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Abstract: Studying the dynamic duration of technology adoption helps farmers weigh and select
different attributes and stages of conservation tillage techniques. In this study, non-parametric
K-M survival analysis and discrete duration models were employed to estimate the time taken by
farmers in the Yellow River Basin region to transition from awareness to the adoption of conservation
tillage techniques between 2002 and 2020. The results indicate (1) The duration from awareness
to adoption of conservation tillage technology is relatively short. (2) The likelihood of farmers
postponing adoption decisions is highest in the initial 10 years and gradually decreases over time,
suggesting negative time dependency. (3) Controlling for proportional hazards assumptions, it was
found that factors such as education level and social learning positively influence the duration from
awareness to adoption of conservation tillage techniques. Extreme weather variations and household
labor migration delay the adoption time for farmers. In the process of promoting and implementing
conservation tillage techniques, it is essential to consider the issue of intertemporal technology choice,
stimulate farmers’ intrinsic demand, shorten the time interval from awareness to adoption, and
ultimately improve technology adoption rates.

Keywords: conservation tillage technology; adoption of time persistence; nonparametric K-M
survival analysis method; discrete duration model

1. Introduction

The degradation of cultivated land quality and the decline in basic soil fertility are
the concentrated manifestations of the ecological environmental problems of farmland
in China. At present, 26% of cultivated land soil organic matter content is less than 1%
in China, more than 40% of the cultivated land has been degraded, and 21.6% of the
cultivated land has been seriously acidified. The annual loss of effective components such
as nitrogen, phosphorus, and potassium due to wind erosion and desertification is as high
as 55.9 million tons. The power of cultivated land’s contribution to food production is only
about 50%, which is 20–30% points lower than that of developed countries [1]. Practice
has shown that conservation tillage techniques, such as an environmentally friendly soil
cultivation approach integrating minimum tillage, straw return to the field, and weed and
pest control measures, offer a range of benefits. These techniques have the functions of
reducing soil erosion, protecting the ecological environment of farmland, saving labor costs,
reducing greenhouse gas emissions, and helping to achieve agricultural transformation.
Moreover, it is of great significance in ensuring arable land quality, ecology, and food
security and promoting the sustainable development of modern agriculture [2,3].
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In response to the increasingly severe farmland ecological environment and climate
change, it can be seen from the No. 1 Central Document in the past five years that the
government has put forward high standards and strict requirements for rural land manage-
ment, especially cultivated land protection, and has vigorously adopted various subsidies
and preferential policies to promote and encourage farmers to adopt it actively. How-
ever, conservation tillage technology has not been widely adopted by farmers [4,5], with
weak demand and low adoption rate, which leads to difficulties in the promotion of this
technology [6].

To solve the challenges such as the low adoption rate of conservation tillage technology,
firstly, we explored the influencing factors of technology adoption. There are several
factors that will influence the adoption of technology, such as characteristics of farmers
(gender, age, education level, risk preference, ecological cognition, social capital, etc.);
family endowment (income level, cropping scale, cropping system, part-time situation, risk
and uncertainty, etc.); environmental factors (soil type, extension system, technical training,
rainfall and pest shocks, government compensation, etc.) [6–11]. Secondly, we focused on
the attributes of technology adoption. Some scholars have noticed that there was a strong
heterogeneity in farmers’ choice of technologies with different attributes, and there may be
substitution or a complementarity relationship between the adoption of sub-technologies,
and that technology adoption decisions aim to achieve maximum utility with a set of
technology attributes, which is much more complex than the single technology adoption
decision problem [12,13]. Finally, we understood that farmers’ technology adoption was
a gradual process from cognitive, trial adoption to sustained adoption, and the factors
influencing technology adoption at different stages also differed significantly [14]. The
first two stages have been studied by most scholars while the analysis of the duration of
technology adoption is currently a relatively new field. However, the ecological function
and the economic and social benefits of conservation tillage technology start to emerge
only after a few years of adoption by farmers, and the benefits will occur in the future,
which is a typical inter-term agricultural technology [15,16]. From awareness to adoption
decision, farmers need to weigh and choose the costs and benefits of technology adoption
at different time points, and the duration is uncertain. The long duration means that
the technology adoption process has to pay frequent pesticide costs, learning costs, and
transaction costs to consolidate and maintain [17,18], and farmers are not motivated to
participate in demand, resulting in “short-sighted thinking”, which adversely affects
conservation tillage technology adoption decisions [19]. Therefore, studying the adoption
duration will help to understand the dynamic spreading factors of conservation tillage
technology more clearly, and provide a reasonable explanation for the phenomenon of
“low adoption rate of conservation tillage technologies with economic and ecological
benefits”, so as to guide policy interventions to promote the adoption of conservation
tillage technologies and maximize incentives for farmers to shorten the adoption interval,
and to reduce production costs so as to improve agricultural efficiency.

The existing literature on duration research has focused on Chinese import and export
enterprises, manufacturing listed companies, and other perspectives, and the research
content has mostly focused on import and export trade products, innovation sustainability
of listed companies, bilateral political relations, and VAT reform [20–24]. Fewer studies
have combined the duration of adoption into the field of agricultural technology, and the
influencing factors were also different from other macro perspectives. Second, the time of
data used in previous research was relatively short. In this study, we used the data that
had a longer time to study the problem of duration, so as to reflect the dynamic adoption
process of conservation tillage technology more accurately. Third, the Cox PH model was
used for most of the continuous time, resulting in a biased conclusion when the events
were interrelated. The discrete duration model was used in this study to solve problems
such as unobservable heterogeneity and data censoring [25], so as to reach more reliable
and scientific conclusions.
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2. Theoretical Framework and Research Design

Given that the farmer is currently in the farming season s0, and the technology choice
set contains two mutually exclusive conservation tillage options, denoted by Ljε(CA, CT),
where CA is the conservation tillage measure, and CT is the traditional ridge tillage measure.
Farmers gain economic and ecological benefits through one or both of the two land tillage
measures, expressed by πj(st); stε{(s0 + t)t = 0, 1, 2, . . . , T}, where 0 indicates the start
time of the new technology; i.e., the time when the farmer have the awareness of the new
technology. While t and T represent the adoption date and the end date of the research,
respectively. In retrospective data, the adoption time t is discontinuous and is usually
recorded in units of years.

