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13th University Street, 720229 Suceava, Romania

* Correspondence: madalina.iuga@ce-mont.ro or madalina.iuga@usm.ro (M.U.-I.);
elena.pogurschi@gmail.com (E.N.P.)

Abstract: In broiler chick-rearing, the color is usually acquired by synthetic carotenoids in addition
to broiler diets (25–80 mg/kg feed), often represented by β-apo-8′-carotenal. In the past fifteen years,
the demand for organic food products originating from free-range reared chicks started to grow,
with a more directed awareness of the quality of meat and egg. Various investigations have been
reporting microorganisms, such as the oleaginous red yeasts genus Rhodotorula sp., as fast-growing
unicellular eukaryotes able to synthesize natural pigments. Rhodotorula sp. represents a perfect
choice as a natural resource due to the capacity to adapt easily to the environment valuing low-cost
sources of nutrients for their metabolism and growth. The biodiversity and the ecology effects
establish novel boundaries regarding Rhodotorula sp. productivity enhancement and control of
biological risks. It is, therefore, necessary to review the current knowledge on the carotenoid
synthesis of Rhodotorula sp. In this paper, we aimed to address the pathways of obtaining valuable
yeast carotenoids in different conditions, discussing yeast biosynthesis, bioengineering fermentative
evaluation, carotenoid extraction, and the techno-economic implication of valuable pigment additives
on poultry nutrition. Finally, the pro-existent gaps in research are highlighted, which may clear the
air on future studies for bio-carotenoid engineering.

Keywords: artificial pigment alternative; broiler nutrition; carotenoids; health; pigment additives;
vegetal waste

1. Introduction

Carotenoids are soluble pigments classified as tetraterpenoids divided as primary
(hydrocarbons, carotene) and secondary as their oxidation product (xanthophylls). Widely,
around 1100 different carotenoids [1] are synthesized in plant, algae, and fungi species. As
natural lipophilic pigments [2], they are often characterized by a range of colors, starting
from a pale and creamy yellow, light-pink, strong yellow, pink, and orange until strong red
pigmentation and a rare, purple color [3]. Under natural circumstances, carotenoids have
a multitude of roles, including sustaining photosynthesis, ensuring photoprotection [4,5],
antioxidant capacity [6], reproductive enhancement [7], embryonal development [8], cell
maturation [9], and immune system protection [10]. Birds cannot synthesize carotenoids
hereby; carotenoids must be included in dietary intake. Dietary feed ingredients used in
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commercial poultry feeding formulas are often processed in pelleted and extruded form,
with consideration to nutrient availability and economic efficiency [11]. Mechanical proce-
dures such as palletization or extrudate are currently employing high-temperature and pres-
sure applied directly to feeding ingredients [12], thus affecting the retinol and retinol pre-
cursor by degradation, cumulating the vitaminic losses through handling and storage [13].

Carotenoids represent significant resources of retinol precursors (0.66 µg β-carotene = 1 U
of retinol acid), with large implications for healthfulness and quality [14] products. Poultry
is the most successful livestock sector around the globe and tends to grow due to the increas-
ing consumption of poultry products. By the year 2020, the poultry sector generated almost
101 metric tons of meat and 1.65 billion eggs [15]. The great potential of carotenoid sources
in industries (including food, feeds, nutritional supplements, pharmaceutics, and cosmet-
ics) will have increased the forecasted market value to around $2.0 billion by 2022 [16]. The
most commonly used food and feed colorant additives in poultry nutrition are xantho-
phylls (lycopene, canthaxanthin, astaxanthin, and zeaxanthin) that originate from almost
90% mainly synthetic resources. Annually, the market for pigment additives tends to
grow by 8.2% percent during the forecasted period 2022–2032 [17] due to the increasing
consumption of poultry products (meat and eggs). Currently, there has been a growing
interest in obtaining organic pigment additives from non-conventional resources (algae,
bacteria, and yeasts). The composition and the stability of the natural resources might be
undefined and wide because of the complexity of biochemical metabolism and biological
variability that is often associated with the cell structure. Great consideration was attributed
to the carotenoid biosynthetic pathways of yeast, understanding the carotenoid yield, as
productivity and integrity, with a view regarding product improvement and industrial
scalability. In non-phototrophic microorganisms, carotenoids present a clear advantage in
obtaining natural pigments [18]. One of the most important attributes is the capacity of
microorganisms to use industrial waste as raw material substrate [19], hence increasing
profitability and lowering the related costs of production. Many microorganisms synthe-
size carotenoids and present a valuable industrial potential (Table 1), although the data
concerning Rhodotorula sp. yeast pigment application on livestock nutrition are few.

Table 1. Carotenoid-producing microorganisms.

Microorganism Carotenoid Structure Reference

Funghi

Neurospora crassa β-carotene
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Blakeslea trispora Lycopene 

 

[22] 

Fusarium sporotrichioides Lycopene 
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Aspergillus sp. β-carotene 
 

[24] 

[20]
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The current paper aims to highlight the multitude of approaches to obtaining valuable
yeast carotenoids in different conditions, discussing yeast biosynthesis, bioengineering,
fermentative evaluation, carotenoid extraction, and the techno-economic implication of
valuable pigment additives on poultry nutrition.

