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Abstract: Soil amendments (e.g., compost) require uniform incorporation in the soil profile to benefit
plants. However, machines may not mix them uniformly throughout the upper soil layer commonly
explored by plant roots. The study focuses on using image texture analysis to determine the level
of mixing uniformity in the soil following the passage of two kinds of harrows. A 12.3-megapixel
DX-format digital camera acquired images of soil/expanded polystyrene (in the laboratory) and
soil/compost mixtures (in field conditions). In the laboratory, pictures captured the soil before and
during the simulated progressive mixing of expanded polystyrene particles. In field conditions,
images captured the exposed superficial horizons of compost-amended soil after the passage of a
combined spike-tooth–disc harrow and a disc harrow. Image texture analysis based on the gray-
level co-occurrence matrix calculated the sums of dissimilarity, contrast, entropy, and uniformity
metrics. In the laboratory conditions, the progressive mixing resulted in increased image dissimi-
larity (from 1.15 ± 0.74 × 106 to 1.65 ± 0.52 × 106) and contrast values (from 2.69 ± 2.06 × 106 to
5.67 ± × 1.93 106), almost constant entropy (3.50 ± 0.25 × 106), and decreased image uniformity
(from 6.65 ± 0.31 × 105 to 4.49 ± 1.36 × 105). Using a tooth-disc harrow in the open field resulted
in higher dissimilarity, contrast, entropy (+73.3%, +62.8%, +16.3%), and lower image uniformity
(−50.6%) than the disc harrow, suggesting enhanced mixing in the superficial layer.

Keywords: GLCM; soil organic matter; image dissimilarity; image contrast; image entropy; image
uniformity; harrowing

1. Introduction

Soil is a complex medium consisting of minerals, organic matter, micro-organisms, air,
and water whose physical, chemical, and biological characteristics mainly result from the
interaction of the solid components with the vertical water flow [1]. Such features make soil
an essential, non-renewable resource that supports, regulates, and provides agricultural
ecosystems [2]. To provide the best environment for plant roots, soil amendments (SA)
improve and maintain soil physical properties, i.e., water retention, permeability, infiltra-
tion, drainage, aeration, and structure. Soil quality is strictly related to its structure. Much
of the environmental damage to intensively farmed lands (e.g., erosion, compaction, and
desertification) originates from soil structure degradation that may result from agricultural
practices. Long-term cultivation lowers soil organic matter (SOM) content, whereas fer-
tilization, the input of SA (i.e., manure and compost), and fallow commonly enhance its
content [3]. Animal manure is the most common SA: its land application maximizes its
agricultural value, minimizing its potential impact on environmental quality and human
health [4]. At the same time, biowaste compost or compost-derived products represent
valid SAs for stockless and vegetable farms (and also run organically). Without them,
such farms can hardly meet the non-leguminous grain crops’ N demand and sustain soil
humus with only organic sources [5–9]. The nutrient dynamics in the soil are closely linked
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to biologically active SOM resulting from either recent organic matter inputs or accumu-
lated soil reserves [10]. For this reason, following the quality of the procurement, besides
the evenness of the distribution, the compost mixing accuracy in the upper layer of soil
deserves attention too.

The mechanized processes for administering organic fertilizers are essential to soil
fertility retention: machines shall incorporate solid organic fertilizers uniformly through the
profile and comply with the varying needs of the soil plots. However, there are additional
requirements that SA-distributing machinery should comply with: e.g., safety, versatility,
compliance with the fertilization regulatory framework, uniform product distribution, the
ability to work on both horizontal and sloping surfaces, and variable-rate administration of
the SA [11–13]. The SA-spreading operations always imply a uniformity spreading error;
however, a distribution pattern presenting a coefficient of variation lower than 20% makes
such an error acceptable [14]. Many studies have focused on the distribution uniformity
of solid-fertilizer-spreading machinery using a weight-based approach. Among these,
Vasilica et al. [15] analyzed four possible situations focusing on combining maximum
uniformity with a minimum distribution by collecting the distributed material on a 1 m2

surface and weighting it afterwards. Using the same approach, other researchers studied
the distribution pattern of variously formulated organic fertilizers and SAs [16,17]. Some
studies focused on the mechanical aspect of the distribution machinery, designing devices
and mechanical systems to transport, meter, and spread organic fertilizers uniformly [18,19].