The expected net present value (NPV) of the discounted benefit flow of the i-th farmer
is represented by Vi[πCA(st), πCT(st)], indicating the farmer’s investment propensity for
any conservation tillage technology. If the benefit of conservation tillage technology is
greater than traditional ridge farming, i.e., V∗ = VCA[πCA(st)− πCT(st)] > 0, then the
farmers have the motivation to adopt conservation tillage technology.

In this study, we assumed that investments were uncertain and irreversible, implying
that sunk costs are important. Therefore, farmers would optimize the investment and
returns (V∗) related to the decision making of conservation tillage technology regardless
of whether or when to adopt it. They would consider two options: if the technology is
worthwhile, then use conservation tillage technology in the current season (s1); if one wants
to obtain a variety of information, then use it in the future after verifying the prospects in
many ways, which was expressed as {stε[(s1 + t)t = 2, 3, . . . , T]}.

Since conservation tillage provides multiple benefits, including ecological benefits that
may be hard to value (such as carbon sequestration, increased soil organic matter content,
and increased water infiltration capacity), its complete benefit function was expressed as
{V* = (.)}. The adoption decision that occurs during the research time (t = 1, 2, 3, . . ., T) was
used as a proxy indicator. If V* > 0, it was considered that the technology had positive
benefits [26]. Therefore, in this study, farmers’ adoption decision was shown as follows:

Adopter
st |t=1,2,3...T

=

{
1 i f V∗t−T = VCA(.)−VCT(.) > 0
0 i f V∗t−T = VCA(.)−VCT(.) ≤ 0

, (1)

Different from the previous binary adoption decision, we used a risk function and the
discrete duration model to analyze the dynamic adoption time and measure the adoption
probability of farmers who do not adopt conservation tillage in the cultivation season (st)
but will adopt the technology in the following season (st+1).

2.1. Discrete Duration Model in Technology Adoption

As a parameter method of survival analysis, the discrete duration model can not only
simulate the occurrence of continuous time events, but can also solve the problem of data
censoring. In previous studies, the right-censored data could be dropped directly, which
led to sample selection bias and the inefficiency of the estimation results. The discrete-time
model used in this study can deal with this problem [25].

We set the time from awareness to adoption of the conservation tillage technology as
the discrete duration, with the year as the time interval unit, and expressed by the random
variable T ≥ 0. In the context of technology adoption, the equation was listed as follows:

Pr(T = t|T ≥ t) = h(t) =
f (t)
S(t)

, (2)

f (t) is a probability density function that represents the frequency distribution of the
time t to achieve technology adoption. S ∈ {t = 1, 2, . . . , T}, indicating the period during
which farmer i adopts the conservation tillage technology or is censored at the end of the
study period T. S(t) = Pr(T ≥ t) = 1− h(t), S(t) is the survival function, indicating the
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probability that technology adoption will not be achieved before T, and h(t) is the risk
function that assesses whether and when the technology can be adopted [27].

The adoption probability of the uncensored individuals in the research period (t ≤ T)
is as follows:

Li = Pr(Ti > t) = Si(t) = hit∏t
s=1(1− his), (3)

Li = Pr(Ti = t) = fi(t) = hit∏t−1
s=1(1− his), (4)

ci is an indicator representing whether the censoring occurred, if ci = 0, then no
censoring occurred, if ci = 1, then the individual is right-censored. The likelihood function
can be expressed as follows, where n is the sample size:

Li = [Pr(Ti = ti)]
1−Ci[Pr(Ti > ti)]

Ci = ∏n
i=1

[
hit∏t−1

s=1(1− his

)]1−Ci[
∏t

s=1 (1his)
]Ci

, (5)

Equation (6) operates by replacing ci by yi; ti is the adoption status of the farmer. Finally,
for each individual in the sample, we established a binary dependent variable. If the adoption
occurs in any period t≤ T, then yi|ci = 0 = 1. If the adoption does not occur until time T, then
yi|ci = 1 = 0. Thus, the full sample likelihood function was expressed as follows:

Li = ∏n
i=1 ∏ti

s=1[his]
yit [ (1− h is)]

1−yit = ∏n
i=1 [ f (t)]y[s(t)]1−yi , (6)

2.2. Model Selection

In this study, the baseline risk and covariates were incorporated into the risk function
based on proportional risk (PH), and the formula was as follows:

h(t|xi , β) = h0(t) · exp
(
xi
′β
)
, (7)

β is a vector of unknown parameters, xi
′β is called the logarithmic relative risk,

exp(xi
′β) is called the relative risk, exp(xi

′β) > 0. h0(t) is called the baseline hazard, which
means that all farmers in the sample have a common and constant baseline hazard function,
which depends on time t, but does not depend on xi

′β. If all explanatory variables are 0,
the risk function is equal to the baseline risk, the baseline risk h0(t) is the same for each
individual in the population, and the risk function of the individual is based on exp(xi

′β)
and it is proportional to h0(t), so it is called proportional hazard [28].

