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Abstract: Winter frost injury is a major limiting factor for olive cultivation in temperate regions. The
response of olive shoots to freezing stress can be used for selecting genotypes resistant to freezing.
The electrolyte leakage (EL) and tetrazolium tests (TZ) are commonly used to evaluate dead tissues
in cold stress studies. The temperature–response curve of dead tissues to lethal temperature (LT)
is measured with models to calculate LT50 and LT90. In this study, we evaluated the accuracy and
efficiency of eighteen nonlinear regression models (NLRs) in calculating LT50 and LT90 of freezing
stress in different olive cultivars at various stages of dormancy. After evaluating the prediction per‑
formance of NLR models, it was found that only eight models were suitable for the purpose of this
research out of the eighteen models examined. The 2p‑logistic and Gompertz models were selected
for modeling EL and TZ, respectively. Our research findings indicate that the Roughani, Kawi, and
Zard varieties of olive trees exhibit the best performance under artificial temperature‑controlled con‑
ditions. Our findings provide valuable insights into selecting frost‑resistant cultivars and designing
effective strategies for cold acclimation in olive cultivation.

Keywords: olive trees; freezing injury; electrolyte leakage; tetrazolium tests; nonlinear regression
models

1. Introduction
Olive trees are a subtropical crop that can also thrive in certain temperate regions. The

Mediterranean Basin heavily relies on the economic benefits of olive oil, which is extracted
from the fruit of the olive tree. In addition to serving as a vital economic resource, table
olives are also a popular food item [1]. However, due to their subtropical nature, olive
trees are highly vulnerable to winter frost injury [2,3]. Numerous studies have been con‑
ducted to select frost‑resistant cultivars of olive trees [4–8]. Some studies typically involve
evaluating different cultivars based on their performance during natural frost events [6,9].
Most studies have also evaluated the viability of shoot tissue from different genotypes un‑
der controlled freezing temperatures [10,11]. The electrolyte leakage and tetrazolium tests
are two important indicators used in the screening of plant frost injury, particularly in cold
stress studies, to assess the presence of dead tissue [12]. Electrolyte leakage (EL) is deter‑
mined by measuring the ratio of ion leakage from injured tissues to intact tissues using
electrical conductivity [13]. Meanwhile, dead tissues are identified via staining and visu‑
ally scored in the tetrazolium test (TZ). To screen for frost‑hardy resistant genotypes, plant
tissues at various stages of growth are exposed to controlled freezing temperatures [14,15].
By determining the temperature at which 50% of tissues are lost (known as the lethal tem‑
perature or LT50), computing models can designate the degree of genotype resistance to
freezing stresses. The typical response of plant tissues to a series of freezing temperatures
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is an asymmetric sigmoid curve [16]. Probit analysis is a common method used to deter‑
mine LT50 in many studies related to freezing stress in plants, including olive trees [2].
Regression models such as linear interpolation, Richards, logistic, and Gompertz models
have also been used for LT50 estimation in some studies [10,16–18]. Nonlinear regression
is a statistical method used to model the relationship between a dependent variable and
one or more independent variables when the relationship is not linear. In the context of
freezing injury, nonlinear regression can be used to model the relationship between the
extent of tissue damage and the temperature and duration of exposure to freezing tem‑
peratures [17,18]. This type of analysis can help researchers understand the factors that
contribute to freezing injury and develop strategies to mitigate its effects. Nonlinear re‑
gression models can be more complex than linear regression models, and may require
more sophisticated statistical techniques to fit to the data [19]. However, they can often
provide a better fit to the data and more accurate predictions than linear models when
the relationship between the variables is not linear [19]. The parameters in nonlinear mod‑
els often have a biologically meaningful interpretation, based on the units and definitions
associated with them [19–21]. This interoperability makes nonlinear models useful for
gaining insights into biological processes such as cold stress. Nonlinear models also face
some limitations. They tend to be less flexible than linear models, meaning the choice of
model is crucial. Additionally, because no analytical solution exists for parameter estima‑
tion in nonlinear models, numerical methods must be used. This introduces challenges
such as checking for algorithm convergence and choosing appropriate starting values for
the parameters [19]. Overall, nonlinear regression can be a powerful tool for analyzing
the complex relationships between freezing injury and duration of exposure and can help
researchers develop a better understanding of this phenomenon.

During the growing season, the optimal temperature range for olive trees is around
20–30 ◦C. While olive trees can withstand minimum temperatures of about −4 ◦C in win‑
ter and maximum temperatures of about 50 ◦C in hot and dry summers, sub‑optimal and
chilling temperatures (between 7.5 and 12.5 ◦C) can significantly slow down metabolic
processes such as respiration and photosynthesis. Freezing temperatures, defined as tem‑
peratures averaging below −10 ◦C, can cause irreparable damage to organs and tissues,
and in severe cases, the entire plant can die [2]. Freezing stress is often more damaging to
olive trees than chilling stress. The temperature threshold for frost damage in olive trees
varies depending on factors such as genotype, growth conditions, and the timing of the
low temperatures (early frost, winter frost, or late frost). Additionally, the hardening or
de‑hardening phase of the tree can also impact its susceptibility to frost damage [7,8,22,23].
Larcher [24] reported that the LT50 of olive twig cambium and xylem was −16 ◦C. Bar‑
tolozzi and Fontanazza [4] showed that the LT50 of higher‑resistance olive cultivars, such
as ‘Bouteillan’ and ‘Nostrale di Rigali’, were −18.2 and −18.1 ◦C, respectively, while the
LT50 of the lower‑tolerance ‘Borsciona’ and ‘Morcona’ were−12.28 and−11.48 ◦C, respec‑
tively. In addition to the effects of genotype, the severity of damage caused by freezing
stress in olive trees can depend on a range of factors, including the duration of the freezing
event, the stage of plant growth, and the cold acclimation or dormancy processes [25]. A
series of physiological and metabolic changes occur during the cold acclimation process,
which prepares olive trees for low‑temperature tolerance [5,26]. Cansev, Gulen and Eris [5]
evaluated the cold hardiness of twelve olive cultivars and found that cold acclimation in‑
creased the freezing tolerance of these cultivars. Osmolytes, such as soluble carbohydrates
and proline, play a crucial role in the resistance of woody plants to freezing stress [2]. By
accumulating these compounds, plants can protect themselves from the damage caused
by ice formation [25].

