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Abstract: Early crop disease detection is one of the most important tasks in plant protection. The
purpose of this work was to evaluate the early wheat leaf rust detection possibility using hyper-
spectral remote sensing. The first task of the study was to choose tools for processing and analyze
hyperspectral remote sensing data. The second task was to analyze the wheat leaf biochemical profile
by chromatographic and spectrophotometric methods. The third task was to discuss a possible
relationship between hyperspectral remote sensing data and the results from the wheat leaves, bio-
chemical profile analysis. The work used an interdisciplinary approach, including hyperspectral
remote sensing and data processing methods, as well as spectrophotometric and chromatographic
methods. As a result, (1) the VIS-NIR spectrometry data analysis showed a high correlation with the
hyperspectral remote sensing data; (2) the most important wavebands for disease identification were
revealed (502, 466, 598, 718, 534, 766, 694, 650, 866, 602, 858 nm). An early disease detection accuracy
of 97–100% was achieved from fourth dai (day/s after inoculation) using SVM.

Keywords: hyperspectral remote sensing; wheat leaf rust; Puccinia triticina; support vector machines;
early plant disease detection; VIS-NIR spectroscopy; leaf pigments; biochemical profile

1. Introduction

Environmental and economic problems, world economy globalization, and world
population growth, are significant incentives for the development of new agricultural
techniques in order to achieve food security. Precision farming has become one of the
most actively developing areas of agriculture in the last two decades [1]. One of the most
important areas of precision agriculture is plant disease monitoring and identification.
Modern approaches include the use of various sensors that can be installed on various
platforms, such as UAVs and satellites [2].

Wheat leaf rust, caused by Puccinia triticina Eriks., is an important disease that affects
wheat production worldwide [3]. The disease causes big annual losses due to its more
frequent and widespread occurrence, although it is usually less damaging than stem rust
caused by Puccinia graminis Pers., or yellow rust caused by Puccinia striiformis var. tritici
Westend [4]. Despite a decrease in the importance of P. triticina, noted in 2000, this pathogen
can still be a source of epiphytotics capable of damaging up to 35% of the yield [5].

Hyperspectral remote sensing is one of the most promising methods for monitoring
and diagnosing plant diseases [6,7]. This method allows early plant disease detection at the
first disease development stages, before visible symptoms appear [8,9]. This may allow to
take timely and balanced measures for pest control, excluding the excessive use of chemical
pesticides [10,11].

The study of wheat leaf rust using”hype’spectral remote sensing was carried out in
works of Ashourloo et al. (2014) [12] and Bohnenkamp et al. (2019) [13]. Ashourloo et al.
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used different SVIs to detect the disease at different severity levels. The NBNDVI, NDVI,
GI, ARI, and PRI indices showed a high-overall, disease-detection accuracy. However,
these indices showed up to 50% classification errors at early stages of the disease [12].
Bohnenkamp et al. used pure fungal spore spectra, as reference, to detect the symptoms of
wheat leaf rust. The model for rust detection was efficiently applied on the pixel scale, but
the exact percentage of correct classification was not specified [13]. A comparative analysis
of the results of both studies is provided in Table 1.

Table 1. A comparative analysis of the previous studies on the topic.

Author and
Reference Sensor Used Sensor Type Spectral Range Algorithm Used Results Early

Detection

Ashourloo et al. [12] ASD
Fieldspec 4 pro

whisk-broom
camera 350–2500 nm. NBNDVI, NDVI,

PRI, GI, and RVSI >70% accuracy No

Bohnenkamp et al. [13] ImSpector PFD
V10E

snapshot
camera 400–1000 nm. Least-squre

factorization Not mentioned No

Both of these studies were taken into account. However, the study of Ashourloo et al.
had too high of an error rate at early stages of the disease. The study of Bohnenkamp et al.
involved the usage of pure fungal spore spectra, as reference, which means high-disease
severity. Consequently, our study was based on the methodology of Gold et al. (2020) [14],
supplemented by a number of innovations.

