different optimizers
such as Adam, Stochastic Gradient Descend, and RMSprop were applied and found that
the Adam optimizer has demonstrated superior performance. The loss function used was
the categorical cross-entropy loss function. The final layers were replaced with two fully
connected layers with SoftMax activation for final classification and the model attained an
84.03% test accuracy.

3.3.4. Multimodal Fusion

The network becomes more resilient, fault tolerant, and accurate when data from
various sources are fused than when it is only used from one source. Multimodality
in AI refers to the problem-solving process where the single model uses two or more
heterogeneous inputs. For precision agricultural tasks, data collected from different sources
(modalities) are widely utilized, such as meteorological information, images of affected
crops, and real-time data from sensors. Combining these modalities enhances the model’s
overall performance and effectiveness. An end-to-end multimodal framework for high-
throughput phenotyping is proposed in this work, which uses agrometeorological features
to examine over fertilization and the correlation between crop image from agro-climate
data. The architecture of the proposed framework is depicted in Figure 6. In contrast
to the traditional CNN architecture, we incorporated an additional module to extract
agrometeorological features and utilized it by merging with image features. Three basic
approaches were considered for fusing tabular non-image features with image features;
each of which varies at the point where the features are fused in the multimodal architecture.
They are early fusion, joint fusion, and late fusion, which are elaborated in the next section.
The numeric agrometeorological data include meteorological and soil-related information,
such as temperature, relative humidity, soil pH, soil moisture, and sunlight intensity.
Agrometeorological data have the potential to be extremely influential in crop growth and
might be used to enhance identification performance. We developed the M2F-Net to utilize
the contextual data in order to improve the accuracy rate.
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With this multimodal data, our proposed system includes three main components:
MLP, baseline CNN, and a fully connected network. The MLP model is employed to
extract contextual information of different chemically treated crop classes. DenseNet-121
is employed for feature extraction which has the ability to produce a set of feature maps
that highlight different aspects of the images. Furthermore, a fully connected network is
constructed to concatenate both the extracted features and these fused feature vectors are
simultaneously learned. Final SoftMax layers are used to produce the classification output.
Thus, our proposed M2F-Net is capable of strongly connecting features from two different
unimodal networks into a unified deep learning framework and achieves performance for
the novel high-throughput phenotyping in identifying fertilizer overuse.

3.3.5. Experimenting by Varying Fusion Approach

Three experiments were carried out based on the types of features one could fuse
during training: early fusion, joint fusion, and late fusion. These experiments were carried
out in order to develop a robust multimodal framework and to comprehend how the
various fusion approaches impact the performance of the model.

Early Fusion

Early fusion involves fusing many modalities into a combined feature vector before
loading it to any model (Figure 7a). Several mechanisms combine input modalities, such
as concatenation, pooling, and gated units. Combining the actual features defines type I,
whereas combining features that have been manually extracted, analyzed using imaging
software, or learned out from different networks defines type II. According to the proposed
framework, CNN is considered as a feature extraction module, enabling early fusion type II,
and the fusion of these features with non-image input from a second modality. This fusion
concatenates the 33 non-image inputs onto the 2048 feature vectors that were extracted
from the crop image. A series of fully connected layers with nonlinear ReLU functions are
then applied to the concatenated feature vectors, followed by a SoftMax layer, to generate
the final classification.
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Joint Fusion

Joint fusion is the process of feeding learned, extracted features from intermediate
layers into a final layer together with features from several modalities. Neural networks
are often employed to perform joint fusion type I because of their capacity to transmit
feature maps from intermediate layers. In our model, the output of each model and its
probabilities were taken into consideration and fed to the series of fully connected layers
for final classification. The probability fusion simply incorporates the individual baseline
models on its own. (Figure 7b).

Late Fusion

The basic idea of late fusion is the fusing significant predictions from different models
for the final prediction (Figure 7c). Here, several modalities are employed for individual
models with the predictions of several models are combined to make the final decision by
utilizing the aggregation function. For the classification, we considered the aggregation
function to be average. This fusion mechanism concurrently learns feature vectors from
both the crop image and non-image data. Furthermore, it concatenates the acquired feature
vectors from each modality to create a final prediction.

3.4. Performance Evaluation Metrics

The results of all five models were evaluated and compared for the analysis. Moreover,
the validation accuracy and confusion matrix are the two factors that were used to evaluate
the architecture. The word validation accuracy refers to how well the trained model mimics
and performs on the test data. A standard performance metric that is used to measure
the efficacy of the model is classification accuracy. The confusion matrix is the heatmap
in a matrix form where the row represents the ground truth class labels, and the column
represents the predicted outcome. The matrix represents the rate of each class’s true positive
(TP (correctly classified positive)), true negative (TN (correctly classified negative)), false
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positive (FP (misclassified positive)), and false negative (FN (misclassified negative)) values.
To measure the overall performance of each model, the F1 score was also measured. It is the
harmonic mean of precision and recall, providing a balanced measure of both metrics. The
formulas used to calculate the model’s accuracy, precision, recall, and F1 score are given in
the Equations (1)–(4) below:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 score =
2 × Precision × Recall