The majority of published articles modeling the fruit‑freezing process have utilized
a limited number of nonlinear regression models, with many employing various mod‑
els. Consequently, this article presents a comprehensive review of nonlinear regression
models for the olive fruit within this field. The objectives of the paper are outlined as fol‑
lows: (1) to evaluate the fitness of 18 computing models in pre‑, deep, and post‑dormancy
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of ten olive cultivars under freezing temperature, (2) compare accuracy and sensitivity
analyses for each model, and (3) predict plant response with selected models at out‑of‑
range temperatures.

2. Materials and Methods
2.1. Olive Cultivars and Orchard Management

Ten olive cultivars—‘Dorsalani’, ‘Luke’, ‘Roughani’, ‘Shangeh’, ‘Rashid’, ‘Mission’,
‘Kawi’, ‘Abu‑Stal’, ‘Manzanilla’, and ‘Zard’ (coded as CV1 to CV10)—were sampled at
three different times—before, during, and after dormancy, corresponding to November,
January, and March. The olive trees were grown in an adaptation collection established
in 2001, using a randomized complete block design (RCBD) with four replications and six
trees in each plot. The trees were spaced 4× 6 m apart and were 20 years old at the time of
sampling. The orchard management included regular irrigation and fertilization, and the
trees were free of pests and nutritional deficiencies.

2.2. Temperature Treatments
One‑year‑old shoots, 30 cm long and 1 cm in diameter, were collected from each olive

cultivar in the germplasm collection and immediately transported to the laboratory. After
removing the leaves and washing the branches with distilled water, the shoots were cut
into smaller pieces, 1 cm in length, at the internodal distances. The pieces were then placed
in a cold room at 4 ◦C for 3 h. Subsequently, the samples were subjected to a stepwise
freezing process from 0 to −21 ◦C (0, −3, −6, −9, −12, −15, −18, and −21 ◦C) using
a freezing test device (Kimiya Rahvard Co., Tehran, Iran). The freezing rate was set at
3 ◦C h−1, and the duration of each test temperature was 60 min [14]. At each stage, after
cold treatment at the desired temperature, the samples were removed from the freezing
test device and used for electrolyte leakage and tetrazolium tests.

2.3. Electrolyte Leakage (EL)
To evaluate the extent of freezing damage on cell membranes, the rate of electrolyte

leakage (EL) was calculated using Equation (1). Stem samples from each temperature treat‑
ment (ranging from 0 to −21 ◦C) were placed in 40 mL of distilled water at room tempera‑
ture for 24 h. The electrical conductivity (EC1) was measured using an EC meter (Con500,
Korea). The samples were then autoclaved at 120 ◦C for 2 h, and after cooling to room
temperature, their ion leakage was measured using an EC meter (EC2). The percentage
of conductivity was calculated for each sample using the ratio of the initial to the final
measurements multiplied by 100.

EL (%) =
EC1

EC2
× 100 (1)

2.4. Triphenyl Tetrazolium Chloride (TZ) Assay
The tetrazolium staining method was used to determine the percentage of dead tis‑

sues (Figure 1). Stem samples from each temperature treatment were placed in a test tube
containing 5 mL of 1% 5‑3‑2‑triphenyltetrazolium chloride solution and kept in the dark
at room temperature for 24 h. The samples were then cut into thin sections using a micro‑
tome machine and observed under stereo microscope (Model 40× CS‑5CAW). The extent
of visual damage was measured as a percentage based on the staining of dead tissues in
the phloem and cambium layers at the outer circle of the shoot pieces.

2.5. Nonlinear Regression Models (NLRs)
Eighteen nonlinear regression models (NLRs) were used to model freezing injury in

olive cultivars (Table 1). Other studies have included only one or twomodels [7,10,17]. One
important aspect of developing anNLRmodel for freezing injury is choosing the appropri‑
ate functional form for the model. NLR models can take on a variety of forms, including
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polynomial, exponential, logarithmic, and sigmoidal functions, among others. The choice
of functional form will depend on the nature of the relationship between the independent
and dependent variables, as well as the specific research question being addressed, and
be based on prior knowledge or theory about the relationship between the dependent and
independent variables.
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Figure 1. Cross‑sectional area of olive stem width adjacent to tetrazolium color under stereo micro‑
scope (40×). Blue arrowsrevealing tissue staining in the phloem and cambium layers. The left image
displays staining in live tissue, while the right image shows staining in dead tissue.

Table 1. Mathematical models to estimate freezing injuries in ten olive cultivars.