Following the introduction of image analysis techniques, researchers adopted an
approach for the characterization of the soil pore system [20], the study of the distribution
of plant nutrients in soil cores [21], and the characterization of the particles of organic
and inorganic fertilizers [22,23]. Furthermore, image analysis also proved to allow the
automatic detection of the spread granules of fertilizer [24].

More in detail, the image texture features have the advantages of considering visual
characteristics that do not depend on image color or brightness and providing reference
to the homogeneous phenomenon of the image (i.e., they describe the pixel distribution
in light of their neighborhood space) [25–27]. Furthermore, when focusing on a given
image detail, texture features contain information about the captured surface structure
arrangement, reflecting its connection with the surrounding environment [28,29].

The gray-level co-occurrence matrix (GLCM) is the most common image texture
analysis method [30–36] because it reflects all the possible information within a grayscale
image, e.g., direction, interval, amplitude, and change ratio. The GLCM is a tabulation
of how often different combinations of pixel brightness values (grey levels) occur in an
image object in a given direction. It reveals specific attributes about the gray-level spatial
distribution in an image object, allowing the derivation of statistical indices (metrics)
that Hall-Beyer [37] separated into three groups: (i) the “contrast group”, which includes
contrast, dissimilarity, and uniformity; (ii) the “orderliness group”, which includes entropy,
angular second moment, and energy; and (iii) the “descriptive statistics group” that relates
to mean, variance, standard deviation, and correlation, calculated using the entries in
the GLCM, not the original pixel values. GLCM texture feature extraction occurs when
analyzing the local features of an image for pattern recognition, image classification, and
image segmentation [38–45]. This approach has been rarely used in the field of soil science;
however, some studies tested the feasibility of image texture features from GLCM to
determine the correlation between soil moisture conditions and the intensity of the pixel in
laboratory conditions [46] while, in the open field, they tested image texture parameters
from Sentinel-1 for soil moisture retrieval [47]. Recently, Zhao et al. [48] used the GLCM
texture analysis to describe the surface cracking conditions of soda saline–alkali soil and
quantitatively studied the responses of GLCM texture features to soil salinity.

This work introduces the adoption of image texture features (i.e., dissimilarity, contrast,
entropy, and uniformity) to evaluate the uniformity of mixing of a composted SA in
the upper soil layer following the passage of two kinds of harrow in organic vegetable
farms. The hypothesis is that the information resulting from their dynamics relates to the
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level of mixing that different harrows induce in SA in the upper soil layer, following the
appropriateness that texture metrics showed for mapping changes even in situations with
complex structures, such as forests with understories or mixed forests [49–52] or images
and composite mosaic datasets of a coral reef [53]. The present study foresaw a preliminary
tuning of the method In laboratory conditions to test the image texture metric’ behavior
at increasing levels of particle dispersion in soil. At this study stage, the experimental
activity foresaw the use of expanded polystyrene particles (EPS) to mimic and visualize
the dispersion of SA particles when subjected to harrowing. The acquired information was
afterwards tested in field conditions. Such activity occurred within a research project on
soil tilling in organic horticultural sowing seed production.

The innovation of this study relies upon the possibility of a quick check of the mixing
level that different harrows achieve in the upper soil layer to exploit at their best the
amending properties of SAs [5–10] and, following their adequate mixing in the upper soil
level, reduce the uncertainty deriving from the heterogeneity of their materials to comply
with precision compost strategies [54] in the framework of precision agriculture. This
becomes particularly important in Southern Europe, where the Mediterranean climate and
land use are responsible for steady organic matter depletion [55,56].