In order to use a discrete duration model, a functional form (such as binary logit and
probit models) needs to be chosen to estimate Equation (7), which can be used to investigate
the factors affecting the adoption time [25]. Referring to the studies of other scholars on
discrete duration models, we selected the logarithmic complementary model (Clog-log) to
parameterize the formula mentioned above [20–22], as follows:{

Cloglog[hi(t, X| ei)] ≡ ln{−ln(1− hit)} = h0(t) exp[Xi(t)β + ei)
ln{−ln(1− hit)} = αD(t) + βitXit + ei

, (8)

where X is a vector of covariates; D is a time variable representing the duration-dependent
effect (baseline risk); α and β are estimable parameters; and ei ∼ N

(
0,σ2) is a random

error term controlling for unobserved heterogeneity to reduce the error in estimation [29].

3. Data Sources and Descriptive Statistics of Variables
3.1. Data Sources

The data came from the survey of our research team. We conducted surveys in
Shaanxi, Gansu, Ningxia, and Shanxi provinces in the Yellow River Basin in August 2021
and November 2016, respectively. The climate and agricultural conditions vary significantly
across different regions of the Loess Plateau. However, the surveyed areas, including Yulin
and Xi’an in Shaanxi Province, Qingyang in Gansu Province, Guyuan in Ningxia Province,
and Yuncheng in Shanxi Province, are located in the northern region of the Loess Plateau.
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These areas experience dry and less rainy weather throughout the year, with the rainy
season being concentrated. The annual rainfall is only around 400 mm to 500 mm, and
there is limited time for cultivation. The cropping system for grain crops follows a one-
crop-per-year pattern, either with spring maize and winter wheat or with winter wheat
followed by summer maize. Part of the main body of the four provinces is located in the
central part of the Loess Plateau in the hilly and ravine area, and they are at the edge of
the East Asian monsoon and located in the transition zone from the temperate continental
monsoon climate to the temperate semi-arid climate, with the geological characteristics of
the Loess Plateau. These areas are national key ecological environment construction areas
in the upper and middle reaches of the Yellow River. However, the natural environment
in this area is fragile, and extreme weather changes such as heavy rainfall, floods, low
temperature and freezing damage, etc., have caused unstable agricultural production and
changed the agricultural production conditions. At the same time, the population there is
relatively concentrated and the farming income accounts for a relatively high proportion of
the total income of farmers there. Meanwhile, anthropic factors such as land abuse and
over-exploitation in these areas have caused serious soil erosion. Therefore, it is of high
research value to take the four provinces of Shaanxi, Gansu, Ningxia, and Shanxi in the
Loess Plateau region as the research site to obtain data.

The survey adopted a combination of a typical survey, stratified sampling, and simple
random sampling. First of all, we selected several areas with better conservation tillage
management effects as typical survey sites, they are Xi’an, Yulin, Shaanxi, Qingyang,
Gansu, Guyuan, Ningxia, and Yuncheng, Shanxi. Second, a combination of stratified and
random sampling methods was used to select 2–4 counties from each city randomly, and
then a stratified approach was adopted to select 4–8 villages in each town, and about 20
farming households were randomly selected for each village. A one-to-one survey was
conducted on the selected farmers, and the questionnaire involved information about the
characteristics of the head of household, family situation, awareness of conservation tillage
technology, the time of adoption, etc. A total of 1900 questionnaires were distributed in the
two surveys, and 1870 valid samples were obtained after excluding samples with missing
key information and inconsistent logic. The effective rate of the questionnaire was 98.42%.

Given the development of conservation tillage technology in China, we treated 2002
(since 2002, the specific funds for conservation farming were arranged by the government)
as the initial time of our research, as it can help to deal with the problem of left-censored
data. The left-censored data refers to data where the technology had been adopted before
the initial time or had not been adopted till the end time of the research [24]. Figure 1
showed the trends in awareness and adoption of conservation tillage during the study
period (2002–2020). It showed that at the beginning of the study, few farmers in the sample
were aware of the existence of conservation tillage techniques, and then the popularity of
these techniques began to rise from 2014 to 2016 ( as shown in Figure 1).

3.2. Variable Selection
3.2.1. Dependent Variables

We took the duration between awareness and adoption of conservation tillage tech-
niques as the dependent variable. Specifically, the duration referred to the number of
years from when farmers began to realize that there was a specific conservation tillage
technology to when any one of the three conservation tillage techniques (low-tillage and
no-tillage, straw mulching, and weed and pest control) was adopted. According to our
study period (2002–2020), the data can be divided into three types based on how long
the technology has been adopted since awareness. First, conservation tillage techniques
were adopted during the study period. Second, there was still no adoption of conservation
tillage techniques till the end of the survey (2020). Third, conservation tillage techniques
were adopted before the start date of the survey (2002) or remained unconscious until
2020. Among the survey samples, only 11, 8, and 9 respondents indicated that they had
awareness of these three conservation tillage techniques (minimum tillage, straw return
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to the field, and weed and pest control) before 2002, respectively. It can also be seen from
Figure 1 that the time for awareness of the conservation tillage technology was always
longer than the time for adopting it. It also showed that a period of time was needed before
a technology was adopted. Faced with a new technology, farmers would go through three
stages: awareness, trial adoption, and continuous adoption. During this process, they
would adjust the risk through risk management, social learning, and investment so as to
reduce the uncertainty [14].
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3.2.2. Independent Variables

Three types of conservation tillage techniques (minimum tillage, weed and pest control,
and straw return to the field) were the independent variables in our study. Among all the
respondents, there were 1312 farmers who adopted the technology of minimum tillage,
accounting for 70.16%; 671 farmers adopted the technology of weed and pest control,
accounting for 35.88%; and 1075 farmers adopted the technology of straw return to the
field, accounting for 57.49%.