2. Rhodotorula sp. General Aspects

The genus Rhodotorula sp. covers more than 165 species [34]. Morphologically,
Rhodotorula sp. is a polyphyletic-shaped yeast [35] forming fast-growing colored colonies [36].
The proliferation of the Rhodotorula genus is generally regarded as asexual [37]; however,
some strains belonging to the genus present sexual reproductive traits [38]. Rhodotorula
sp. ecology and biodiversity cover a board of environmental varieties using a large vari-
ety of carbon resources, including glycerol [39], glucose [40], sucrose [41], galactose [42],
and maltose [43], often encountered as dominant in yeast microflora (water, soil, vegetal,
and animals) [44].

Yeast such as Rhodotorula sp. represents a perfect choice as a natural resource of
secondary metabolites (Figure 1): carotenoids [45], lipids [46], and extracellular enzymes
(Table 2). Saprophytic and ubiquitously found, the Rhodotorula genus possesses a full
capacity for intracellular carotenoid biosynthesis [47] (provitamin A precursors, such as
β-carotene and γ-carotenoid) [47,48], although the main carotenoids are torulene
and torularhodin [49].
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Figure 1. Major benefits of bioactive compounds from Rhodotorula sp.

Table 2. Rhodotorula sp. biomass active compounds.

Yeast Strain Assay Conditions and Results Reference

Oil←lipids→fatty acids

Rh. mucilaginosa IIPL32

Fed-batch C/N ratio = 40; Fed-batch C/N ratio = 60; Scalability:
50 mL→50 L;

lipid yield for C/N ratio fed-batch = 40: 0.4 g→1.3 g/L
lipid yield for C/N ratio fed-batch = 60: 0.45 g→1.8 g/L

[50]

Rh. mucilaginosa IIPL32 (Lipids as FAME) 72 h→97.23 mg/g dry cell weight; 35–55%,
MUFA C18:1 and C16:1 (oleic and palmitoleic acids) [51]

Rh. mucilaginosa CCT3892

The total amount of lipids obtained in the molasses medium
was similar to the synthetic medium (15.36% ± 1.36% and
16.50% ± 0.68%, respectively), thus, the production of the

metabolites was higher in the molasses medium.

[52]

Enzymes

Rhodotorula mucilaginosa CBMAI 1528 Aspartic protease—pepsin family [53]

Rhodotorula
mucilaginosa

Invertase—the invertase with greater cell-structural stability
and nystose productivity [54]

Rhodotorula sp. Y-23 Lipase (Lip-Y23)—low-temperature applications [42]

R. mucilaginosa Y-1 Carboxylase—Acetyl coenzyme A carboxylase (ACC1) [55]

Carotenoids

Rhodotorula glutinis β-carotene, torularhodin [47,56]

Rhodotorula mucilaginosa KC8 β-carotene, torularhodin [57]

Carotenoids are mainly synthesized via successive condensation (Figure 1) attributed
to isoprenoid units such as isopentenic pyrophosphate (IPP) isomerized in dimethylallyl
pyrophosphate (DMAPP) [4,58–63]. Particularly, yeasts such as Rhodotorula sp. possess
the ability to transform lycopene into cyclic carotenoids like β-carotene (under lycopene
β-cyclase action) and γ-carotene (conversion supported by lycopene cyclase).

The γ-carotene unit represents the main precursor for yeasts’ carotenoid forma-
tions, as shown in Figure 2. β-carotene (C40H56) is the most common and abundant
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precursor for retinol [64], strong-orange-red colored, chemically classified as isoprenoid
(synthesized from eight isoprenoid units) [65]. Torularhodin is regarded as a xantho-
phyll (C40H52O2—3′,4′didehydro β, ψ-carotene-16′oic acid) due to the presence of the
carboxyl group [66] and represents the prevailing chemical structure in Rhodotorula sp. total
carotenoid yield [67]. Torulene is classified as a carotenoid. The torulene molecule includes
only hydrogen and carbon atoms [49], C40H54, 3′,4′ dihydro-β, ψ-carotene.
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Concerning pigment bio-applications, Rhodotorula sp. yeast owns valorous advantages:
fast-growing capacity, usually on organic waste materials (carbon-rich materials), and cost-
effective production and harvesting (minimized human/process-associated interventions),
which is more than suitable for large-scaling pigment industrial production and directly
competing within the pigment market.

The vegetal sector is the most important resource concerning natural pigment indus-
tries. Factors such as poor soils [69] and climate-changing conditions [70] are currently
affecting the industries, leading to long delays and negative economic implications within
the pigment-related industries (food, feed, pharmaceutical, and cosmetic) [71]. Furthermore,
the legislation and regulation of synthetic pigment use in food and feedstuff are narrowing
the offer. Microbial pigment additives are still at the developing stage, up-scaling as the
future organic source, an alternative to conventional resources, proving higher pigment
capacity, in a shorter time. Recent studies regarding pigment-producing yeasts such as
Rhodotorula sp. show an improvement in carotenoid productivity and componence that
might be modulated [72] by mutagenesis [73] combined with other techniques, includ-
ing different controlled stressors, such as temperature [74,75], substrate composition [76],
lightning conditions [77] and aeration [78]. β-carotene, torularhodin, and torulene are
valorous compounds synthesized exclusively by fungi and yeast [79], found in lipid bodies
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of cellular biomass, and they are light unstable. The yeast carotenoid compounds present
highly anti-oxidative characteristics [80].