2. Materials and Methods
2.1. Compost Distribution and Soil Mixing

Spreading tests occurred in two organic farms (labelled Carpinello and Ponticelli) lo-
cated in an agricultural district of East Po Valley (Emilia Romagna), which was classified
as “under desertification” at the end of the 1990s [55]. The cultivated fields are for the
production of sowing seeds for horticulture. Both make use of massive spreading of green
composted SA (i.e., higher than 23 t ha−1 y−1) purchased from the same manufacturer
(Enomondo Srl, Faenza, Italy). Tables 1 and 2 report the main soil features of the sites and
the main characteristics of the used SA.

Table 1. Main soil features for the upper 0–0.3 m layer in the considered sites [57,58].

Soil Characteristics Carpinello Ponticelli

Sand (%) 5.31 25.52
Silt (%) 47.59 51.68

Clay (%) 47.10 22.80
SOM (g kgsoil

−1) 1.66 2.04
P2O5 (g kgsoil

−1) 32.0 42.0
K2O (g kgsoil

−1) 542.0 159.0
pH 8.0 7.7

Table 2. Main characteristics of the green composted SA (data from manufacturer).

SA Characteristics Average Content Range

Moisture (%) 22–32
pH 6.5–7.5

Organic carbon (% d.m.) 1 22–26
Humic and fulvic carbon (% d.m.) 6.0–8.0

Total N (% d.m.) 1.2–1.8
Organic N (% d.m.) 1.2–1.8

C/N ratio 15–19
Salinity (meq/100 gd.m.) 19–52

P (% d.m. as P2O5) 0.4–0.6
K (% d.m. as K2O) 1.0–1.2

1 d.m. = dry matter.

Compost distribution and spreading occurred in both farms using a three-axis spreader
wagon (manufactured by Serri s.n.c, Predappio, Italy) trailed by a four-wheel-drive tractor.
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The spreader equipment included a distribution system with counter-rotating basal plates
and a punctual adjustment system with precise adjustment of the SA distribution rate.
The distribution of such a high dose of SA on the surface gave rise to a thick layer of
soil amendment.

After distribution, in one farm (labelled Carpinello farm), SA incorporation into soil
took place using a combined spike-tooth–disc harrow; in the other, marked Ponticelli farm,
SA incorporation foresaw the use of a disc harrow. Both machines had a mixing depth
lower than 15 cm.

2.2. Image Acquisition

Image acquisition occurred in both organic farms with a 12.3-megapixel DX-format
NIKON D300 digital camera (Nikon Corporation, Minato, Tokyo, Japan) 42 days after
compost distribution following Ortiz et al.’s [59] recommendations.

For each sampling site, digging occurred in three different places of the compost-
amended fields to expose the soil’s superficial layer and acquire three images in each place
for the subsequent image processing (nine images for each site).

2.3. Tuning of the Method in Laboratory Conditions

Before processing the open field captured images, an artificial soil profile was sim-
ulated using a glass case of 403 mm × 238 mm × 497 mm to test the method’s power
in laboratory conditions. The case was initially filled with 8 mm sieved soil to simulate
the superficial horizon. Afterwards, expanded polystyrene (EPS) particles were spread
on the surface (15 mm thick layer) to emulate compost distribution, and a small shovel
simulated the mixing action of the disc harrow executing four passages. EPS particles
were used to obtain information on the GLCM metrics dynamics because EPS particle
color profoundly differs from the soil color, giving rise to pictures containing well-defined
visual edges (meaning clear-cut changes between EPS and soil particles and, therefore,
neighboring pixels). Next, three pictures of the profiles were taken on the three sides of the
case after each mixing action using the same digital camera described in Section 2.2. for a
whole thirty-six pictures. Image capturing occurred before polystyrene distribution and
after each of the three consecutive mixings that occurred afterwards. Finally, the resulting
digital images underwent image processing (Section 2.4). This test aimed to check the
discrimination power of the method and gain insights into the meaning of the calculated
metrics regarding SA mixing with soil.