The adoption rate of weed and pest control was relatively low, and both physical and
chemical methods are required when using it, and it is mainly based on prevention, which
makes it difficult for the farmers to adopt. The adoption rates of both minimum tillage and
straw return to the field technologies were more than half, indicating that the coverage rate
of conservation tillage techniques in the survey area was relatively high, and farmers had
a strong awareness of the importance of conservation tillage technology. However, there
was still an average of 45.49% of farmers who were unwilling to adopt conservation tillage
measures. Thus, the quality of cultivated land should be improved and the effectiveness of
land governance should be addressed.

3.2.3. Control Variables

In order to avoid other possible factors from interfering with the results, we selected the
control variables from seven aspects. They were the individual characteristics of the head
of a household (gender, age, and education level), family characteristics (dependency ratio,
cultivated land area, and soil fertility), social network conditions (whether to participate in
cooperatives), geographical distance characteristics (distance from the nearest agricultural
material sales point), government incentives (the government provides legal and regulatory
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policy assistance and the degree of influence of agricultural subsidy policies), extreme
weather characteristics (whether the farmland suffered heavy rainfall and floods in the
past three years, whether the farmland suffered drought disasters), and area characteristics
(whether located in Shaanxi, Shanxi, Gansu, or Ningxia).

3.3. Variable Descriptive Statistics

It can be seen from Table 1 that the average duration from awareness to adoption of
minimum tillage technology was 2 years, and the average duration of straw return to the
field, weeds, and pest control was no more than 1 year. It indicated that farmers were
aware of the importance of conservation tillage and may adopt the technologies timely to
maximize the expected returns. Most household heads were male, mostly middle-aged
(51–54 years old), with a low level of education (below junior high school). The proportion
of economically inactive household members (people over 65 and children aged 1–15) to
the total number of household members was used to represent the household dependency
ratio, because the amount of household labor will directly affect the rate of conservation
tillage technology adoption, such as straw mulching, which can be labor-intensive and
increase the demand for labor when crop residues were spread in the field before planting,
or when weed and pest control were necessary to increase manpower to cope with the
intensity of weed removal and pest control. The dependency ratio in Table 1 did not
exceed 32%, indicating that the quantity and quality of the labor force in the surveyed area
were relatively high. Land size and fertility can also affect the adoption of conservation
tillage technologies. The larger the land area, the more fertile the soil, and the more likely
farmers are to adopt conservation technologies. The mean value of land area owned by
the farmers in sample data was in the range of 0.47–0.80 hectares, with moderate soil
fertility. Policy incentives had a relatively large impact on farmers. Government-provided
agricultural subsidies and publicity laws and regulations can motivate farmers to adopt
conservation tillage technologies. In addition, both social networks and social learning had
an impact on the adoption of technology. The data showed that 43% of farmers participated
in cooperatives, indicating that farmers were less involved in industrial organizations. In
terms of social learning, more than 80% of farmers exchanged experiences with people
around them, and received guidance and training from professionals. In addition, more
than 80% of farmers obtained knowledge and experience of conservation tillage technology
through internet channels such as mobile phones and computers, thereby increasing their
confidence in adopting the technology independently and improving efficiency when
implementing the technology. However, farmers seldom obtained information through
traditional media such as newspapers and radio (less than 20%).

Table 1. Descriptive statistics of variables 1.

Variables Meaning

Minimum Tillage Weed and Pest Control Straw Return to the Field

Adopter 2

(1312)
Non-Adopter

(558)
Adopter 2

(671)
Non-Adopter

(1199)
Adopter 2

(1075)
Non-Adopter

(795)

Mean Mean Mean Mean Mean Mean

Adoption
duration

Duration time from awareness to
adoption (years)

2.448
(0.162)

0.654
(0.113)

0.473
(0.060)

Age Head of household’s age (years) 52.332
(0.282)

53.513
(0.473)

51.845
(0.368)

53.153
(0.318)

52.260
(0.303)

53.258
(0.399)

Gender Head of household’s gender
(1 = male, 0 = female)

0.875
(0.009)

0.928
(0.011)

0.784
(0.016)

0.951
(0.006)

0.843
(0.011)

0.956
(0.007)

Education Head of household’s education
level (years)

6.752
(0.095)

5.946
(0.169)

7.753
(0.116)

5.817
(0.109)

7.021
(0.099)

5.821
(0.141)

Dependency
ratio

Proportion of economically inactive
members to the total number

of households

0.282
(0.007)

0.313
(0.013)

0.279
(0.009)

0.297
(0.008)

0.285
(0.008)

0.299
(0.010)

Cultivated area Household cultivated land area
(hectare)

0.727
(0.286)

0.549
(0.311)

0.973
(0.468)

0.506
(0.195)

0.801
(0.333)

0.502
(0.242)
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Table 1. Cont.

Variables Meaning

Minimum Tillage Weed and Pest Control Straw Return to the Field

Adopter 2

(1312)
Non-Adopter

(558)
Adopter 2

(671)
Non-Adopter

(1199)
Adopter 2

(1075)
Non-Adopter

(795)

Mean Mean Mean Mean Mean Mean

Soil fertility Farmers’ evaluation of soil fertility
(1–5: very poor–very good)

3.530
(0.027)

3.102
(0.043)

3.444
(0.038)

3.379
(0.030)

3.445
(0.030)

3.345
(0.037)

Government
incentives

The impact of regulations, policies,
and agricultural subsidies provided

by the government on you (1–5:
very small–very large)

3.171
(0.040)

3.695
(0.049)

2.636
(0.062)

3.715
(0.031)

3.006
(0.046)

3.764
(0.039)

Social network
Whether family members

participate in cooperatives (1 = yes,
0 = no)

0.350
(0.013)

0.571
(0.021)

0.235
(0.016)