The authors also took into account the features of detecting various wheat diseases
described in recent papers using hyperspectral remote sensing [15–17]. Based on these
works, the principles of the experimental methodology and the choice of tools for analyzing
the data obtained were formulated. The purpose of this work was to evaluate early
wheat leaf rust detection using hyperspectral remote sensing. The first task of the study
was to propose tools for processing and analyzing hyperspectral remote sensing data.
The second task was to analyze wheat leaf biochemical profile by chromatographic and
spectrophotometric methods. The third task was to discuss a possible relationship between
hyperspectral remote sensing data and the results from the wheat leaf biochemical profile
analysis. Finally, to evaluate the proposed, machine learning-based processing method for
early wheat leaf rust detection.

2. Materials and Methods
2.1. Plant Material Preparation

The grains of wheat (Triticum aestivum) of ‘Sudarynya’ cultivar, susceptible to the
wheat leaf rust, were sown into 152 pots (85 × 85 × 100 mm), in the amount of 12 grains in
each pot. The pots were divided into 2 equal groups, which were used as the control and
experiment, respectively.

The suspension of P. triticina urediniospores from the collection of the All-Russian
Institute of Plant Protection in concentration 104 spores/mL was used for the inoculation.
The seven days old wheat seedlings were inoculated under laboratory conditions and then
placed into a dark humid chamber with a 100% humidity for 10–12 h. After that, the plants
were transferred into a phytotron and were grown at the temperature of 20–23 ◦C with the
photoperiod of 14 h per day at 15,000–20,000 lux (202.5–270 PPFD (µmol m−2 s−1)), during
the next 10 days.

The plant material was cut daily at 12 PM and was immediately used for hyperspectral
imaging or was immediately stored for metabolomic study starting from fourth dai (day/s after
inoculation). Only the first leaves were used for imaging due to the fact that the inoculation
was carried out at the stage of the first leaf. The plant material storage for metabolomic study
was carried out at a temperature of −80 ◦C using a Binder UF V 700 freezer.
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The plant material preparation was made in the form of two independent repetitions
carried out under identical conditions. There was a one-week interval between repetitions.
The disease development was assessed by classical phytopathological methods.

2.2. Hyperspectral Camera Setup

A hyperspectral snapshot camera Ultris 20 (Cubert GmbH, Ulm, Germany) was used
in the studies. The camera was operating in the range from 450 to 850 nm in the mode of
100 channels with the sampling interval of 4 nm. The hyperspectral image resolution was
410 × 410 pixels.

The imaging was carried out in a room isolated from natural light. The camera was
installed horizontally on a tripod at a height of 0.5 m above the studied wheat leave samples.
The samples were illuminated with two 500-watt halogen lamps directed at the sample at
the angle of 45 degrees. A white background was used for sample shooting. The shooting
area was 14 by 20 cm. The design of the installation was based on the studies [15–17], and
is shown in Figure 1.

Agriculture 2023, 13, x FOR PEER REVIEW 3 of 17 
 

 

metabolomic study was carried out at a temperature of −80 °C using a Binder UF V 700 

freezer. 

The plant material preparation was made in the form of two independent repetitions 

carried out under identical conditions. There was a one-week interval between repetitions. 

The disease development was assessed by classical phytopathological methods. 

2.2. Hyperspectral Camera Setup 

A hyperspectral snapshot camera Ultris 20 (Cubert GmbH, Ulm, Germany) was used 

in the studies. The camera was operating in the range from 450 to 850 nm in the mode of 

100 channels with the sampling interval of 4 nm. The hyperspectral image resolution was 

410 × 410 pixels. 

The imaging was carried out in a room isolated from natural light. The camera was 

installed horizontally on a tripod at a height of 0.5 m above the studied wheat leave sam-

ples. The samples were illuminated with two 500-watt halogen lamps directed at the sam-

ple at the angle of 45 degrees. A white background was used for sample shooting. The 

shooting area was 14 by 20 cm. The design of the installation was based on the studies 

[15–17], and is shown in Figure 1. 