3. Factors Affecting Pigmentation
3.1. Yeasts Nutrition

The productivity efficiency is generally based on the interdependency of the specific
pathway involved and the culture medium (organic or inorganic compounds), strain
specificity, and the growing conditions [81]. It is essential to balance the yeast requirements
and cultivation conditions, to support the carbon-efficient use and yeast growth rates,
thus optimizing secondary metabolites yields [46]. Moreover, individual metabolites
yield (pigment quality and quantity) depends on the enzymatic complex employed in
the yeast metabolic system [82]. Carbon and nitrogen have been considered the main
sources of energy [83], and growth support of microorganisms, metabolite enhancement,
and carotenoid producibility could be modulated by balancing the substrate composition,
although, there are studies that show the induced stress by nutritive limitation (nitrogen
sources) enhances carotenoid productivity (up to 0.75 mg/g dry cell weight) in Rhodotorula
toruloides by suppressing the cell growth [84].

The influence of nutritional carbon/nitrogen resources on yeast fermentation and
carotenoid yield might differ (Table 3) under the strain pigmentation capacity. Moreover,
the nutritional carbon source might modulate the yeast carotenoid profile. Li et al. [83]
showed that a medium containing glucose had more than 93% torularhodin in the total
yeast carotenoid profile. There are also differences between the utilization of organic
and inorganic compounds. Organic nitrogen resources such as yeast extract improve
carotenoid yield up to 987 g/L [83], although using residual waste such as fruit and
vegetable pulp/peel [85] and beer sludge represent hardly recycled market resources in
developing countries, presenting worthy yeast nutritional potential.

Table 3. Factors affecting the carotenoid metabolism in yeast.

Species Factors Affecting Pigmentation
Capacity and Productivity Results References

Mutagenesis

R. toruloides
NP11

Atmospheric exposure, 30 °C and plasma technique
followed by chemical mutagenesis with nitrosoguanidine

R. toruloides XR-2, colonies of
dark-red colored
Nitrogen limitation conditions
induced slower growth with high
carotenoid yields

[84]

Rhodotorula sp.
Strains

T-DNA insertional mutagenesis gene discovery in
R. toruloids

Twenty-seven mutant yeast
phenotypes for lipid and
carotenoid metabolism

[81]

R. toruloides
NP11

An Agrobacterium tumefaciens-mediated transformation
(ATMT) to change its carotenoid production and profiles

Selected three new phenotypes
and mutants with different colors
Characterized their
carotenoid products

[86]

Rhodotorula
toruloides

CBS 14 and
NCYC 1585

Cloning strategy; four inducible promoters for control
gene expression in Rhodotorula toruloides to obtain

molecular genetic tools for manipulation

Directed genetic and gene
expression for carotenoid and lipid
yields in Rhodotorula toruloides

[87]

Cultivation medium

Carbon Nitrogen

Rhodotorula sp. - Threonine (0.1, 0.2, 0.3%)
glutamic acid (0.1, 0.2, 0.3%)

Both amino acid stimulation
enhanced yeast growth parameters
and total carotenoid formation

[76]
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Table 3. Cont.

Species Factors Affecting Pigmentation
Capacity and Productivity Results References

Rhodotorula
mucilaginosa

Waste from the olive oil industry (Alperujo water, AE) in
different aqueous solutions at concentrations: of 5, 10, 20,

and 30%

The volumetric carotenoid
production significantly increases
in 20 and 30% AE concentration
(up to 7.3 ± 0.6 mg/L
total carotenoids)

[67]

Rhodotorula sp.
RY1801

Sucrose, lactose,
maltose, fructose

and glucose

Inorganic nitrogen:
ammonium sulfate,
ammonium nitrate;

Organic nitrogen: yeast
extract, urea

Carbon sources: glucose; carotene
yield up to 962 µg/L
Nitrogen sources: yeast extract;
carotene yield up to 987 µg/L

[83]

Rhodotorula
glutinis

(AS 2.703)
- Peptone (PEP), yeast extract

(YE), and ammonium sulfate
The highest biomass accumulation
was 12.2 g/L after 144 h (YE) [88]

Rhodotorula
mucilaginosa Onion and potato (skin) Mung bean (husk) and

pea (pods)

The highest carotenoid yield was
archived by using onion peel
extract and mung bean (up to
717.82 µg/g)

[79]

Lightning conditions

Rhodotorula
mucilaginosa Irradiation UV-C—254 nm

Metabolite production by
psychro-tolerant Rhodotorula
mucilaginosa produced up to
56.9 ± 3.2 (µg/g−1.dry weight) of
total carotenoids

[89]