Symbol Form Model Name

EXP0 y = 100(a− exp(−b× t)) M1 Exponential model without LAG

EXPLAG y = 100(1 − a× exp(−b× t)) M2 Exponential model with LAG

L2p y = 100
(1+a×exp(−b×t)) M3 2p‑logistic model

GOM y = 100 exp(−a× exp(−b× t)) M4 Gompertz model

LOG y = 100
(1+exp(a−b×t)) M5 Logistic model

GOM2 y = 100 exp(− exp(1 − a× (t− b))) M6 Gompertz model 2

LOG2 y = 100
1+exp(1+a×(b−t)) M7 Logistic model 2

TPLOG y = 100
1+exp(2−4a(t−c)) +

100
1+exp(2−4b(t−c)) M8 Two‑pool logistic

OPLOG y = 100
1+exp(1−a×(t−b)) M9 One‑pool logistic

MGOM y = 100 exp(− exp(a× (t− b) + 1)) M10 Modified Gompertz model

RCD y = 100

1+(1+exp(−a×t))
1
b

M11 Richard model

ELM y = 100
a×log(1+exp(a×b×t)) . M12 Exponential‑linear model

OPG y = 100 exp(− exp(1 + a× exp(1)× (b− t))). M13 One pool Gompertz

RCD2 y = 100
(
(1 + exp(a− b× t))−c

)
M14 Richard model 2

RCD3 y = 100
1+exp(−a(t−b)) M15 Richard model 3

RCD4 y = 100

1+exp(−a×t)
1
b

M16 Richard model 4

GOM3 y = 100 exp(− exp(a− b× t)) M17 Gompertz model 3

GOM4 y = 100 exp(− exp(−a× (t− b))) M18 Gompertz model 4
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The relationship between dependent variables (EL and TZ) and the independent vari‑
able (temperature) was analyzed using nonlinear regression. NLR models were fit using
the fitnlm function in MATLAB software version R2020a using the Levenberg–Marquardt
(LM) algorithm to minimize the sum of squares error (SSE) between the predicted and ob‑
served values of EL and TZ. NLR models are often fit using an iterative algorithm such
as the LM. This algorithm iteratively adjust the parameters of the NLR until a minimum
value of the SSE is reached. NLR algorithms can be sensitive to the initial parameter val‑
ues, and different initial values can lead to different solutions. One common method for
addressing this is to use multiple initial values and choose the best solution based on some
criterion, such as the SSE.We used the cftool graphical interface inMATLAB to explore the
data and select an appropriate starting point for the parameter estimates. The model was
fit separately to the EL and TZ data, using the temperature data as the predictor variable
and the EL and TZ as the response variables. Statistical significance was set at p < 0.05. To
assess the goodness of fit of the NLRmodel, we calculated the coefficient of determination
(R2), adjusted coefficient of determination (R2

Adj.), residuals, normal probability plots of
residuals, and the root mean squared error (RMSE). Before conducting the NLR analysis,
the data were preprocessed to remove any outliers or missing values. The data were also
checked for normality using the Shapiro–Wilk test, and transformed if necessary to meet
the assumptions of the NLR model.

Freezing injury in trees is a topic that has garnered significant attention in the field
of horticulture. However, one aspect that is often overlooked is the rate of behavior of
trees in response to sub‑zero temperatures, which is a critical consideration for fruit tree
growers. With this in mind, the present study aims to shed light on this important issue
by calculating the rate of changes in EL and TZ. To achieve this, the first‑order derivative
of the extracted regression functions with respect to sub‑zero temperature was used, and
the results are presented and discussed in the subsequent sections of this article. Through
these analyses, the authors aim to provide valuable insights into the behavior of trees un‑
der freezing conditions and contribute to the development of effective strategies for fruit
tree cultivation.

3. Results and Discussion
In this section of the article, we present the results under two headings: the model‑

ing results of EL and TZ. We examine the nonlinear regression models for each indicator
separately, and calculate the T50 and T90 values using the best‑fitted model. Finally, we
evaluate the cold tolerance of different olive varieties based on their resistance to freezing
injury and provide recommendations for further discussion.

3.1. Findings of the Electrolyte Leakage (EL) Assay
3.1.1. Comparing and Selecting the Best‑Fitted NLR Model for EL

As stated in the preceding section, eighteenmodels were employed to estimate the EL
of ten distinct olive cultivars. The fitting outcomes of these models revealed that only eight
of them exhibited a superior ability to predict EL, while the remaining models did not per‑
form significantly worse in terms of prediction accuracy. Table 2 displays the RMSE values
of eight models used to estimate EL in pre‑, deep, and post‑dormancy of ten olive cultivars.
The results reveal that the rank of the models differed in terms of RMSE, indicating that
the choice of the appropriate model for each cultivar and its dormancy stage is crucial. M7,
M9, M15, and M16 models performed poorly compared to the other models, while M2,
M3, M4, M5, M6, M8, M10, and M14 were identified as the best options. However, some
models, such as M8, had lower prediction errors, but their coefficients were not significant.
Further analysis showed that some models overestimated EL by more than 100% across
the tested temperature range, including at lower temperatures. After considering the sig‑
nificance of coefficients, simplicity of application, and generalizability, the M3 model was
selected for all varieties and assessment stages. This allows for comparing the varieties
and their stages by comparing the coefficients’ values of the NLR models. The lowest and
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highest RMSE values across all cases were 3.29% and 9.06%, respectively. These findings
suggest that choosing the appropriate model is crucial for accurate estimation of EL, and
the M3 model is a reliable option for all varieties and assessment stages.

Table 2. The RMSE values for EL estimation of eight out of the eighteen investigated NLR models,
for different cultivars of olives.

CV1 CV2 CV3 CV4 CV5
Pre Deep Post Pre Deep Post Pre Deep Post Pre Deep Post Pre Deep Post

M2 7.53 5.14 5.01 8.47 4.52 5.22 8.68 5.36 6.89 7.2 4.89 5.03 7.23 5.22 7.07
M3 8.5 4.37 3.49 9.06 4.84 6.03 4.89 3.96 5.39 8.04 3.5 5.45 7.95 6.77 8.44
M4 7.79 4.62 3.95 8.48 4.56 5.49 6.34 4.47 5.87 7.39 3.75 4.93 7.37 5.94 7.72
M5 8.5 4.37 3.49 9.06 4.84 6.03 4.89 3.96 5.39 8.04 3.5 5.45 7.95 6.77 8.44
M6 7.79 4.62 3.95 8.48 4.56 5.49 6.34 4.47 5.87 7.39 3.75 4.93 7.37 5.94 7.72
M8 8.46 4.38 3.3 9.04 4.84 6.03 3.6 3.64 5.21 8.02 3.48 5.45 7.88 6.78 8.45
M10 7.79 4.62 3.95 8.48 4.56 5.49 6.34 4.47 5.87 7.39 3.75 4.93 7.37 5.94 7.72
M14 7.79 4.3 3.4 8.45 4.57 5.49 3.82 3.76 5.41 7.31 3.5 4.93 7.22 5.95 7.72

CV6 CV7 CV8 CV9 CV10
Pre Deep Post Pre Deep Post Pre Deep Post Pre Deep Post Pre Deep Post