 

Figure 1. The shooting installation. F = 53 cm; L = 80 cm; H = 160 cm. 

2.3. Image Acquisition 

Black and white calibration, distance calibration, and PC data transfer were per-

formed using the Cubert-Pilot software provided by the manufacturer. The information 

was uploaded for further processing in the Multi-Channel TIFF format with following 

parameters: 106 channels, 16 bits per channel. The data analysis was performed using the 

support vector machine (SVM) algorithm. 

The images were taken from the fourth to the seventh day after inoculation every day 

at 12.00 A.M. Ten leaves were cut from random plants for each image. Each daily set (the 

control and the experiment) contained 12 images. Thus, each daily set contained 240 leave 

images in total, with a 960 leave images in the whole experiment, 480 healthy, and 480 

diseased leaves, respectively. 

2.4. Gas Chromatography-Mass Spectrometry GC-MS Analysis 

The 500 mg of wheatgrass leaves (12 leaves) were ground in liquid nitrogen in a mor-

tar with a pestle. Crude extract was obtained by methanol (80%) extraction at 40 °C from 

these drags. The extracts analysis was done with GC-MS. 

Figure 1. The shooting installation. F = 53 cm; L = 80 cm; H = 160 cm.

2.3. Image Acquisition

Black and white calibration, distance calibration, and PC data transfer were performed
using the Cubert-Pilot software provided by the manufacturer. The information was up-
loaded for further processing in the Multi-Channel TIFF format with following parameters:
106 channels, 16 bits per channel. The data analysis was performed using the support
vector machine (SVM) algorithm.

The images were taken from the fourth to the seventh day after inoculation every day
at 12.00 A.M. Ten leaves were cut from random plants for each image. Each daily set (the
control and the experiment) contained 12 images. Thus, each daily set contained 240 leave
images in total, with a 960 leave images in the whole experiment, 480 healthy, and 480
diseased leaves, respectively.

2.4. Gas Chromatography-Mass Spectrometry GC-MS Analysis

The 500 mg of wheatgrass leaves (12 leaves) were ground in liquid nitrogen in a mortar
with a pestle. Crude extract was obtained by methanol (80%) extraction at 40 ◦C from these
drags. The extracts analysis was done with GC-MS.

The residue was separated by centrifugation at 10,000× g for 10 min. The supernatant
in a volume of 10 mL was evaporated with a vacuum-rotary evaporator at 40 ◦C.

The compounds were identified based on their relative retention time and by com-
parison of their mass spectra with data from the mass-spectra library. The analysis was
performed by an Agilent 5860 chromatograph using Agilent ChemStation E.02.02.1431
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software (Agilent Technologies Inc., Santa Clara, CA, USA). The separation was provided
with a capillary column 30 m long, 0.25 mm in diameter, and stationary phase film (95%
dimethylpolyoxane, 5% diphenyl), at a thickness of 0.1 µm. The following conditions were
used: helium flow rate, 1 mL/min−1 and evaporator temperature, 230 ◦C at a flow-split
ratio of 1:20. The temperature conditions of the column thermostat were the following: ini-
tial temperature of 70 ◦C, increased by 6 ◦C/min−1 up to 340 ◦C. The peaks were recorded
by an Agilent 5975S mass selective detector (Agilent Technologies, USA) in the total ion
recording mode with a frequency of 1.8 scans per second. Electron impact ionization was
performed at 70 V, an ion source temperature of 230 ◦C.

The retention-index determination was performed using a calibration based on stan-
dard, saturated hydrocarbons. Quantitative interpretations of metabolite profiles were car-
ried out over total ion current peak areas using the internal standard method by UniChrom
software (www.unichrom.com, accesed on 1 January 2023). Standard curves were defined
from standards containing polyols (inositol, sorbitol, galactinol, etc.,) and sugars (trehalose,
sucrose, glucose, fructose, etc.).