Precision + Recall
(4)

4. Results and Discussion

This research aimed to use the multimodal fusion concept for identifying fertilizer
overabundance on an Amaranthus crop. Agrometeorological data and images of the Amaran-
thus crop are two different modalities that were taken into consideration. We used Jupyter
Notebook in the Google Colab environment as our software platform. For implementation,
several standard libraries such as Keras, TensorFlow, and Matplotlib were utilized. The
language used is Python 3.7. The hardware specifications for the GPU and CPU used for
the model is displayed in Table 3. At the 50th epoch, the MLP model begins to converge,
while the CNN model reaches its maximum accuracy after the 90th epoch. The fusion
approach reaches saturation around the 60th epoch. When compared to fusion models,
the performance of the individual models is less. Several metrics were considered for the
performance evaluation of the proposed model and its variations (Section 3.4). The metrics
considered and the results obtained by the proposed model are discussed in the below
section.

Table 3. Hardware configuration for the implementation of proposed M2F-Net.

CPU Intel(R) Core (TM) i5-7200U
RAM 8 GB
CPU frequency 2.71 GHz
GPU NVIDIA GeForce 940MX graphics
GPU memory 4 GB

Performance Analysis

The performance of the proposed fusion models was compared with the baseline CNN
and MLP models. Five architectures were trained that include two baselines unimodal
mentioned in Sections 3.3.1 and 3.3.2, and the three variations of multimodal fusion stated
in Section 3.3.3. With randomly initialized weights, all models were trained using the same
optimizer “Adam”, with batch size 64 and the learning rate is fixed to 0.01.

Performance metrics, including classification accuracy, precision, recall, and F1 score
are calculated to evaluate the effectiveness of various models, as shown in Table 4. The
accuracy loss versus epoch graph, shown in Figure 8, illustrates the training process and
provides valuable insights into the model’s learning capabilities. The graph demonstrates
the relationship between the number of training epochs and the accuracy loss achieved by
all three models on the validation dataset. Initially, as the model undergoes training, there
is a noticeable increase in accuracy with each epoch, indicating that the model is learning
and improving its predictive capabilities.
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Table 4. Performance evaluation of both unimodal and proposed M2F-Net.

S.
No Modality Model Architecture

Accuracy Loss
Precision Recall F1-Score Specificity Runtime

(sec)Training Validation Training Validation

1
Unimodal

Non-image only MLP 0.80 0.76 0.2343 0.3974 0.78 0.74 0.74 0.70 1020

2 Image only CNN
(DenseNet-121) 0.88 0.84 0.2138 0.2543 0.89 0.84 0.86 0.83 3400

3
Multimodal
fusion

Early fusion
MLP

+CNN

0.93 0.86 0.1281 0.2336 0.86 0.84 0.83 0.82 6590
4 Joint fusion 0.93 0.87 0.1279 0.2957 0.88 0.84 0.84 0.88 6350
5 Late fusion 0.94 0.91 0.0672 0.1064 0.90 0.86 0.89 0.90 5800
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In the early fusion approach, it is observed that the training loss and accuracy gradually
converged and reached a saturation stage of around the 60th epoch. Conversely, the
validation accuracy continued to improve and peaked at the 80th epoch. Beyond this point,
there was no significant fluctuation in the training accuracy. Notably, the joint fusion model
achieved a validation accuracy of 87% at the 70th epoch, after which the learning process
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reached saturation. However, it is important to highlight that the validation accuracy
curve started to decline after the 96th epoch. In the late fusion technique, both the training
and validation accuracy steadily converged after the 40th epoch, reaching a maximum of
91%. These findings demonstrate the dynamics of accuracy improvements over epochs
for different fusion strategies. The confusion matrix for the accuracy of the test data
performance for the excessive fertilizer identification by the proposed model is shown
in Figure 9. Moreover, models trained on both related agrometeorological data and crop
imaging perform better than unimodal versions in terms of validation accuracy.
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Considering fusion models on both image and non-image data, early fusion attained
an accuracy of 86%, joint fusion achieved an accuracy of 87%, and late fusion achieved an
accuracy of 91%. Additionally, with the help of Area Under Curve (AUC), we discover that
when compared to unimodal baselines, false positive rates are drastically reduced while
fusing two modalities at a high-sensitivity operating point. Specifically, specificity at 95%
sensitivity increases with 12% in the late fusion approach. Regarding accuracy and AUC,
each fusion approach performs considerably better than the image-only baseline shown
in Figure 10.
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When fusion methods are compared to one another, late fusion is the model that
performs the best in terms of AUC and specificity at 95% sensitivity. In terms of AUC,
early and late fusion considerably outperforms joint fusion. In summary, the models that
integrate intermediate features outperform the model that combines output probabilities
prior to learning a decision. Our primary contribution is the analysis of three fundamental
strategies for integrating features of different modalities and the subsequent tests for
determining the most effective ways to integrate data from multiple modalities. Figure 11
describes the comparison of all five models. We observed that fusing output probabilities
proved to be inadequate when compared to integrating intermediate-learned features
among the fusion variants for high phenotyping and excess fertilizer classification. In
addition, no discernible difference is observed in performance when we merge the actual
non-image features with the learned features from the image as well as merging the learned
features from both image and non-image data.