M2 7.83 3.29 6.18 6.91 7.24 6.46 6.98 6 5.69 7.51 5.52 6.4 8.61 4.22 7.48
M3 8.51 4.66 7.51 5.07 5.56 4.74 8.06 7.54 6.92 8.42 6.93 7.68 5.59 4.11 6.11
M4 7.91 3.87 6.74 5.5 6.17 5.32 7.33 6.8 6.28 7.77 6.18 6.95 6.73 4.06 6.57
M5 8.51 4.66 7.51 5.07 5.56 4.74 8.06 7.54 6.92 8.42 6.93 7.68 5.59 4.11 6.11
M6 7.91 3.87 6.74 5.5 6.17 5.32 7.33 6.8 6.28 7.77 6.18 6.95 6.73 4.06 6.57
M8 8.47 4.66 7.51 4.81 5.21 4.24 8.06 7.57 6.95 8.38 6.94 7.69 4.29 4.11 5.65
M10 7.91 3.87 6.74 5.5 6.17 5.32 7.33 6.8 6.28 7.77 6.18 6.95 6.73 4.06 6.57
M14 7.86 3.86 6.74 5.08 5.27 4.49 7.32 6.81 6.28 7.69 6.18 6.95 5.05 4.05 5.82

Means ± SD, CV1 to CV10 are the olive cultivars, while Pre, Deep, and Post refer to the dormancy stages, and
M2 to M14 are the NLR models (Table 1).

3.1.2. Assessment of NLR Model Coefficients for EL
After choosing the 2p‑logistic model (M3) to predict EL in terms of temperature for

different olive cultivars, its coefficient estimates were computed using the fitnlm function
in the MATLAB software. The ANOVA table and the significance assessment of the model
coefficients were also obtained. Table 3 displays the coefficient values, standard deviation,
and significance results for the nonlinear regression model (M3) used to predict EL across
ten different olive cultivars during three dormancy stages. Additionally, the table presents
the correspondingR2 and R2

Adj. values. The results indicate that bothmodel coefficients, b1
and b2, are significant at the 1% level for all cases. These findings demonstrate that the M3
model is appropriate and applicable for all cases, with R2 and R2

Adj. values ranging from
83% to 96%. Thus, the selected regression model successfully explained approximately
83% to 96% of the observed EL changes based on the experimental results.

3.1.3. Conducting a Sensitivity Analysis of the EL Model
To better understand the behavior of the M3 model, we plotted the EL predictions

against temperatures below zero while varying the regression coefficients b1 and b2
(Figure 2). The graph shows that increasing the regression coefficient b2 results in a steeper
slope of EL changeswith respect to temperature. Consequently, olive cultivarswith higher
b2 values reach an EL value of 100% sooner, indicating greater sensitivity to cold temper‑
atures. For instance, when b2 equals 0.05 and 0.20, the EL value reaches 100% at tempera‑
tures higher than −70 and about −30 ◦C, respectively. On the other hand, an increase in
the regression coefficient b1 leads to a shallower slope of EL changes with respect to tem‑
perature. However, changes in b1 do not affect the temperature required to achieve an EL
value of 100%. Notably, lower values of b1 indicate greater sensitivity of the olive to cold
temperatures, while the opposite may also be true.
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Table 3. The statistical analysis results of the coefficients for theM3model used to estimate EL based
on sub‑zero temperatures for all experimental cases.

CV1 CV2

Pre Deep Post Pre Deep Post

Cofe.
b1 2.47 ** ± 0.41 3.62 ** ± 0.31 3.98 ** ± 0.28 2.63 ** ± 0.41 3.07 ** ± 0.28 2.67 ** ± 0.29
b2 0.18 ** ± 0.02 0.09 ** ± 0.01 0.11 ** ± 0.01 0.18 ** ± 0.02 0.10 ** ± 0.01 0.11 ** ± 0.01

R2, R2
Adj. 0.87, 0.86 0.92, 0.92 0.96, 0.96 0.90, 0.90 0.92, 0.91 0.89, 0.89

CV3 CV4

Pre Deep Post Pre Deep Post

Cofe.
b1 5.60 ** ± 0.63 4.48 ** ± 0.30 4.51 ** ± 0.47 2.43 ** ± 0.38 3.81 ** ± 0.27 3.14 ** ± 0.33
b2 0.16 ** ± 0.01 0.10 ** ± 0.00 0.10 ** ± 0.01 0.18 ** ± 0.02 0.12 ** ± 0.01 0.12 ** ± 0.01

R2, R2
Adj. 0.96, 0.96 0.97, 0.97 0.92, 0.91 0.88, 0.88 0.97, 0.97 0.92, 0.91

CV5 CV6

Pre Deep Post Pre Deep Post

Cofe.
b1 2.36 ** ± 0.36 2.65 ** ± 0.33 2.26 ** ± 0.34 2.50 ** ± 0.36 2.54 ** ± 0.20 2.32 ** ± 0.32
b2 0.18 ** ± 0.02 0.12 ** ± 0.01 0.12 ** ± 0.01 0.18 ** ± 0.02 0.14 ** ± 0.01 0.14 ** ± 0.01

R2, R2
Adj. 0.88, 0.88 0.88, 0.87 0.81, 0.80 0.91, 0.91 0.96, 0.96 0.87, 0.86

CV7 CV8

Pre Deep Post Pre Deep Post

Cofe.
b1 3.50 ** ± 0.30 4.65 ** ± 0.56 4.38 ** ± 0.44 2.42 ** ± 0.38 2.48 ** ± 0.33 2.37 ** ± 0.29
b2 0.14 ** ± 0.01 0.11 ** ± 0.01 0.11 ** ± 0.01 0.18 ** ± 0.02 0.10 ** ± 0.01 0.10 ** ± 0.01

R2, R2
Adj. 0.96, 0.96 0.90, 0.90 0.93, 0.92 0.88, 0.87 0.83, 0.82 0.85, 0.84

CV9 CV10

Pre Deep Post Pre Deep Post

Cofe.
b1 2.57 ** ± 0.36 2.64 ** ± 0.33 2.32 ** ± 0.32 4.62 ** ± 0.56 3.67 ** ± 0.30 4.70 ** ± 0.55
b2 0.18 ** ± 0.02 0.11 ** ± 0.00 0.13 ** ± 0.01 0.15 ** ± 0.01 0.08 ** ± 0.01 0.10 ** ± 0.01

R2, R2
Adj. 0.92, 0.92 0.87, 0.86 0.86, 0.85 0.94, 0.93 0.90, 0.90 0.87, 0.86

Means ± SD. CV1 to CV10 are the olive cultivars, while Pre, Deep, and Post refer to the dormancy stages,
b1 and b2 are model coefficients, R2 is the coefficient of determination, and R2

Adj. is the adjusted coefficient
of determination.
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Figure 2. Effect of modifying regression coefficients b1 and b2 in theM3model on olive susceptibility
to freezing injury: (a) changing the coefficient of model b2 with b1 constant at the average value, and
(b) changing the coefficient of model b1 with b2 constant at the average value.