0.517
(0.014)

0.334
(0.014)

0.527
(0.018)

Learn from peers
Whether to learn related

technologies from peers around
(1 = yes, 0 = no)

0.864
(0.009)

0.935
(0.010)

0.785
(0.016)

0.942
(0.007)

0.849
(0.011)

0.935
(0.009)

Extension staff
guide learning

Whether to learn related
technologies through the guidance

of extension personnel (1 = yes,
0 = no)

0.642
(0.013)

0.808
(0.017)

0.434
(0.019)

0.836
(0.011)

0.580
(0.015)

0.843
(0.013)

Learning
through

traditional
channels

Do you learn related technologies
through traditional channels such

as radio and television (1 = yes,
0 = no)

0.171
(0.010)

0.120
(0.014)

0.212
(0.016)

0.124
(0.010)

0.193
(0.012)

0.106
(0.011)

Digital learning

Whether to learn related
technologies through digital

network channels such as mobile
phones and computers (1 = yes,

0 = no)

0.852
(0.010)

0.724
(0.019)

0.957
(0.008)

0.733
(0.013)

0.891
(0.010)

0.709
(0.016)

Distance from
agricultural

materials sale
station

The distance between your home
and the nearest agricultural
material sales point (miles)

3.484
(0.088)

4.153
(0.180)

3.460
(0.154)

3.808
(0.095)

3.510
(0.111)

3.918
(0.121)

Area 1 = in Shaanxi, 2 = in Gansu,
3 = in Ningxia, 4 = in Shanxi

2.175
(0.030)

2.287
(0.053)

2.110
(0.037)

2.264
(0.036)

2.021
(0.026)

2.462
(0.050)

Heavy rainfall
and flood
disasters

Whether the farmland suffered
heavy rainfall and flood disasters in
the past three years (1 = yes, 0 = no)

0.768
(0.012)

0.324
(0.020)

0.598
(0.019)

0.656
(0.014)

0.626
(0.015)

0.648
(0.017)

Extreme drought
disaster

Whether the farmland suffered
from drought in the past three years

(1 = yes, 0 = no)

0.543
(0.014)

0.622
(0.021)

0.469
(0.019)

0.621
(0.014)

0.502
(0.015)

0.653
(0.017)

1 Note: Standard errors are in parentheses. 2 The number of adopters in Table 1 is different from the number of
adopters in Figure 1, because the number of adopters in Figure 1 is the “number of adopters for the first time”,
while the number in Table 1 refers to the “number of conservation tillage techniques adopted last year”.

Information is disseminated through multiple channels. Whether it is through passive
social learning or self-directed online learning, it will help farmers become aware of the
importance of conservation tillage technology, which will help increase the adoption rate
of the technology, and guide farmers to use it at a suitable time. In addition, distance from
the point of sale of agricultural materials and extreme weather can also affect technology
adoption. The closer the point of purchase, the lower the transportation costs and the more
likely the technology will be adopted. It can be seen from the data that farmers believed
that heavy rainfall, floods, and extreme droughts had obviously intensified in the past
three years, which did have a certain impact on agricultural production and daily life. We
created a structural model for all the influencing factors, as shown in Figure 2.
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4. Empirical Analysis and Results
4.1. Non-Parametric Estimation of K-M

Kaplan–Meier’s non-parametric graphical method was used to construct the survival
function of conservation tillage technology in the Yellow River Basin of China and estimated
the distribution of the adoption duration. Figure 3 measured the probability of survival
(non-adoption) after time t. This non-parametric method can help to analyze the speed
of adoption of conservation tillage technology during the study period. As shown in
Figure 3, the probability of survival was decreasing and, therefore, the rate of adoption of
conservation tillage technologies increased steadily over time. The nonparametric Kaplan–
Meier method does not make any assumptions about the form of the survival function,
and it cannot estimate the effect of covariates [26,29]. Therefore, semi-parametric and
parametric methods were used in the following part to verify the stability and reliability of
the conclusions.
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4.2. Clog-log Parameter Estimation and Cox PH Semi-Parametric Estimation
4.2.1. Model Diagnostic Tests

Tables 2–4 showed the model estimation results for each of the three conservation
tillage techniques. In the baseline PH model, the hazard rate was regressed using the
duration of adoption as the only covariate, assuming that the effects of other covariates were
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not important [26]. The Continuous-time Cox PH model belongs to the semi-parametric
estimation method, which does not make any restrictive functional assumptions about the
distribution pattern of the baseline risk. It allows for the controlling of multiple risk factors
and is suitable for analyzing the effects of multiple risk factors on observed individuals at
different times. So, it was suitable to use the Cox model in our study when we assumed
that the adoption times were recorded at small intervals [29]. The discrete duration model
(Clog-log) is a parameter estimation method that can not only solve the problem of time
nodes, but can also be extended. It can not only be used to explain the unobservable
heterogeneity, but can also avoid the assumption of proportional hazards and can deal
with the problem of right censoring [25]. It can be seen in Tables 2–4 that the estimated
results of the Clog-log model were similar to the Cox model, and based on AIC, BIC, and
the loglikelihood, the Clog-log model was more suitable for our research than the Cox PH.
Therefore, the discussion in this section mainly focused on the Clog-log model.

Table 2. Cox PH model and Clog-log model of minimum tillage technology adoption duration.