2.5. VIS-NIR Spectroscopy

Photosynthetic pigments were extracted from leaf samples with 100% acetone and
the pigment contents were calculated using the formulae described in [18]. The work was
carried out using Nano-500 spectrophotometer (Hangzhou Allsheng Instruments Co., Ltd.,
Hangzhou, China).

3. Results
3.1. Data Classification Results

Data pre-processing. The main goal of data pre-processing was to find the pixels
referring to the plant material on the hyperspectral images. It was made in two steps.

On the first step we selected the preliminary areas of interest by black and white
representation using threshold clipping with selected constants [19]. On the second step,
we made additional shadow filtration using NDVI threshold. This step was necessary
because shadows were similar to the areas of interest in the black and white representation.

Thus, the plant material samples were separated from the background and could be
used for further processing.

Data analysis. The separated plant material data was processed as follows:

(a) Hyperspectral curves analysis. The first stage of data analysis was plotting hyperspec-
tral curves [20,21]. The results obtained demonstrated similarity with the results of
consimilar studies on the topic [20,22,23]. Hyperspectral curves were typical for plant
objects. It was concluded that hyperspectral imaging was carried out correctly and its
results could be used for further research. The spectral curves are shown in Figure 2.
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(b) Pixel distributions analysis. The second stage of data analysis was the search for
correlated-value cluster presence and complex intensity distributions. Since hyper-
spectral images are inherently similar to conventional images and are a set of two-
dimensional matrices, the data were analyzed in terms of correlated-value cluster
presence and complex intensity distributions before classification methods choos-
ing. The distributions were analyzed for all available wavelengths in the range of
440–870 nm. Visual hyperspectral images analysis did not demonstrate significant
differences in pixel distributions, in which the control group would differ from wheat
leaf rust inoculated group until 7 dai. Based on this observation, the use of neural
network models to build a classification of hyperspectral images was not preferable
for early disease detection. An example of wavelength matrices distributions for the
440 nm wavelength is shown in Figure 3.
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(c) Feature generation. Next, an analysis of class separability (control or experiment data)
was made based on various features that could be extracted from hyperspectral images.
For each available hyperspectral range, two groups of features have been calculated.
The first group of features are mean values of pixel for each range. The second group
are textural features for each range [24]. Homogeneity, contrast, dissimilarity and
entropy have been chosen as texture features based on results from [20,25]. The
average value usage for each range as a predictor was made due to an assumption
that the reflectivity of diseased and healthy plants is generally different. The use of
textural features was based on an assumption that control or experiment data can be
different in terms of heterogeneity of their structure in certain ranges.

(d) Preliminary analysis of separability of classes in the attribute space. To display classes
in the feature space, the t-Distributed Stochastic Neighbor Embedding algorithm
(t-SNE) presented in [26] was used. The algorithm is a modification of the Stochastic
Neighbor-Embedding (SNE) algorithm presented in [27]. Both algorithms make it
possible to map a multidimensional space onto a space of smaller dimensions, for
example, a two-dimensional one. The difference of the t-SNE algorithm is that it
uses a different cost function, which allows to simplify the original SNE optimization
problem. T-SNE representations for different feature spaces is shown in Figure 4.
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Figure 4. The classes distribution in the multidimensional space of features for images, presented
in two-dimensional space using the t-SNE algorithm for cases where the features are (a) average,
(b) textural features over pixel intensities in two-dimensional hyperspectral images of each channel,
and (c) vegetation indices. The graphs demonstrate good separability of classes in feature spaces in
cases where channel averages and texture features are used as features. The feature space built on the
basis of vegetation indexes demonstrates worse separability.

Classification method, training scenario and testing. The support vector machine
(SVM) method [28] and its implementation [29] were chosen as the classification method.