3.1.4. Comparison of EL Modeling Outcomes for Different Olive Cultivars
The Supporting Information section of the article includes the predicted results of

the M3 model for the EL parameter of olive trees at the tested temperatures, as well as
the lower and upper bounds of the prediction for the three stages of pre‑, deep, and post‑
dormancy for ten olive cultivars. The results presented in Figure S1 demonstrate that the
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M3model provided estimates of EL that fellwithin the 95%prediction interval of themodel
for most of the laboratory data. Although some observed values deviated slightly from
the predicted values at certain temperatures, the overall results were deemed acceptable.
Additionally, the coefficient of determination supported the accuracy of the model.

Figure 3 depicts the extrapolated results of EL modeling for each of the ten olive cul‑
tivars at the pre‑, deep, and post‑dormancy stages, up to a temperature of −50 ◦C. The
results of this study indicate that the pre‑, deep, and post‑dormancy stages of olive trees
during temperature reduction to −50 ◦C are associated with high‑to‑low estimation of EL.
The models of deep and post‑dormancy stages are very similar, while the pre‑dormancy
model differs significantly. These findings suggest that olive trees are particularly vulner‑
able to freezing injury during the pre‑dormant stage. It is important for olive growers to
be aware of this vulnerability and take appropriate measures. If the pre‑dormancy stage is
successfully managed, olive trees can adapt to their environment and improve their resis‑
tance to freezing injury [5]. Comparing the tolerance of ten different olive cultivars to freez‑
ing injury in terms of EL at both the deep‑dormancy and post‑dormancy stages revealed
that the cultivars CV10, CV7, CV1, CV4, CV2, CV8, CV5, CV9, CV3, and CV6 exhibited the
highest‑to‑lowest resistance to freezing injury. The ranking of olive cultivars according
to their resistance to freezing injury during the pre‑dormancy stage was as follows: CV3,
CV10, CV7, CV4, CV1, CV9, CV6, CV2, CV5, and CV8. The adaptability of ten different
olive cultivars to freezing weather was evaluated in the field. In November 2016, a sudden
drop in temperature from 10 ◦C to −12 ◦C caused frost damage to all the trees in the olive
orchard. All cultivars lost their leaves and branches, with varying degrees of damage to
the trunks. The percentage of trunk damage, from the highest to the lowest, was observed
in CV6, CV9, CV5, CV2, CV4, CV1, CV8, CV10, CV3, with the highest percentage of trunk
damage occurring in CV6 to CV9 with 88% to 92%, while the least damage occurred in
CV3, with 23%. These findings mostly confirm our experimental results obtained in the
pre‑dormancy stage with field evaluations. These results provide valuable information
for selecting appropriate olive cultivars based on the prevailing climatic conditions and
management considerations in the region.

3.1.5. Analysis of the Rate of Change in EL Results
The NLR model can be applied to calculate the rate of EL changes per decrease in

sub‑zero temperature. To achieve this, the first‑order derivative is taken from the NLR re‑
gression function. Figure 4 shows the track of EL changes for ten olive cultivars in the pre‑,
deep, and post‑dormancy stages. The results demonstrate that, at the beginning of expo‑
sure to cold and sub‑zero temperatures, the increasing EL rate gradually decreases until
reaching a certain temperature, such as−15 ◦C, after which it changes to an upward trend.
In plants undergoing freezing stress, ice crystal formation can occur intracellularly and
extracellularly. Extracellular ice formation occurs at an early stage when the temperature
drops below the freezing point [27]. Due to the latent heat of water, a slight increase or sta‑
bilization in temperature can be observed. However, as the temperature continues to drop
or rapid freezing occurs, intracellular ice formation predominates, leading to mechanical
disruption of the protoplasmic structure and eventual cell death [25,28]. Furthermore, dif‑
ferent olive cultivars exhibit varying reactions with different starting temperatures for EL
increase. In the pre‑dormancy stage, the starting temperature is smaller in absolute value
than in the other two stages. Moreover, the rate of EL change reaches a constant value
sooner in the pre‑dormancy stage. This may be attributed to the lower concentration of
osmolytes in the intercellular sap during the early stages of acclimation in olive trees [5].
The primary mechanism used by the tree to withstand winter cold is the accumulation
of carbohydrates and osmolytes within its tissues [25,29]. However, in the pre‑dormancy
stage, the concentration of these substances has not yet reached its maximum level, result‑
ing in a narrower model curve during this stage. Therefore, the steeper slope in the trend
of variation indicates that the olive variety is more susceptible to damage from freezing.
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Figure 3. Nonlinear regression modeling of olive electrolyte leakage characteristics at subzero tem‑
peratures (−50 ◦C to 0 ◦C) for pre‑, deep, and post‑Dormancy stages.
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Figure 4. Rate of change in olive EL at subzero temperatures (−50 ◦C to 0 ◦C) during pre‑, deep, and
post‑dormancy stages. Rate: EL changes per decrease in sub‑zero temperature. In Section 2.1, we
mentioned ten different olive varieties, which are represented by the acronyms CV1 to CV10.
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3.2. Findings of the Triphenyl Tetrazolium Chloride (TZ) Assay
3.2.1. Comparing and Selecting the Best‑Fitted NLR Model for TZ

Apart from utilizing the ELmeasure of resistance against freezing injury, TZwas also
employed. The prediction errors of all eighteen models mentioned in Table 1 were calcu‑
lated for ten distinct olive cultivars across three stages of dormancy, i.e., pre‑, deep, and
post‑dormancy. However, only the results of the TZ for eight models are presented in
Table 4. After evaluating the RMSE values of all models, it was observed that they were
generally acceptable and close to each other, with only slight differences. However, a closer
examination of their shapes at lower temperatures, and the significance test of their regres‑
sion coefficients, revealed that models M3, M4, M5, M6, and M7 were the strongest candi‑
dates for selection. Ultimately, the M4 model was chosen as the final model to accurately
model the process of TZ changes at sub‑zero temperatures. This decision was based on its
ability to better illustrate the nature of the TZ problem and investigate the phenomenon
of freezing injury. Unlocking the secrets of complex systems demands a comprehensive
approach. That is why we chose a single model type to analyze all three stages across vari‑
ous olive varieties. This approach grants us the power to scrutinize regression coefficients
in a more accurate and relevant way, leading us to uncover a wealth of insights.