Variables

Minimum Tillage

Baseline PH COX PH Clog-log
HR Z-Score HR Z-Score HR Z-Score

Age 1.009
(0.006) 1.60 0.996 *

(0.003) −1.23

Gender 1.153
(0.503) 0.33 0.765 **

(0.089) −2.30

Education 1.000
(0.021) −0.01 1.018 *

(0.010) 1.74

Dependency ratio 0.970
(0.263) −0.11 0.734 **

(0.097) −2.34

Cultivated area 0.999
(0.020) −0.06 1.014 ***

(0.005) 3.06

Soil fertility 0.863
(0.049) −2.57 1.281 ***

(0.046) 6.87

Government incentives 0.833
(0.057) −2.68 0.933

(0.033) −1.93

social network 0.668
(0.050) −5.39 0.478

(0.051) −6.92

Learn from peers 0.902
(0.065) −1.43 1.200 **

(0.105) 2.09
Extension staff guide

learning
0.638

(0.156) −1.84 1.145
(0.109) 1.42

Learning through traditional
channels

1.710 *
(0.551) 1.67 1.067

(0.105) 0.66

Digital learning 0.731
(0.059) −3.85 1.385 **

(0.224) 2.02
Distance from agricultural

materials sale station
1.012

(0.016) 0.74 0.986
(0.010) −1.38

Area 1.030
(0.048) 0.62 0.967

(0.029) −1.09
Heavy rainfall and flood

disasters
3.196 ***
(0.247) 15.02 0.240 ***

(0.044) −7.79

Extreme drought disaster 1.166 **
(0.087) 2.05 0.818 **

(0.073) −2.24
Long-term dependence (continuous dependence)

D1 (1 ≤ t ≤ 10) 0.092 ***
(0.007) −30.52 0.922 **

(0.032) −2.33

D2 (11 ≤ t ≤ 20) 0.022 ***
(0.003) −25.63 1.080

(0.035) 2.37

D3 (21 ≤ t ≤ 30) 0.013 ***
(0.004) −15.60 1.003

(0.081) 0.03
D4 (31 ≤ t ≤ 40)

Constant 0.655
(0.196) −1.41

LLR −1139 −954 −733
AIC 2283 1929 1501
BIC 2294 1970 1592
N 1870 479 1594

Note: Standard deviations in parentheses. * Significant at the 10% level; ** significant at the 5% level; *** significant
at the 1% level.
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Table 3. Cox PH model and Clog-log model of weed and pest control technology adoption duration.

Variables

Weed and Pest Control

Baseline PH COX PH Clog-log
HR Z-Score HR Z-Score HR Z-Score

Age 1.004
(0.003) 1.59 1.009

(0.004) 2.01

Gender 0.927
(0.292) −0.24 0.484 ***

(0.058) −6.05

Education 0.986 **
(0.006) −2.47 1.063 ***

(0.012) 5.32

Dependency ratio 0.778 *
(0.102) −1.92 1.086

(0.191 0.47

Cultivated area 0.980 *
(0.011) −1.84 1.038 ***

(0.004) 8.82

Soil fertility 0.948
(0.034) −1.46 1.131 ***

(0.051) 2.74

Government incentives 1.005
(0.058) 0.08 1.012

(0.049) 0.26

social network 0.782
(0.084) −2.29 1.395 **

(0.210) 2.21

Learn from peers 1.086
(0.056) 1.62 1.098

(0.103) 1.00
Extension staff guide

learning
1.102

(0.130) 0.82 1.420 **
(0.195) 2.55

Learning through traditional
channels

1.190
(0.156) 1.33 1.393 ***

(0.162) 2.85

Digital learning 0.932
(0.141) −0.46 0.380

(0.036) −10.19
Distance from agricultural

materials sale station
0.988

(0.017) −0.69 0.978
(0.014) −1.57

Area 0.942 **
(0.023) −2.46 0.990

(0.041) −0.25
Heavy rainfall and flood

disasters
0.884

(0.083) −1.32 0.917
(0.107) −0.74

Extreme drought disaster 1.476 ***
(0.146) 3.93 0.978

(0.111) −0.20
Long-term dependence (continuous dependence)

D1 (1 ≤ t ≤ 10) 0.179 ***
(0.010) −30.01 0.765 ***

(0.060) −3.44

D2 (11 ≤ t ≤ 20) 0.055 ***
(0.006) −27.92 1.124

(0.117) 1.12

D3 (21 ≤ t ≤ 30) 0.035 ***
(0.010) −11.58 0.739 ***

(0.070) −3.21

D4 (31 ≤ t ≤ 40) 0.025 ***
(0.010) −9.07

Constant 0.286 ***
(0.107) −3.35

LLR −1199 −1727 −771
AIC 2403 3476 1576.
BIC 2414 3515 1668
N 1870 390 1594

Note: Standard deviations in parentheses. * Significant at the 10% level; ** significant at the 5% level; *** significant
at the 1% level.

Table 4. Cox PH model and Clog-log model of straw return to the field technology adoption duration.

Variables

Straw Return to the Field

Baseline PH COX PH Clog-log
HR Z-Score HR Z-Score HR Z-Score

Age 0.995
(0.009) −0.59 1.001

(0.003) 0.34

Gender 2.730
(3.101) 0.88 0.595 ***

(0.065) −4.75

Education 1.038
(0.025) 1.53 1.019 *

(0.010) 1.89

Dependency ratio 0.840
(0.713) −0.21 0.966

(0.131) −0.25
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Table 4. Cont.

Variables

Straw Return to the Field

Baseline PH COX PH Clog-log
HR Z-Score HR Z-Score HR Z-Score

Cultivated area 0.986
(0.023) −0.60 1.030 ***

(0.005) 6.46

Soil fertility 0.968
(0.023) −0.33 1.092 **

(0.039) 2.44

Government incentives 0.790
(0.086) −2.18 1.070 *

(0.040) 1.82

social network 0.819
(0.136) −1.20 0.720

(0.056) −4.22

Learn from peers 1.241
(0.205) 1.31 0.858

(0.063 −2.08
Extension staff guide

learning
0.998

(0.097) −0.02 3.745 **
(2.252) 2.2.