R. glutinis
(CGMCC
No. 2258)

LED lamp’s light exposure intensities (4000 lx and 8000 lx)

The lipid and β-carotene
production enhancement by using
light exposure and sodium acetate
componence substrate in
R. glutinis

[56]

R. mucilaginosa
K-(1)

Two lighting shakers:
Shaker 1: 1700 lx; Shaker 2: 3500 lx. Settled as 12 h dark:

12 h light

Illumination intensity increases
the carotenoid yield (1700 lx);
High illuminating intensity
(3200 lx) inhibits yeast glucose
metabolism. Thus, cell growth

[77]

R. glutinis
(CGMCC
No. 2258)

Two groups: without and with continuous irradiation
(3400 lx)

Continuous irradiation might
positively affect the lipid and
carotenoid content

[90]

Rhodotorula
mucilaginosa Stress conditions: ultraviolet (UV) light and photoperiods

Optimum conditions for
stimulating the carotenoid
productivity were 1 min of UV
exposure combined with 0.5 mg/L
magnesium sulfate and 18:6 h
lighting conditions

[91]

Thermic conditions

Rhodotorula sp.
RY1801 Incubation temperature ranges from 20 to 37 ◦C Optimum incubation temperature

at 28 °C [83]

Rhodotorula
glutinis Incubation temperature ranges from 25, 30, 35 to 40 ◦C Optimum incubation temperature

at 30 ◦C [92]

Rhodotorula
mucilaginosa Incubation temperatures 15, 20, 25, 28, 30, 35, and 40 ◦C

The most suitable temperature for
culture growth and carotenoid
production was 28 ◦C

[93]



Agriculture 2023, 13, 1159 8 of 21

Table 3. Cont.

Species Factors Affecting Pigmentation
Capacity and Productivity Results References

R. mucilaginosa
ATCC 66034 and

R. gracilis
ATCC 10788

Incubation temperature 20 ◦C and 28 ◦C Optimum incubation temperature
at 20 ◦C [39]

[74] Low temperature (16 °C) treatment
Control temperature (25 °C) treatment

At 16 °C, the carotenoid yield was
significantly increased [75]

Aeration conditions

Rhodotorula
glutinis NRRL

Y-12905

Different conditions of agitation (150 to 250 rpm) and
aeration [(2.5 to 5.0 of flask volume-to-medium volume

ratio (vvm)]

Agitation and aeration at 250 rpm
and 5.0 optimal conditions (high
yeast cell concentration)

[78]

Rhodotorula
rubra

PTCC 5255
Aeration levels: 0.115, 0.345 and 0575 vvm

The optimum carotenoid
concentration was found at an
aeration rate of 0.469 vvm, having
the substrate initial pH of 6.48, and
light intensity of 1757.84 lx

[94]

Rhodotorula
mucilaginosa
MTCC-1403

Different conditions of agitation: 80, 110, and 140 rpm Elevation of up to 100 µg
carotenoids per g of dry biomass [79]

Metabolizable salts and microelements addition

Rhodotorula
glutinis

CCT 2186

Different experimental levels of:
glucose, KH2PO4, MgSO4, NH4NO3, and pH

Combined sources of inorganic
and organic nitrogen sources had
high productivity yields

[45]

Sharma and Ghoshal [79] used onion peel, mung bean, and pea (agro-industrial
wastes) as a substrate for pigment production on Rhodotorula mucilaginosa, obtaining the
best carotenoid productivity (27.4 mg/L) on onion peel extract. The olive oil industrial
waste (20%-culture media) improved the total volumetric carotenoid production (up to
5.5 g/L) [67]. Carrot peels or starch in the potato feed industry is a typical example of
recoverable fractions either as solids or as sludge which, after drying and sterilization,
can be included directly in yeast bioprocess as sources of carbohydrates [95]. By recycling
vegetal waste and thus improving the culture media for yeast growth, the productive-
related costs are reduced to a minimum or absent in the development of the market economy.
The costs involved mainly in recovering profitable nutrients from food waste processing;
the credit played is derived from nutritional applications useful in all agriculture branches.
At the same time, the economy of waste conversion and valuable byproducts generates a
new secondary-industry domain, with new jobs and skills at the place of production [96].

3.2. Yeasts Fermentation Conditions

Carotenoid yield related to obtaining secondary specific metabolites might be an
induced response generated by different stressors applied to the Rhodotorula sp. growth
(nutritive limitation, aeration, and temperature) and could influence (by delaying or accel-
erating) the carotenoid synthesis. It has been demonstrated that the yeast carotenoid yields
maximum values within reaching the cell’s mature development [97]. Furthermore, the
variability of the carotenoid yield componence proportions within the mature cells variates
depending on the temperature and time of cultivation, 144 h on yeast malt, 252.99 µg/g
total carotenoids [98], 120 h on yeast malt, 223.5 µg/g total carotenoids production [99].