The SVM training was made under two scenarios. In each of the scenarios, the dataset
from one of the experiments was used for training and testing. The dataset from the other
experiment was used for the results evaluation. Such model testing is the most reliable
and allows accuracy extrapolation assessing. Each SVM model was optimized using the
grid-search algorithm on a grid of linear and non-linear kernels with a different cost of
constraints (C) and sigma (σ) parameters. The experiment scheme is shown in Figure 5.

The “overall accuracy” and the “kappa score” metrics were used to evaluate the accuracy.
Their values were calculated by the following formulae:

Overall Accuracy =
TP + TN

TP + FP + TN + FN

kappa =
2 ∗ (TP ∗ TN − FN ∗ FP)

(TP + FP) ∗ (TN + FP) + (TP + FN) ∗ (TN + FN)

where TP is the number of true positive classifications, FP is the number of false positive
classifications, TN is the number of true negative classifications, and FN is the number of
false negative classifications.

In a support vector machine, the importance of channels can be obtained by evaluating
absolute normalized values of the model. Such coefficients are built using the channel
statistics as predictors using a linear kernel function. Since the best result was obtained
using the linear SVM model, which utilized the channel means as predictors, the channel
importance was evaluated based on their weights.
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To extract the smallest required set of features, a method was developed for combining
importance vectors in two experiments. Each importance vector used was preliminarily
multiplied by the estimated accuracy of the constructed model, after which, the combined
importance was calculated as the sum of the feature importance in the two experiments
divided by the difference between them.

impi,joined =
impi,exp1 ∗ kappaevalexp1 + impi,exp2 ∗ kappaevalexp2∣∣∣impi,exp1 ∗ kappaevalexp1 − impi,exp2 ∗ kappaevalexp2

∣∣∣
impi,exp1—importance of i-th feature received from SVM-model fitted on the first

data split
impi,exp2—importance of i-th feature received from SVM-model fitted on the second

data split
kappaevalexp1—overall kappa score calculated on eval dataset of first data split
kappaevalexp2—overall kappa score calculated on eval dataset of second data split
impi,joined—importance of i-th feature suitable for estimation of minimal sufficient set

of features for both datasets
Hyperspectral images classification results. The hyperspectral images classification

results are shown in Table 2.
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Table 2. The hyperspectral images classification results.

Dataset Model Parameters Features
Training Testing Evaluation

OA% Kappa OA% Kappa OA% Kappa

set 1 SVM

C = 1
kernel = linear MEAN 100.0 1.00 99.0 0.98 98.0 0.97

C = 1000
kernel = linear TF 100.0 1.00 98.0 0.97 97.0 0.94

C = 1000 gamma = 0.1
kernel = rbf INDEXES 100.0 0.99 98.0 0.97 0.94 0.88

C = 1000 gamma = 0.0001
kernel = linear MEAN + TF 100.0 1.00 100.0 1.00 98.0 0.96

set 2 SVM

C = 1
kernel = linear MEAN 100.0 1.00 100.0 1.00 98.0 0.97

C = 100
gamma = 0.001

kernel = rbf
TF 100.0 1.00 98.0 0.95 95.0 0.90

C = 1000
kernel = linear INDEXES 99.0 0.99 98.0 0.97 94.0 0.88

C = 100
gamma = 0.0001
kernel = linear

MEAN + TF 99.0 0.99 98.0 0.95 93.0 0.86

C is a regularization parameter. The strength of the regularization is inversely proportional to C. MEAN is the
average for each channel, TF are textural features for each channel, INDEXES are vegetation indices.

The table shows the classifiers built on the following groups of features. The best
result was shown by the SVM model trained on the average values for each channel as
input features. It can be concluded that the most effective approach was to analyze the
reflectivity of diseased and healthy plants in general. The use of indices demonstrated the
worst average result. The texture features usage showed good results for the first data split
(kappa_eval = 0.94 vs. kappa_eval = 0.97), but was significantly lower for the model built
on the channel averages in the second data split (kappa_eval = 0.90 vs. kappa_eval = 0.97).
Additionally, combining the two best approaches MEAN and TF did not provide better
results than the MEAN approach alone.