Learning through traditional
channels

0.728
(0.335) −0.69 1.466 ***

(0.141) 3.96

Digital learning 0.581
(0.046) −6.80 3.421 *

(2.476 1.70
Distance from agricultural

materials sale station
1.073

(0.051) 1.47 0.986
(0.011) −1.33

Area 0.907
(0.113) −0.78 0.841 ***

(0.025) −5.72
Heavy rainfall and flood

disasters
0.999

(0.075) −0.01 1.195
(0.321) 0.66

Extreme drought disaster 1.069
(0.082) 0.86 0.508 ***

(0.108) −3.18
Long-term dependence (continuous dependence)

D1 (1 ≤ t ≤ 10) 0.098 ***
(0.010) −27.70 0.972 **

(0.012) −2.26

D2 (11 ≤ t ≤ 20) 0.056 ***
(0.009) −17.99 0.725

(0.193) −1.21

D3 (21 ≤ t ≤ 30) 0.035 ***
(0.016) −7.47

D4 (31 ≤ t ≤ 40)
Constant 1.404

(0.419) 1.14
LLR −1246 −189 −923
AIC 2496 398 1881
BIC 2507 422 1972
N 1870 79 1594

Note: Standard deviations in parentheses. * Significant at the 10% level; ** significant at the 5% level; *** significant
at the 1% level.

4.2.2. Duration Dependence Test

The duration dependence test is a new and effective method used by most scholars
to test the rational bubbles of the stock market in economics [30–33]. Chen Qiang [27] has
proposed that in unemployment duration studies, the longer the duration of unemploy-
ment, the lower the probability of finding a job; that is, the risk rate decreases with time.
If each individual is exactly the same, it means the duration dependence is negative. The
persistence test in the duration analysis can not only improve the accuracy and consistency
of parameter estimation but also deal with the problem of “unobservable heterogeneity” in
the sample, and it is more robust to autoregressive phenomena [25,31].

Drawing on related research, we assumed that the effect of other covariates on the
rate of adoption is zero. We used a baseline PH model for a duration dependence test to
examine the effect of time, then modeled the baseline PH as a step function with some
significant time points and divided it into four time periods (D1: 1≤ t≤ 10, D2: 11 ≤ t ≤ 20,
D3: 21 ≤ t ≤ 30, D4: 31 ≤ t ≤ 40). We then examined whether the conclusions change after
significant and important changes in the technology adoption environment around these
time points. If the effects of other covariates were added, a flexible full-parameter Clog-log
model (columns 6, 12, and 18 of D1-D4 in Table 2) was generated to examine the sensitivity
of the test results to the choice of function. The application of this model can help to reveal
the pattern of duration persistence of conservation tillage technology adoption.
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As shown in the results, the estimated coefficients of the baseline PH model were
gradually decreasing, and the probability of delaying the adoption of minimum tillage
technology, weed and pest control technology, and straw return to the field technology was
the highest in the initial D1 stage (0.092–0.179), with the coefficients gradually becoming
smaller in stage D3 (0.013–0.035). The coefficients of weed and pest control technologies
reached the smallest (0.025) in the D1–D4 stages, and even the coefficients of minimum
tillage and straw return to the field were zero in stage D4. In conclusion, the probability
of delaying the adoption of technologies was the highest at the beginning; i.e., there
was a negative time dependence. As a result, the farmers became more willing to adopt
conservation tillage techniques over time. The surge in adoption in the later years could be
due to various factors, such as increased risk perception, more knowledge, enhanced social
networks, policy incentives, etc.

4.3. Estimation Results and Analysis

To make the comparison of results easier, all coefficients were reported as hazard ratios
(HR). If the value is one, it means the covariate has no effect on the HR, while a value
greater (less) than one indicates a positive (negative) effect on the possibility of adopting
conservation tillage techniques [25].

As shown in Tables 2–4, the coefficient of gender was significantly negative (less than
one), indicating that in order to obtain higher economic income and more opportunities for
development, males tended to join in labor transfer and females became the main decision
makers in family agricultural production [34]. This would affect the process from awareness
to adoption of agricultural technology. Education level had a significant positive impact
on the duration of conservation tillage technology adoption (greater than one), which was
consistent with most research, such as Wollnim et al. (2010) [4] and Li Wei et al. (2017) [6],
who studied the influencing factors of conservation tillage techniques on Honduran hill-
sides and the Chinese Loess Plateau. These findings indicate that the higher the level of
education was, the shorter the duration could be. The area of cultivated land and the de-
gree of soil fertility had a positive effect on the duration of conservation tillage technology
adoption, indicating that the resource endowment of cultivated land determined farmers’
production input preferences in cultivated land conservation behavior, and the larger and
more fertile the cultivated land, the quicker the conservation tillage technology could be
adopted, which is consistent with the results of Xu et al. (2018) [16], who conducted a
study on the impact of land management practices on the adoption of straw mulching as a
conservation tillage measure.

As for the technology of minimum tillage, the younger farmers were more likely to
learn and innovate the technology. The higher dependency ratio would delay farmers’
adoption of minimum tillage technology. It is because a higher dependency ratio implies
a higher proportion of children and elderly in the household, resulting in a lack of labor
for pre-production and post-production crop operations such as local deep pine or rototill,
direct seeding, fertilization, application, mulching, suppression, and harvesting. As for the
technology of straw return to the field, policy incentives have had a positive effect on the
adoption time of the technology. This is because the promulgation of regulations, such as
the straw burning ban and the implementation of the straw return subsidy policy deepened
farmers’ awareness and stimulated motivation for its adoption. When it came to the weed
and pest control technology, farmers participating in cooperatives could broaden their
social network, promote precise connections between technology adopters and the market,
and shorten the time interval from awareness to technology adoption. The findings above
are consistent with the conclusions of Beyene et al. (2015) [29], Zheng et al. (2018) [13], and
Xu et al. (2018) [16], who investigated the importance of different attributes of conservation
tillage techniques in relation to the duration of adoption.