The temperature parameter is a critical cultivation factor in the first place, affecting
culture viability and biomass productivity and active bio compounds quality. Temper-
ature correlates with metabolic functions and influences enzymatic activity [100] with
carotenoid productivity, hence, effective regulation between cyclic carotenoids synthesis,
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followed by precursors. An indirect metabolic synthesis between the low temperature
of β-carotene synthesis and the opposite [101], increasing xanthophyll’s and β-carotene
precursors concentrations at higher temperature values, is probably by the low-temperature
enzymatic activity of lycopene β-cyclase. Recent research points out that higher values
of β-carotene production were recorded-by at 20 ◦C 250 mg/L representing 92% of total
carotenoids compared with 30 ◦C, 125 mg/L, and the amount of 60% from total carotenoids
and 35 ◦C, with less than 19% β-carotene and torulene encountered in biomass; although
at 35 ◦C the torularhodin synthesis increased, leading up to 78% of total carotenoids
in biomass [29,39,102].

Yeasts such as Rhodotorula sp. have naturally developed a light-sensitive response
to environmental lightning conditions, protecting the yeast cells by synthesizing a large
amount of β-carotene. White light irradiating trials were conducted on 21 strains of
Rhodotorula sp., and the results concluded that the amount of carotene is twofold higher
by irradiation (14.2 mg/100 g dry weight biomass). At the same time, light irradiation as
a photo-regulative measure could modulate yeast growth and biochemical componence
to enhance carotenoid productivity [77], although strong light exposure could negatively
affect the yeast cultures, inhibiting their growth.

Rhodotorula sp. is an oxygen-dependent yeast [103] affecting both viability and pro-
ductivity. Recent studies regarding the oxygen demand have demonstrated that the yeast
cell growth and metabolism are strongly crisscrossed with yeast phenotype and the yeast-
applied stressors, confirmed by the secondary metabolite’s yields [30] and other bioactive
compounds such as hemoproteins [104].

Besides the photo-protective role, yeast carotenoid active compound has an oxidative
protection function facing the oxidant agents before yeast cell wall attack [105]. Oxygen
supply, through aeration, agitation, or airlift bioreactors, is crucial to yeast metabolite
productivity. Yeast oxygen requirements concerning carotenoid productivity were studied,
and the results show an increase of end-metabolites synthase (torularhodin) expected from
cyclic carotenoid oxidation [106].

4. Yeasts Pigment Extraction and Quantification

Yeast carotenoid yield determinism is directly modulated by the yeast phenotype and
the engineering approach via metabolites enhancement. Despite the progress achieved in
the biotechnological yeast carotenoids synthesis optimization, there is a permanent need
for research efforts to constantly adapt and improve the in-process efficiency and minimize
the economic implication. The yeast fermentative process is followed for the quantification
of productivity determinations: preparative (harvesting, cell biomass disintegration) and
quantitation methods (extraction, separation, and evaluation).

Harvesting viable cells, carotenoid extraction and purification of the carotenoid com-
ponents are the most expensive procedures in techno-economic analysis. There are many
ways to process yeast carotenoids. Harvesting cell biomass can be easily achieved by
mechanical, chemical, or biological strategies. The centrifuge separation is the conventional
mechanical method used in yeast industries, employed at 8000–10,000 rpm during a period
of 7–10 min [107–109]. Current innovative methods concerning biomass harvesting are
flocculation, pre-concentration techniques, high-pressure filtration, flotation, osmosis, bub-
ble columns, and exploitation of hydrophobicity/hydrophobicity yeast proprieties [110].
The appropriate harvesting method is generally chosen through yeast proprieties such
as cell size, biomass density, production volume, and final product specificity. Consecu-
tive in yeast recovery, the yeast cell purification techniques, as successive washing with
solvent and filtration cycles with the purpose of cell biomass clear separation. There are
many carotenoids extractive methods [30,111–113] for samples and pure specific carotenoid
quantification. Microbial carotenoids are secondary metabolites [114], present in almost
95% of the cell. Cell wall disruption and disintegration are needed as preparative proce-
dures in carotenoid extraction. The most common approach is an organic/solvent-free
mechanical breakage [115,116] combination between sonication/pressure treatments or
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freeze-thawing/sonication [117,118] without having major losses on the yeast cell biomass
compared to the synthetic chemical disruption that might generate artifacts or radicals [119],
artificial condensation (acetonides) [120] or at worst, generating radioactive components
(aldehydes) [121]. There are cell breakage methods that are less harmful, involving hydrol-
ysis, supercritical CO2 [122], or enzymatic digestion extraction [123,124], having superior
recovery rates, and implying extra financial costs. Carotenoids are non-polar chemical
compounds characterized by water insolubility. A more hydrophilic carotenoid form is
represented by their derivates, xanthophylls, due to the hydroxyl radical on the chemical
structure. The commonly used extractive processes imply the reagents (acetone, cyclohex-
ane, dimethyl sulfoxide, chloroform, petroleum ether, and ethyl acetate) usage as extractive
solvents to separate the pigment compound in the partitioned liquid of analysis [125,126].
Carotenoids and xanthophylls are chemical compounds having more than nine double
bonds that are capable of light absorption, detected between visible/UV wavelengths
range of violet and blue-green spectra (450–550 nm) [127], naturally reflecting red, orange,
and yellow color shades. Carotenoid detection and quantification have various proto-
col approaches, employing spectrophotometry or spectroscopy determinations. Pigment
quantification assays are practically based on a comparative determination against pure
chemically carotenoid materials (commercially available standard references, as 95–99%
pure, for specific determinations), lab standardized as etalons curves, as for accuracy, re-
producibility, and repeatability (as for peaks, retention time and area of peak) that later on
might be interpreted as values using conversion formulae [128]. Carotenoid UV-Vis assay is
a feasible method of quantification but needs a long time to determine because carotenoids
obey the law of Lamber–Beer (the compound concentration is directly proportioned with
the compound spectral absorbance) [129]. The UV-Vis conducted assays evaluate the liquid
carotenoid sample (up to 3.0 mL) compound against the pure carotenoid standard reference
substance with the intention of total carotenoid measurement [130]. The disadvantage of
employing the UV-Vis method is the mediocre specificity consisting of the incapacity of
distinction between individual carotenoids (similarity of peaks and absorbance wavelength
around 459–500 nm for more than four distinct carotenoids). Quantitation is possible only
by mathematical determination by using specific carotenoid partition coefficients [131].
A more precise approach is using the HPLC method (high-pressure liquid chromatogra-
phy). Despite the time and costs regarding reagents and capillary system components,
carotenoids are detected and measured simultaneously and accurately quantified indi-
vidually [132] needing no more than 1.5 mL of liquid sample, injected (40 µL) with high
pressure, carried (flow rate: 0.5 mL/min) with the eluent (A: acetonitrile: water, 9:1 and B:
1% formic acid ethyl acetate) to the stationary component (column C18, 250 mm × 4.6 mm,
5 µm) and detected (UV detector) [88]. Moreover, it highlights the labor exercise that lies
in the systematic examination of the spectral signature, which is no longer just that of the
compound of interest, needing specific determination to identify and quantify impurity
componence. The FTIR (Fourier transform infrared spectroscopy) is capable of simplifying
the total carotenoid quantitation, not only by time (less than 150 s) and cost but also by
accuracy, dividing them as chemical structures [133]. RAMAN spectroscopy is the superior
method of determination, analyzing at the same time light absorbance and matter structure
of the sample only by photon laser interaction with the small sample size, in a very short
time determination—based on the relation of light interaction on all materials, scattering
the same amount of energy as incidence light [134].