A mutual portability between experiments was observed. The smallest necessary set
of wavebands necessary to build a classifier suitable for both experiments was selected.
The most important wavebands ordered by importance are 502, 466, 598, 718, 534, 766, 694,
650, 866, 602, 858 nm. Figure 6 shows the channel importance vectors for two experiments
(on the left), and the combined importance vector for two experiments (on the right).

Figure 7 shows the dependence of the model accuracy on the most important wave-
bands number used for data split one, on the left, and for data split two, on the right.

3.2. Metabolomic Analysis Results

GC-MS data evaluation. The metabolomic data evaluation showed that the entire
spectrum of primary and secondary wheat metabolites, such as sugars, amino acids, organic
acids, etc., changed significantly from the first hours of wheat leaf rust development. PCA
(principal component analysis) has shown a significant increase in the content of gamma-
aminobutyric acid, alpha and beta alanine, a decrease in the content of carbohydrates, and
an increase in the concentration of glycosylated phenols (Figure 8).
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The highest amounts of amino acids were observed in non-inoculated wheat plants. Dur-
ing the development of the disease (4 dai), their number significantly decreased, which, ap-
parently, is associated with active biosynthesis of phenolamides, wheat phytoalexins [30,31],
in response to pathogen inoculation. Additionally, during the development of the disease,
the number and variety of di- and monosaccharides increased, and specialized metabolites
appeared (retention times 36.43 and 41.92).

It was impossible to detect most of these compounds with the Cubert Ultris 20 camera,
as the camera’s operating range is VIS-NIR (450–850 nm), while these compounds’ detection
ranges are UV (100–400 nm) and SWIR (1100–2500 nm) [32,33]. Thus, metabolomics data
had an extremely limited use to refine hyperspectral VIS-NIR remote sensing data for
wheat leaf rust detection.
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Spectroscopy data evaluation. The trend in changes of chlorophyll a and b and total
carotenoids concentration is similar for both hyperspectral (Figure 9) and spectrometry
(Figure 10) data. The following formulae for the pigment specific ratio were used for the
calculation when using the hyperspectral data:

PSSR f or Chlorophyll a =
R800
R675

PSSR f or Chlorophyll b =
R800
R650

PSSR f or Carotenoids =
R800
R500
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Figure 10. Chlorophylls (a, b) and total carotenoids level dynamics in wheat leaf rust-
inoculated leaves measured via VIS-NIR spectrometry by Lichtenthaler and Buschmann (2001);
LSD 0.05 = 1.1 [18].

The following formulae for pigment contents were used for the calculation when using
the spectrometry data:

Chlorophyll a (ca, µg/mL) = 11.24 A662 − 2.04 A645

Chlorophyll b (cb, µg/mL) = 20.13 A645 − 4.19 A662

Carotenoids (cx + c, µg/mL) = (1000 A470 − 1.90 ca − 63.14 cb)/214

Chlorophyll a (mg/g dw) = ca ∗ V/W

Chlorophyll b (mg/g dw) = cb ∗ V/W

Carotenoids (mg/g dw) = cx + c ∗ V/W

where V = volume of solvent (5 mL), and W = dry weight of leaf sample [18].
It follows that wheat leaf rust detection with hyperspectral remote sensing is based on

pigment concentration changes. At the same time, the method sensitivity makes it possible
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to detect the disease at early stages before visible symptoms appear. Thus, hyperspectral
remote sensing, which can detect wheat leaf rust at 4 dai, has a significant advantage over
classical phytopathological methods.