Social learning was also an important factor influencing whether a technology was
adopted and the rate of adoption. The results showed that social learning positively and
significantly influenced the duration of adoption of conservation tillage technologies by
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farmers (greater than one), demonstrating that farmers tended to delay adoption decisions
when they were uncertain or poorly informed about the profitability of a new technology.
The importance of information is that it can dispel possible misconceptions that farmers
may have about the technology and help to build their expertise in the technology. Farmers
may be unfamiliar with technology-related information at the beginning, but as more
information about the attributes of the technology becomes available, farmers are better
able to objectively evaluate the benefits of the technology, so as to accelerate the time
from awareness to adoption. This finding is consistent with the results of Khataza et al.
(2018) [25], who studied the impact of information channels in social learning on the
duration of adoption of conservation agriculture in the Malawi region.

In addition, extreme weather changes such as heavy rainfall, flooding, and extreme
drought disaster negatively affected the adoption of conservation tillage technologies. This
is because it is an adaptive process for farmers from perceiving the extreme weather changes
to the timely adoption of farm management strategies. Compared to normal years, more
tasks and management measures should be implemented to resist the agricultural risks
caused by the disasters. Therefore, the occurrence of extreme weather changes prolongs
the time from awareness to adoption of conservation tillage techniques by farmers. This
finding is consistent with the results of Xiao et al. (2012) [35], who studied the willingness
of farmers to adopt conservation agriculture practices.

5. Discussion

While duration studies are essential for assessing the effectiveness and impact of
conservation tillage technology adoption, they also have certain limitations. Firstly, du-
ration studies require tracking and evaluating conservation tillage practices, which often
necessitate long time spans and significant resource investments, limiting the scale and
feasibility of the research. Secondly, conservation tillage techniques are influenced by
regional factors such as geography, climate, and soil conditions. Duration studies are
typically conducted in specific regions, making it challenging to generalize the conclusions
to other areas and limiting our understanding of the universality of conservation tillage
technology across different geographical environments. Lastly, duration studies often
focus on specific conservation tillage practices over a relatively long period. However,
technological advancements and innovations may occur during the study period, with new
techniques potentially exhibiting improved effectiveness or higher feasibility. Duration
studies may not fully account for these factors of technological progress and innovation.

To gain a more comprehensive understanding and evaluation of conservation tillage
technology, future research should not only involve long-term monitoring and assessment
to acquire data spanning a longer time period and better understand the long-term ef-
fects of the technology but also incorporate additional indicators and research methods to
comprehensively evaluate conservation tillage techniques. This will ultimately provide sci-
entific evidence for sustainable agricultural development and offer technical and economic
references for policymakers.

6. Conclusions and Policy Implications

This study utilizes survey data from 1870 households in the Loess Plateau region
of China to investigate the duration of adoption of conservation tillage techniques. The
results showed that the overall duration from awareness to adoption of conservation
tillage technology was generally short, with an average duration of only 1.192 years, with
the duration from awareness to adoption of low-tillage and no-tillage technology being
2.448 years. The duration from awareness to adoption of straw return to the field and weeds
and pest control were all within 1 year. Our study analyzed the factors affecting the duration
from awareness to adoption of conservation tillage technologies among smallholder farmers
in the Yellow River Basin by using the Clog-log model. The results showed that the key
factors in deciding to adopt conservation tillage technology were farmers’ education level,
social learning to access information, high-quality soil fertility, arable land scale, and policy
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incentives. The reduction in labor involved in agricultural production due to household
labor shifts and the uncertainty of risks and benefits due to extreme weather changes may
delay the adoption of these technologies. The time-dependent test found that the probability
of delaying the decision time to adopt conservation tillage was highest in the initial D1
stage (0.092–0.179), but the coefficient gradually became smaller (0.013–0.035) in the later
D3 stage, and even came to zero in the D4 stage. In other words, there was a negative
time dependence. Through the study of the duration of adoption of conservation tillage
techniques, farmers can gain a better understanding of the improvements in agricultural
productivity and ecological conservation benefits associated with this technology. Based
on this understanding, farmers can evaluate and select different technological attributes
and stages over time, adjust their agricultural management strategies, enhance agricultural
production capacity, improve farmers’ income levels, enhance the health of the ecosystem,
and ultimately promote sustainable development in rural areas.

This study has practical guiding significance for farmers as well as government de-
partments. On the one hand, the article examined the factors that affect the duration of
technology adoption in detail, so that the farmers can take the conclusion as a reference
before choosing an advanced agricultural technology. In this way, they can weigh and
select the costs and benefits of technology adoption at different times, and then make timely
adoption decisions to minimize the cost of technology adoption. On the other hand, this
study pointed out the impact of social learning and policy incentives on the duration of
technology adoption. It was suggested that the government should consider broaden-
ing different social learning channels while promoting conservation tillage technologies.
Specifically, more offline guidance and training by experts can be conducted, in addition to
combining online platforms such as WeChat and Tencent meetings for learning to enhance
the social learning atmosphere and promote the broad participation of potential farmers. It
is also suggested that the government should provide a certain amount of ecological com-
pensation in terms of agricultural subsidies, so that technology adoption can improve the
externalities of the ecological environment. This would also stimulate farmers’ enthusiasm
for technology adoption, so as to shorten the time interval from awareness to adoption,
and accelerate the transformation and increase the technology adoption rate.
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