5. Yeast Carotenoids in Poultry Nutrition
5.1. Retinol Requirements and Retinol Precursors in Poultry

The challenge regarding poultry vitamin requirements is and will be an actual research
domain due to the genetic abundance and oscillational nutritional aspects between various
factors that appear in poultry-intensive sectors (health status, veterinary medications, feed,
breed, age, housing aspects, and rearing technology). Poultry specialized hybrids have
exigent vitamin A requirements (Table 4), solidly correlated with the breed’s purpose and
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rearing management recommendation. In poultry, both layers and meat broilers have
an excessive level of vitamin A feed supplementation starting from 10,000 International
Units (IU)/kg diet up to 13,000 IU/kg diet, according to supplier recommendation, de-
spite the requirements profile established by the National Research Council (NRC, 1994)
colorant additives should not exceed 4500 IU/kg-fed meat broilers and 2500 IU/kg-fed
layers. Moreover, vitamin supplementation is recommended to be equal to or more than
birds’ requirements [135], hence avoiding vitamin deficiency. In poultry, provitamin A
and retinol deficiency could be a consequence of malabsorption or the impossibility of
metabolic conversion, often regarded as biologically available [136]. The effects concerning
retinol deficiencies are complex and affect a large range of metabolic activities: weight loss
cumulated with slowing down the growth processes and negative performance rates [137],
follicular hyperkeratosis, epithelial lesions, xerophthalmia [138], keratomalacia, hemer-
alopia, reproductive system malfunction [139], and gastrointestinal disorders. Exceeding
retinol and provitamin A in poultry leads to xanthomatotic disorders [140] and hypercal-
cemia, followed by bone system disorders. The vitamin A origin and the stability within
the dietary intake is a current challenge, although most of the commercial feeding formulas
are developed and balanced by adding artificial vitamins along with micro and macro
elements and by not taking into account the vegetal raw material vitamin content, thus
the vitamin antagonistic [141] or destructive compounds [142]. Additionally, naturally
occurring vitamins in feed and forages are presenting stability issues [61] due to inadequate
feed manipulation and storage, often causing vitamin oxidation and frequent bacterial
infestation [143], implying constant economic depreciation and loss [144]. Furthermore,
the treatments such as insecticides and pesticides administrated to livestock crops are
interfering with and affecting the feed vitamin concentration, leading to toxic traces within
grain cultures [145].

Table 4. Broiler chicks and laying hens’ pigment additive (IU/kg fed) in dietary-fed formulas *.