4. Discussion

Based on the analysis of hyperspectral remote sensing for early plant disease detection,
a number of assumptions were made about the biological experiment design and its
successful repetition. Of those applicable to this experiment, we found it necessary to take
into account a number of important factors. Firstly, the spectral portraits’ differences can
be caused by various abiotic and biotic stress factors [7,35]. Secondly, the presence of a
mixed infection can also be important [7,8,36]. Finally, we made an assumption that it may
be important to understand what biochemical changes occur inside a diseased plant, in
what wavelength range they manifest themselves, and how they can affect the spectral
portrait [37–39]. We believed that hyperspectral imaging data are determined by the
biochemical processes occurring in plants from the first minutes of disease development.

Therefore, we decided to conduct the experiment in laboratory conditions, in the
absence of any factors other than the disease under study itself. The hyperspectral data
acquisition was made under controlled-lighting conditions. This made it possible to obtain
two independent sets of data from two similar experiments.

There is a sufficient number of articles in the field of early plant disease detection
using hyperspectral remote sensing [6–9,35,36]. From these articles, it follows that machine
learning methods for early plant disease detection generally require significant initial
data [7,8]. Different authors used different analytical tools for processing such data [40–43].

In the study by Alisaak et al. (2018), a differentiation accuracy of 76% between non-
inoculated and Fusarium head blight infected plants using SVM was achieved. Specim ImSpec-
tor V10E and ImSpector N25E spectrographs operating in 400–1000 nm and 1000–2500 nm
ranges were used in the study [44]. Mahlein et al. (2019) achieved early detection (3rd dai) of
Fusarium graminearum inoculated wheat, using SVM with an accuracy of 78% via the same
equipment [21]. Finally, the same results were obtained by Huang et al. (2020) who reached a
detection accuracy of 75% with the SVM method, studying the same disease with the same
sensors [45]. Despite the significant biological differences in the disease development caused
by Fusarium graminearum, and the herein studied Puccinia triticina, they do not play a key role
in the algorithm learning, so an algorithm with the proven efficiency was used.

The review by Golhani et al. (2018) highlighted the current state of Imaging and non
imaging hyperspectral data for early disease detection with different types of artificial
neural networks (ANN) [42]. The authors have shown incredible capabilities in adapting
the neural networks for disease detection purposes using hyperspectral data. The review
presents materials from which, it follows, that it is possible to use different types of neural
networks to determine plant diseases with a high accuracy (>97%). Morellos et al. (2020)
used machine learning methods to estimate the existence of the tomato chlorosis virus and
viral load in the tomato leaves [46]. The multilayer perceptron with automated, relevance
determination (MLP–ARD) classifier showed the best results with an overall accuracy
of 92.1%.

SVM is a supervised learning method, in which the optimization function is to maxi-
mize the distance between the separating plane and the elements of the training sample
closest to this plane in feature space. The SVM method allows to make non-linear separa-
tion of classes using different kernel functions extending feature space. SVM demonstrates
good accuracy in solving the problem of classifying plant diseases from hyperspectral
data [20,47]. Additionally, the method choice was made due to its interpretability when
constructed without the use of nonlinear kernels and the small size of the collected dataset.

The convolutional neural network (CNN) approach could not be used in this work,
despite this method being successfully applied in earlier studies [48,49]. As it was already
mentioned at the data analysis section, there was no significant difference between the
control group and the diseased plant hyperspectral images in terms of pixel distributions.
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Neural networks are promising for extracting hard-to-distinguish visible features [50,51].
We decided that it is necessary to use a higher-resolution camera to extract such patterns.
Since the Cubert Ultris 20 camera has a resolution of 410 × 410 pixels, such features may
not be distinguishable.

Various decision tree-based methods were not used in this study because of the
known issue that a good accuracy of such methods is achieved by building ensembles
of data-independent solvers, which requires a much bigger training set [52,53]. Thus,
the support vector machine (SVM) method and its implementation were chosen as the
classification method.