Table 4. The RMSE values for estimating TZ of eight out of the eighteen NLR models that were
investigated, across various olive cultivars.

CV1 CV2 CV3 CV4 CV5
Pre Deep Post Pre Deep Post Pre Deep Post Pre Deep Post Pre Deep Post

M3 9.24 5.78 4.97 8.63 6.2 7.32 8.12 5.26 7.15 8.09 6.22 6.98 8.21 6.68 6.34
M4 8.8 6.21 5.65 7.84 5.16 6.27 8.34 6.22 7.86 7.22 5.2 5.93 7.33 5.72 5.6
M5 9.24 5.78 4.97 8.63 6.2 7.32 8.12 5.26 7.15 8.09 6.22 6.98 8.21 6.68 6.34
M6 8.8 6.21 5.65 7.84 5.16 6.27 8.34 6.22 7.86 7.22 5.2 5.93 7.33 5.72 5.6
M7 9.24 5.78 4.97 8.63 6.2 7.32 8.12 5.26 7.15 8.09 6.22 6.98 8.21 6.68 6.34
M10 8.8 6.21 5.65 7.84 5.16 6.27 8.34 6.22 7.86 7.22 5.2 5.93 7.33 5.72 5.6
M13 8.8 6.21 5.65 7.84 5.16 6.27 8.34 6.22 7.86 7.22 5.2 5.93 7.33 5.72 5.6
M14 8.8 5.75 4.95 7.83 5.16 6.21 8.09 5.15 7.13 7.22 5.2 5.93 7.27 5.73 5.57

CV6 CV7 CV8 CV9 CV10
Pre Deep Post Pre Deep Post Pre Deep Post Pre Deep Post Pre Deep Post

M3 8.52 6.47 4.6 8.22 5.4 4 8.18 6.68 13.2 8.12 6.59 7.49 8.73 5.84 10.8
M4 7.69 5.35 4.53 8.52 6.67 4.83 7.23 5.69 15.33 7.11 5.53 7.45 8.93 7.03 10.76
M5 8.52 6.47 4.6 8.22 5.4 4 8.18 6.68 13.2 8.12 6.59 7.49 8.73 5.84 10.8
M6 7.69 5.35 4.53 8.52 6.55 4.83 7.23 5.69 15.33 7.11 5.53 7.45 8.93 7.03 10.76
M7 8.52 6.47 4.6 8.22 5.4 4 8.18 6.68 13.2 8.12 6.59 7.49 8.73 5.84 10.8
M10 7.69 5.35 4.53 8.52 6.55 4.83 7.23 5.69 15.33 7.11 5.53 7.45 8.93 7.03 10.76
M13 7.69 5.35 4.53 8.52 6.55 4.83 7.23 5.69 15.33 7.11 5.53 7.45 8.93 7.03 10.76
M14 7.55 5.35 4.38 8.2 5.4 3.99 7.23 5.69 11.33 7.11 5.53 7.11 8.7 5.44 10.8

3.2.2. Assessment of NLR Model Coefficients for TZ
Table 5 presents the statistical analysis results for the coefficients of the Gompertz

nonlinear regressionmodel (M4), including the coefficients of determination (R2 and R2
Adj.)

for all tested cases of olives. Our analysis of the M4 model revealed that the p‑values of its
coefficient significance test were significant at both the 1% and 5% levels across all olive
varieties. This finding underscores the robustness of our model and the validity of our
results. Our analysis of the coefficients of determination and the standard deviation of the
regression coefficients revealed a remarkable consistency across all cases. By achieving R2
and R2

Adj. values ranging from 92 to 98 percent, our study provides strong evidence for the
robustness and precision of our approach.
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Table 5. The statistical analysis outcomes of the coefficients for the M4 model that was utilized to
calculate TZ using sub‑zero temperatures for all experimental cases.

CV1 CV2

Pre Deep Post Pre Deep Post

Cofe.
b1 2.58 ** ± 0.37 8.24 ** ± 1.59 6.39 ** ± 1.00 2.68 ** ± 0.36 3.79 ** ± 0.40 3.59 ** ± 0.55
b2 0.17 ** ± 0.02 0.20 ** ± 0.02 0.20 ** ± 0.01 0.19 ** ± 0.02 0.18 ** ± 0.01 0.22 ** ± 0.02

R2, R2
Adj. 0.93, 0.92 0.97, 0.97 0.97, 0.97 0.94, 0.94 0.98, 0.98 0.97, 0.97

CV3 CV4

Pre Deep Post Pre Deep Post

Cofe.
b1 2.98 ** ± 0.42 9.81 ** ± 2.09 10.51 ** ±

2.89 2.63 ** ± 0.32 3.80 ** ± 0.40 3.81 ** ± 0.48

b2 0.14 ** ± 0.01 0.19 ** ± 0.02 0.21 ** ± 0.02 0.18 ** ± 0.02 0.17 ** ± 0.01 0.20 ** ± 0.01
R2, R2

Adj. 0.93, 0.92 0.96, 0.96 0.95, 0.94 0.95, 0.95 0.98, 0.97 0.97, 0.97

CV5 CV6

Pre Deep Post Pre Deep Post

Cofe.
b1 2.80 ** ± 0.34 3.58 ** ± 0.40 3.84 ** ± 0.47 2.67 ** ± 0.36 3.34 ** ± 0.34 3.98 ** ± 0.40
b2 0.21 ** ± 0.02 0.17 ** ± 0.01 0.21 ** ± 0.01 0.20 ** ± 0.02 0.18 ** ± 0.01 0.22 ** ± 0.01