Our approach to identifying fertilizer overuse through image-based phenotyping is
a groundbreaking method and to the best of our knowledge, no previous research has
delved into this specific domain, making direct comparisons challenging. However, we
attempted to evaluate our model’s performance by comparing it with existing approaches
in image-based phenotyping for precision agricultural tasks. In our comparative analysis
(Table 5), a range of studies were examined that utilized various imaging modalities and
targeted different phenotyping tasks from the literature.
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Table 5. Comparison of proposed M2F-Net with existing approaches.

Imaging Modalities Phenotyping Task Methods/Models Involved Performance Authors/Reference

Thermal infrared and
chlorophyll fluorescence imaging

Drought tolerance and yield
performance Multiple regression Accuracy: 90% Findurová et al. [50]

Unmanned Aerial Vehicle
(UAV) imagery

Turfgrass phenotyping Statistical analysis methods R2 > 0.83 Yousfi et al. [51]
Wheat lodging assessment CNN: DenseNet201 Accuracy: 93% Koh et al. [52]

RGB, FMP, NIR Prediction of leaf count in
two-dimensional images CNN: ResNet50 Accuracy: 88% Giuffrida et al. [53]

UAV with
multispectral imaging

Evaluation of phenotypic
characteristics on citrus crops YOLO v3 Accuracy:

85.5% Ampatzidis and Partel [54]

Estimation of phenotyping
traits and root yield in cassava SVM R2 > 0.67 Selvaraj et al. [26]

RGB Identification of excessive
fertilizer usage in Amaranthus MLP+CNN (M2F-Net) Accuracy: 91% Proposed

It is found that our proposed model for identification of fertilizer overuse performs
better in terms of accuracy. With the analysis of the performance of these approaches, it
is worth noting that although one of the authors, Koh et al. [52], achieved slightly higher
performance (~2%), it is important to consider the differences in problem context and
dataset characteristics as they focus on wheat lodging assessment through phenotyping.

Thus, our novel high-throughput phenotyping approach for identifying fertilizer
overuse has practical implications with good performance. The study yielded significant
findings, demonstrating the ability to classify differences among various treatments that
are imperceptible to the human eye. This provides farmers with a simple and effective
way to identify instances of fertilizer overdosage. Additionally, the study found that the
growth and yield between optimally fertilized and over-fertilized crops were almost on
par. This emphasizes the practicality and sufficiency of using optimal fertilizer levels in
farming practices.

While the proposed system offers several advantages, it is not without its limita-
tions. One significant drawback is the limited availability of data, particularly given
that the experiments were conducted using a short-season crop, Amaranthus. The use
of multiple modalities further exacerbates the issue, as integrating data from different
sources can increase the complexity of the model and the computational resources required
for implementation.
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5. Conclusions

The major cause of the depletion of soil quality is the use of ineffective soil and crop
management techniques during cultivation. Without a thorough understanding of the
nutrient requirement for crop growth, chemical fertilizers have been applied excessively,
which has resulted in a steady decline in soil quality and eventual yield loss. To address this
issue of fertilizer overuse using the emerging deep learning approach, a high-throughput
automated phenotyping with multimodal fusion network (M2F-Net) is proposed in this
work. The proposed M2F-Net model uses the combination of two modalities to improve
the system’s performance and robustness. We explored three DL-based fusion strategies
for integrating crop image data with sensor-collected non-image agrometeorological data.
In order to evaluate the strength of the proposed M2F-Net, the two unimodal baseline
networks were implemented and studied. The experimental results clearly indicate that all
three fusion strategies exhibited significantly better performance compared to the individ-
ual unimodal networks for classifying different chemically treated crops. Specifically, our
proposed M2F-Net achieved an impressive accuracy of 91% with late fusion, outperforming
the MLP and CNN models, which achieved accuracies of only 76% and 84%, respectively.
The fusion of intermediate features yielded the highest performance, highlighting the
importance of integrating features from multiple modalities. By leveraging the fusion of
intermediate features in the M2F-Net, our proposed model can contribute to more accurate
and right decision making regarding fertilizer usage. As a future scope, the proposed model
can be further deployed with the integration of IoT devices, which holds great potential for
enhancing the practical implications of our work. Additionally, exploring time series image
analysis can provide valuable insights into the temporal patterns and trends of fertilizer
overuse, offering a promising avenue for agricultural practices.
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