The results of the metabolomic study of biochemical changes occurring in the plant
did not give a significant result. The data obtained from the Cubert Ultris 20 hyperspectral
camera, which works in the actual range of 450–950 nm, cover only an insignificant part
of the compounds identified as a result of the metabolome comparative analysis of the
diseased and healthy wheat. Leaf pigments make up only a part of the metabolome,
and thus, at this stage, the GC-MS data analysis cannot be compared with the VIS-NIR
hyperspectral remote sensing data. Based on the literature analysis, it was found that
the compounds identified by the metabolomic analysis, whose concentration changes
significantly during the course of the disease, generally can be detected in the range of
1100–2500 nm. Therefore, when using a camera with a range of 450–950 nm, one cannot
rely on metabolomics for the verification of the disease under study. Accordingly, the
use of cameras with a working range that includes the range of 1100–2500 nm may allow
more accurate characterization of the development of the disease using metabolomics
tools. In the existing articles, this possibility was not considered, but it should be noted
that, in general, the higher verification percentage of the diseased and healthy plants was
significantly higher for devices operating in the 400–2500 nm range [8]. Recently, the studies
on UV-hyperspectral remote sensing data usage, that rely on metabolomics data approval,
have appeared [39].

The VIS-NIR spectrometry data analysis showed a high correlation with the hyper-
spectral remote sensing data. The signs of wheat leaf rust development were identified
by comparing the content of the three main pigments (chlorophylls a and b, and total
carotenoids) in the control and experiment groups, according to the previously published
methods [12]. The detected changes level in the chlorophylls and carotenoids’ concen-
tration turned out to be lower using hyperspectral remote sensing than using VIS-NIR
spectrometry (Figures 9 and 10). However, this sensitivity was sufficient to reliably classify
the diseased and healthy specimens at 4 dai and beyond.

Thus, the developed method relies on the SVM-based analysis of the proven changes
in the pigments’ composition during wheat leaf rust development. We believe that further
data accumulation on this disease’s development is necessary, both in field and laboratory
conditions. In the future, this will make it possible to make a quick conclusion about the
disease’s spread and intensity degree from a small sample. This may allow timely wheat
leaf rust control.

The results of this study showed that hyperspectral remote sensing is a promising
method for early wheat leaf rust detection. The authors plan to carry out further work
to verify the obtained data in the field. From a technical and physical point of view, it is
necessary to take into account the model of sunlight propagation during such an experiment,
since hyperspectral remote sensing is a passive method that depends on ambient light.
Other technical problems may include improper use of the equipment. Proper calibration of
the hyperspectral sensor or camera is essential for proper data acquisition. This calibration
depends on the temperature of the hyperspectral sensor; thus, the equipment must be
calibrated after a continuous period of operation, in order to offset the effect of its heating.

In our opinion, further research directions may also include a comparison of wheat
leaf rust with other fungal pathogens. It would be interesting to compare hyperspectral
images obtained as a result of plants exposure to other biotrophic and necrotrophic fungi.
The use of hyperspectral remote sensing data in the wavelengths of 1100–2500, can also be
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useful for developing new algorithms for early plant disease detection. The new generation
of high-resolution hyperspectral camera usage, may allow more correct classification of
inoculated plants at an even earlier time.

5. Conclusions

The purpose of this work was to evaluate early wheat leaf rust detection possibil-
ity using hyperspectral remote sensing. The results obtained showed that hyperspectral
remote sensing and the proposed, machine learning-based processing method is the promis-
ing method for early wheat leaf rust detection. The chosen SVM classification method
reached the data classification accuracy of 97–100% for the model built on the 11 most
important wavebands 502, 466, 598, 718, 534, 766, 694, 650, 866, 602, 858 nm. The VIS-NIR
spectrometry data analysis showed a high correlation with the VIS-NIR hyperspectral
remote sensing data. The GC-MS data analysis could not be compared with the VIS-NIR
hyperspectral remote sensing data due to the fact that leaf pigments make up only a part of
the metabolome. Thus, the discussed method for early wheat leaf rust detection is based on
SVM classification of the proven changes in the pigments’ composition during the disease
development, measured by hyperspectral remote sensing.
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