Broiler Chicks
Hybrid 0–11 Days 12–23 Days 24–42 Days References

Cobb 500 Up to13,000 10,000 10,000 [146]
Ross 308 13,000 13,000 13,000 [147]

Arbor acres 13,000 10,000 10,000 [148]
Hubbard 13,000 13,000 13,000 [149]

Laying Hens
Hybrid 0–6 Weeks 7–12 Weeks 12–18 Weeks >18 Weeks

Hy-line W36 5700 5700 5700 5700 [150]
ISA chick 15,000 15,000 13,500 13,500 [151]
Lohmann 10,000 10,000 10,000 10,000 [152]

Turkeys
Hybrid 0–42 Weeks 43–84 Weeks >84 Weeks

Hybrid Grade Maker male turkey 9000–12,000 9000–12,000 8000–11,000 [153,154]
Hybrid meat turkey 13,500 12,000 11,000 [155]

Ducks
Hybrid Starter Grower/Finisher

Longyan laying ducks 10,000 8000/12,000 [156]
Pekin 10,000 10,000 [157]

* As supplier nutritional guidelines.

5.2. Carotenoid Absorption in Poultry

The physiologic and biochemical roles of provitamin A and retinol precursor cover
multiple functions. In poultry, in the starter growing phase, retinal and provitamin A
stimulates the growth processes and normal development of the reproductive system [158].
Provitamin A is the most important in preventing epithelial disorders (conferring elasticity
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and anti-infectious resistance) and maintaining homeostasis of the visual function [159].
In poultry physiology, carotenoid synthesis is absent. Therefore, an exogenous intake is
required. Birds can synthesize retinol from β-carotene through the retinal enzyme [90,160],
β, β-carotene-15,15′-monooxygenase, capable of separation into two retinal symmetrically
molecules [161]. The vitamin A precursor, β-carotene is an indispensable nutrient for repro-
duction, growth, and production (the biological activity is almost 60% of retinol activity).
β-carotene absorption and bio-disposable variates by the bird’s metabolism, the bird’s
absorptive capacity, and the forage quality related to formula stability and biochemical
characteristics. Physiologically (Figure 3), β-carotene is a long-term absorption compound
(up to three days until retinol conversion) that combines into chylomicrons in the small in-
testine mucosa (duodenum) and is carried further to the liver through the portal vein [162].
Oil presence enhances the vitamin A precursors absorption and liver metabolization [163],
combined with lipoproteins in triglycerides (VLDL and LDL) and transferred to a specific
tissue (skin, meat, fat, ovary, and egg yolk). Retinol in excessive quantity is moreover
deposited in the liver and blood, then in muscle, fat, eggs, or skin [164]. Egg yolks’ carotene
deposits vary between 40–50% of total carotenoid intake [165]. However, most of them
are lycopene, canthaxanthin, astaxanthin, and zeaxanthin, and lidding the β-carotene yolk
concentration less than 1% due to the higher xanthophyll absorption in the bird’s digestive
tract [166]. Moreover, the bioavailability of carotenoids is mostly influenced by the matrici-
dal food structure, carotenoid compound chemical structure, and interaction with other
dietary nutrients.

Agriculture 2023, 13, x FOR PEER REVIEW 12 of 22 
 

 

Pekin 10,000 10,000 [157] 
* As supplier nutritional guidelines. 

5.2. Carotenoid Absorption in Poultry 
The physiologic and biochemical roles of provitamin A and retinol precursor cover 

multiple functions. In poultry, in the starter growing phase, retinal and provitamin A 
stimulates the growth processes and normal development of the reproductive system 
[158]. Provitamin A is the most important in preventing epithelial disorders (conferring 
elasticity and anti-infectious resistance) and maintaining homeostasis of the visual func-
tion [159]. In poultry physiology, carotenoid synthesis is absent. Therefore, an exogenous 
intake is required. Birds can synthesize retinol from β-carotene through the retinal en-
zyme [90,160], β, β-carotene-15,15′-monooxygenase, capable of separation into two retinal 
symmetrically molecules [161]. The vitamin A precursor, β-carotene is an indispensable 
nutrient for reproduction, growth, and production (the biological activity is almost 60% 
of retinol activity). β-carotene absorption and bio-disposable variates by the bird’s metab-
olism, the bird’s absorptive capacity, and the forage quality related to formula stability 
and biochemical characteristics. Physiologically (Figure 3), β-carotene is a long-term ab-
sorption compound (up to three days until retinol conversion) that combines into chylo-
microns in the small intestine mucosa (duodenum) and is carried further to the liver 
through the portal vein [162]. Oil presence enhances the vitamin A precursors absorption 
and liver metabolization [163], combined with lipoproteins in triglycerides (VLDL and 
LDL) and transferred to a specific tissue (skin, meat, fat, ovary, and egg yolk). Retinol in 
excessive quantity is moreover deposited in the liver and blood, then in muscle, fat, eggs, 
or skin [164]. Egg yolks’ carotene deposits vary between 40–50% of total carotenoid intake 
[165]. However, most of them are lycopene, canthaxanthin, astaxanthin, and zeaxanthin, 
and lidding the β-carotene yolk concentration less than 1% due to the higher xanthophyll 
absorption in the bird’s digestive tract [166]. Moreover, the bioavailability of carotenoids 
is mostly influenced by the matricidal food structure, carotenoid compound chemical 
structure, and interaction with other dietary nutrients. 

 
Figure 3. Carotenoids metabolism in poultry physiology; adapted after [167]. 