R2, R2
Adj. 0.96, 0.96 0.97, 0.97 0.98, 0.97 0.95, 0.95 0.97, 0.97 0.98, 0.98

CV7 CV8

Pre Deep Post Pre Deep Post

Cofe.
b1 3.38 ** ± 0.55 9.94 ** ± 2.03 5.87 ** ± 0.47 2.69 ** ± 0.34 3.66 ** ± 0.41 7.24 * ± 2.81
b2 0.18 ** ± 0.02 0.20 ** ± 0.02 0.19 ** ± 0.01 0.19 ** ± 0.02 0.17 ** ± 0.01 0.22 ** ± 0.04

R2, R2
Adj. 0.94, 0.93 0.97, 0.97 0.99, 0.99 0.95, 0.95 0.97, 0.97 0.88, 0.88

CV9 CV10

Pre Deep Post Pre Deep Post

Cofe.
b1 2.69 ** ± 0.34 3.44 ** ± 0.37 4.38 ** ± 0.62 2.92 ** ± 0.43 9.98 ** ± 2.17 16.07 * ± 6.00
b2 0.19 ** ± 0.02 0.17 ** ± 0.01 0.23 ** ± 0.02 0.14 ** ± 0.01 0.18 ** ± 0.02 0.25 ** ± 0.03

R2, R2
Adj. 0.95, 0.95 0.97, 0.97 0.98, 0.98 0.91, 0.91 0.96, 0.96 0.97, 0.96

Means ± SD. CV1 to CV10 are the olive cultivars, while Pre, Deep, and Post refer to the dormancy stages, b1 and
b2 are model coefficients, R2 is coefficient of determination, and R2

Adj. is adjusted coefficient of determination.

3.2.3. Conducting a Sensitivity Analysis of the TZ Model
The regression coefficients of the TZ model varied significantly among different olive

cultivars, as presented in Table 5. Furthermore, the values of these coefficients also differed
across the three stages of dormancy (i.e., pre‑, deep, and post‑dormancy) within each olive
cultivar. These differences can be attributed to variations in the response of different olive
cultivars to freezing injury during each stage of dormancy [30]. To gain a deeper under‑
standing of this issue, we conducted a sensitivity analysis of the TZmodel’s predictions for
sub‑zero temperatures by examining the impact of changes in the b1 and b2 regression co‑
efficients. As depicted in Figure 5a, an increase in the regression coefficient b2 corresponds
to an increase in the slope of TZ changes during temperature decrease. Specifically, when
b2 is set to 0.25, the maximum slope of changes is achieved, leading to an earlier and more
pronounced decrease in TZ at lower temperatures. Conversely, when b2 is set to 0.1 (the
lowest value obtained from the experiments), TZ reaches a value of approximately 100% at
a temperature of about−55 ◦C. These findings suggest that b2 plays a crucial role in deter‑
mining the rate and extent of TZ changes in response to sub‑zero temperatures. Figure 5b
demonstrates that increasing the value of the regression coefficient b1 in the TZ model
leads to a higher TZ value at the point of freezing. However, the effect of b1 on the tem‑
perature at which TZ reaches 100% is negligible, as this value is consistently attained at
−37 ◦C across all b1 values. These findings suggest that a higher b1 value corresponds to
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greater resistance of olive trees to freezing injury, enabling them to better adapt to changing
environmental conditions.
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Figure 5. The impact of altering the regression coefficients b1 and b2 in the M4 model on the vul‑
nerability of olives to damage caused by freezing: (a) changing the coefficient of model b2 with b1
constant at the average value, and (b) changing the coefficient of model b1 with b2 constant at the
average value.

3.2.4. Comparison of TZ Modeling Outcomes across Various Olive Cultivars
Initially, the models were evaluated based on laboratory results, and the best‑

performing model, M4, was selected. The Supporting Information section and Figure S2
present the lower and upper bounds, as well as the trend in changes predicted by the M4
model, alongside data from ten olive cultivars in pre‑, deep, and post‑dormancy stages.
The results indicate that the M4 model estimates and laboratory data fall within the 95%
prediction interval. Table 5 additionally confirms the validity of themodel estimateswithin
the tested temperature range. Notably, the M4 model is capable of predicting TZ for tem‑
peratures beyond the test range, as demonstrated in Figure 6, where TZ valueswere extrap‑
olated for ten olive cultivars across three dormancy stages, extending to temperatures as
low as −50 ◦C. This extrapolation allows for predictions regarding tree behavior outside
the testing period, with the model’s horizontal asymptotic line reaching the 100% point
across various temperatures. The results depicted in Figure 6 demonstrate that, for all
three dormancy stages, the trends in changes and values of TZ predictions are largely sim‑
ilar across all olive cultivars. However, there is a slight variation in the predicted values
of TZ for pre‑, deep, and post‑dormancy stages, which create the highest to lowest values
during temperature reduction. This may be attributed to the inherent nature of the olive
tree, which exhibits resistance and adaptation to new conditions, including exposure to
sub‑zero temperatures [23].

In contrast to EL, which did not reach 100% even at temperatures below −50 ◦C (as
shown in Figure 3), the value of TZ reached 100%at temperatures between−25 and−35 ◦C.
Therefore, it can be inferred that the TZ criterion ismore stringent in its judgments than the
EL criterion. However, the value of the EL criterion varied in the range of 85 to 95 percent
in the temperature range of −25 to −35 ◦C (as depicted in Figure 3).

Our findings indicate that olive cultivars with a higher amount of TZ during tempera‑
ture drops in sub‑zero conditions, and those that reach 100%TZ sooner, exhibit lower resis‑
tance to freezing injury. Based on these results, as well as the data presented in Figure 6 for
the pre‑dormancy stage, we can conclude that the olive tree cultivars CV6, CV5, CV9, CV8,
CV2, CV4, CV1, CV7, CV3, and CV10 display a range of resistance and compatibility in
sub‑zero temperature conditions, with CV10 exhibiting the highest level of resistance and
CV6 showing the lowest. In the deep dormancy stage, the olive cultivars can be ranked
based on their adaptation or resistance to freezing injury, from the lowest to the highest,
as follows: CV6, CV9, CV5, CV2, CV8, CV4, CV1, CV7, CV3, and CV10. After the dor‑
mancy period, we observed varying degrees of resistance to freezing injury among the
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olive cultivars. Based on our results, we sorted them in the following order: CV3, CV7,
CV10, CV1, CV8, CV4, CV5, CV2, CV6, and CV9. Furthermore, our TZ modeling analysis
revealed that CV3, CV7, and CV10 are the most compatible varieties in sub‑zero temper‑
ature conditions. On the other hand, CV6, CV9, and CV5 showed the least compatibility
with these conditions. Therefore, we suggest that CV10, CV3, and CV7 are the most suit‑
able options for cultivation in areas with sub‑zero temperatures, while CV6, CV9, and CV5
should be avoided.
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Figure 6. The modeling of olive TZ characteristics at subzero temperatures ranging from −50 ◦C to
0 ◦C for pre‑, deep, and post‑dormancy using nonlinear regression. In Section 2.1, we mentioned ten
different olive varieties, which are represented by the acronyms CV1 to CV10.

3.2.5. Analysis of the Rate of Change in TZ Results
As previously mentioned, we utilized the first‑order derivative of the TZ regression

model to determine the rate of change in TZ production with respect to temperature.
Figure 7 illustrates the TZ production track for ten olive cultivars across three dormancy
stages: pre‑, deep, and post‑dormancy. Interestingly, we observed that the temperature
point at which the TZ production rate changes is nearly constant across all three dormancy
stages for each olive cultivar, in contrast to the EL results (Figure 4). The temperature
range at which this phenomenon occurs varies from −5 ◦C to −12 ◦C. Additionally, our
results indicate that the rate of TZ production reaches its minimum value and eventually
reaches zero after the temperature drops below −35 ◦C. Furthermore, we found that the
slope of the TZ production decrease and increase is nearly identical. Comparing the three
dormancy stages within each variety, we noted that the temperature at which the TZ pro‑
duction rate changes occurs earlier during the pre‑dormancy stage compared to the other
two stages. This suggests that olive trees lose their resistance to frost damage earlier during
the pre‑dormancy stage according to TZ analysis.
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Figure 7. Rate of changes in olive TZ during the stages of pre‑, deep, and post‑dormancy at tem‑
peratures below zero, ranging from −50 ◦C to 0 ◦C. Rate: TZ changes per decrease in sub‑zero
temperature. In Section 2.1, we mentioned ten different olive varieties, which are represented by the
acronyms CV1 to CV10.

3.3. Assessment of T50 and T90 Values Based on the TZ and EL Models in Different
Olive Varieties

Figure 8 displays the T50 and T90 temperatures calculated for ten olive cultivars in
three dormant stages, using theNLRmodel of TZ and EL tests. T50 and T90 values provide
important information about the cold tolerance of olive trees, indicating the temperatures
at which a certain percentage of olive tree cells will be killed due to exposure to sub‑zero
temperatures. For example, during the pre‑dormancy stage, the T50 and T90 values based
on EL in CV1were obtained at temperatures of−5.26 ◦C and−17.32 ◦C, respectively. This
means that at a temperature of−5.26 ◦C, 50%of themaximumELvalueswere reached, and
at a temperature of −17.32 ◦C, 90% of the maximum EL values were reached. The lowest
T50 value based on EL tests in the pre‑dormancy stage at −10.99 ◦C was observed in CV3,
followed byCV10 at−10.58 ◦C. Similarly, the lowest T50 based on TZ testswas observed in
CV10 at−10.59 ◦C, followed by CV3 at−10.31 ◦C. Based on EL tests, the lowest T90 values
across all stages (pre‑, deep, and post‑dormancy) were observed in CV10 at −25.68 ◦C,
−43.53 ◦C, and −38.28 ◦C, respectively. In the TZ test, CV10 had the lowest T90 value
in the two stages before dormancy at −24.49 ◦C, while in the deep and post‑dormancy
stages, CV3 had the lowest T90 values at −24.74 ◦C and −21.64 ◦C, respectively. Higher
absolute values of T50 and T90 indicate greater resistance to freezing injury and better
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adaptability to sub‑zero temperatures [14]. CV10, CV3, and CV7 demonstrated the highest
performance across all three dormancy stages based on T50 values. Moreover, these three
cultivars were also the best options across all three dormant stages based on T90 values.
Hence, in terms of TZ and EL criteria, these three selections could be considered as suitable
breeding options for temperate zones compared to the other seven varieties. The T50 and
T90 values for different olive cultivars have been widely studied as important indicators
of cold tolerance. These values can provide insights into the potential of different cultivars
for withstanding freezing injury and can help in selecting more cold‑tolerant cultivars for
olive cultivation in regions with cold winters.
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4. Conclusions
This study evaluated the resistance and compatibility of ten olive cultivars to sub‑zero

temperatures and frost damage during three stages of dormancy using electrolyte leakage
(EL) and tetrazolium tests (TZ) with the help of NLR analysis utilizing 18 different mod‑
els. Eight models were selected based on significant regression coefficients, extrapolation
results, trend in changes in model prediction, and R2 and R2

Adj. criteria. The 2p‑logistic
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model and Gompertz model were selected for EL and TZ criteria, respectively. The NLR
model allowed for the identification of the relationship between temperature and olive
tree freezing injury, and the development of a predictive model for estimating the extent
of tree damage and time to zero growth based on temperature data. The study identified
the three cultivars CV10, CV7, and CV3 as having the best performance in sub‑zero tem‑
perature conditions, with better resistance and adaptability to frost damage. However, it
is important to note that the NLRmodel developed in this study is specific to the observed
study conditions and may not be applicable to other locations or climates. Additionally,
other factors such as wind speed, humidity, and soil moisture may also influence freez‑
ing injury in olive trees, which were not examined in this analysis. Overall, this research
provides valuable information for olive growers and researchers to develop strategies to
manage cold weather effects and prevent freezing injury in olive orchards.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agriculture13061137/s1, Figure S1: EL estimation results and pre‑
diction intervals (lower bound (LB) and upper bound (UB)) for temperature range of−21 ◦C to 0 ◦C;
Figure S2: TZ estimation results and prediction intervals (lower bound (LB) and upper bound (UB))
for temperature range of −21 ◦C to 0 ◦C.
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