  

Figure 3. Carotenoids metabolism in poultry physiology; adapted after [167].

5.3. Poultry Feed Sensorial Additives

Nine pigment additives (Table 5) are regulated and used widely in the EU (indexed as
pigment additives E160, E161, E162, and E163) [168] as appropriate for poultry nutrition
labeled (EU Council directive 96/23/EC, 2010) as dietary pigment additives (SafeFood,
2022), for improving the egg yolk skin and meat product color.
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Table 5. Pigment additives used in poultry nutrition 1.

Pigment Additive 1 Code 2 Meat * Egg * Origin

β-Apo-8′-carotenal E 161e 80 80 artificial
Cryptoxanthin E 161b 80 80 natural
Lutein E 161b 80 80 natural
Ethyl ester of β-apo-8′-carotenoid acid E 160f 80 80 artificial
Zeaxanthin E 161h 80 80 natural
Violaxanthin E 161e 80 80 natural
Citranaxanthin E 161i - 80 artificial
Canthaxanthin E 1601g 25 8 artificial
Capsanthin E 160c 80 80 natural

1 Pigment additives regulation in poultry feed approved by the E.U.; 2 additives encoding by Council directive
70/524/EEC; * expressed as mg/kg diet.

The use of commercial carotenoids in poultry feed formulations is expensive and
originates from around 90% artificial sources. Most of the pigment additives are approved
for dietary inclusion up to 80 mg/kg in broiler chicks feeding formula [11], except can-
thaxanthin. Canthaxanthin levels are restricted and should not exceed more than 8 mg/kg
for laying hens and 25 mg/kg feed for broiler chicks [169]. As the sole pigment additive
used in human, fish, and poultry nutrition, canthaxanthin [170] dietary overdosage leads
to residual pigment tissue deposits that expose the final consumer to a pigment intake
that exceeds the Acceptable Daily Intake (ADI, 0.03 mg/kg body) [171], and might neg-
atively affect the consumer’s health (high risk of toxicity). Research concerning natural
carotenoid sources as an alternative to commonly used synthetics for livestock nutrition
shows that using natural resources such as maize and pasture (fresh or preserved) [172,173]
and genetically modified organism (GMO) or non-GMO (plants, algae, and yeasts) could
serve as superior native carotenes used pigment additives [174–176]. Few studies regard-
ing the microbial piments additives on broiler meat [45,177,178]. Dietary inclusion of
red yeast Phaffia rhodozyma (10–20 mg/kg feed) on broiler chicks positively affected the
broiler chicks’ performances and immune response, presenting 10 times stronger pigment
capacity [179]. Moreover, in broiler nutrition, pigment additives are often employed along
with oils [180,181] to mitigate the spontaneous oxidative effects on fat deposits and to
improve the carcass’s oxidative stability [182]. Furthermore, dietary carotene addition
shows controversial effects via vitaminic metabolism, showing antagonistic [183] and syn-
ergic action [175] and might have an opposite role as an antioxidant [184] and pro-oxidant
factor [185], depending on factors such as dietary formulation (inclusion or addition).
The antagonism between vitamin E accumulation and β-carotene was studied, and the
results show that the presence of β-carotene in broiler breast meat tends to limit vitamin E
accumulation [186]. However, the dietary addition of lycopene and vitamin E improves
the broiler chicks’ growth performance and tight meat oxidative stability and also presents
a synergic benefic effect on thigh meat cholesterol content. In laying hens, diets include
distinct amounts of corn and alfalfa meal, contributing to the content of native pigments in
the diet [6]. Intensive rearing systems diets are low in native xanthophylls. Therefore, the
egg yolk is often characterized by a pale-yellow color [6] due to rich amounts in barley, rice,
or wheat that are supplemented with artificial pigments (β-apo-8ícarotenoic-acid-ethyl
ester) to satisfy the range of color scores required by the European egg producers and to
meet the consumer’s expectations [187].

6. Conclusions

As a directed movement in the food and feed markets guided for more natural prod-
ucts, the demand for organic ingredients is rising. Feed formulation recipes using natural
and organic additives are the new trend in livestock nutrition research, using not only active
principles that affect vegetal but also microorganisms for valuable active bio compounds.
Yeast pigments are outstanding sources of natural color, covering a wide range of nutri-
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tional and medicinal properties. Both carotenoid yield and total carotenoid structure are
important aspects that could be optimized depending on strategy, adopting strain genetic
engineering and process development, and employing cheap organic substrates. Further
studies are required to establish biological and chemical proprieties, and yeast carotenoid
mechanisms, enhancing yeast carotenoid productivity, stability, and marketability as alter-
natives to classic synthetic pigments. Data generation concerning a highly productive yeast
process involving scalability for large-scale adaptability to fermentation aspects (fermenta-
tion design and bioreactor types) is essential. Furthermore, studies regarding the effects
of value-added yeast pigment additives on livestock health, productivity, and product
quality are important in validating nutritional and medicinal potential. Not last, consumers’
perceptions and preferences in buying animal products obtained with microbial pigment
additives firmly increase the need for knowledge.
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