2.4. Image Processing

Each picture of the soil sections underwent processing with the R-4.3.0 statistical
software [60]: The raster function of the raster package [61] read the picture space composed
of cells of equal size (pixels—units of the coordinate reference system). Subsequently, a
rectangle including the upper 100 mm of the soil profile (without sky) cropped from
the picture (Figure 1) underwent further analysis to create a GLCM, generally used in
texture analysis because it captures the spatial dependence of gray-level values within
an image [62]. This second-order statistic algorithm, included in the GLCM package for
R, compares two neighboring pixels simultaneously to point out how often a pixel with
i intensity (gray-level) occurs in a specific spatial relationship to a pixel with the value j
within a restricted area [63].

In a few words, each element (i,j) in the resultant GLCM is the frequency at which
the pixel with a value I occurred in the specified spatial relationship to a pixel with value
j in the original image. Such processing allowed the calculation of four features on the
GLCM-processed images [64,65]: dissimilarity, contrast, entropy, and uniformity. Figure 2
reports a visual example of the processing that the images underwent.
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Figure 1. Soil mixed with compost in field conditions: (a) example of image acquisition and image
cropping for GLCM analysis; (b) examples of cropped images taken after the passage of a combined
spike-tooth–disc harrow (Carpinello farm, above) and a disc harrow (Ponticelli farm, below).
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Figure 2. Picture showing the progress of GLCM image processing from the raw image (top of the
figure) to the processed images resulting for each considered metric. The dashed squares refer to the
compost particles dispersed into the soil profile.

Dissimilarity (DIS): A measure of the distance between pairs of objects (pixels) in the
region of interest (Equation (1)). It indicates how far apart the values of neighboring points
on the surface are: low values represent remarkable homogeneity.

DIS =
N−1

∑
i,j=0

Pi,j|i− j| (1)

Contrast (CON): This statistic measures an image’s spatial frequency. It results from
the difference between the highest and the lowest values of a contiguous set of pixels
resulting in the number of local variations in the image. It represents the amount of
local gray-level variation in an image. A high value of this parameter may indicate the
presence of edges, noise, or wrinkled textures. A low-contrast image presents the GLCM
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concentration term around the principal diagonal and features low spatial frequencies
(Equation (2)).

CON =
N−1

∑
i,j=0

Pi,j(i− j)2 (2)

Entropy (ENT): This statistic (Equation (3)) measures the disorder or complexity of an
image. The entropy is high when the image is not texturally uniform, and many GLCM
elements have minimal values. When complex, textures tend to have high entropy: overall,
it gives the reason for the randomness, having its highest value when the elements of an
analyzed surface are all equal.

ENT =
N−1

∑
i,j=0

Pi,j
(
− ln Pi,j

)
(3)

Uniformity (UNIF) or homogeneity measures the uniformity (or orderliness) of the
gray-level distribution of the image: images with a smaller number of gray levels have
more considerable uniformity (Equation (4)).

UNIF =
N−1

∑
i,j=0

P(i, j)2 (4)

In all the equations, Pij is the element i,j of the normalized symmetrical GLCM, and N
is the number of gray levels in the image. For each metric, data processing calculated the
sum, the average, the median, and the maximum values for the cropped rectangle. Then,
based on the size of the cropped rectangle of soil (Figure 1), the sum of the values was
calculated for each metric.

The processing results were the average sums of the metrics resulting from the repli-
cates (nine for each side of the case for the laboratory activity and nine pictures for each
field site).

3. Results

Figure 3 shows how, in laboratory conditions, the progressive mixing of EPS particles
with soil (a small shovel simulated the passage of the concave metal disc of the harrow)
resulted in a progressively more dispersed EPS particle redistribution in the upper profile.

On the other hand, image entropy (ENT) remains almost constant. At the same time,
image uniformity (UNIF) tends to decrease, meaning that subsequent mixing actions result
in slight image texture changes and decreased image uniformity following the dispersion of
the EPS particles in the upper layer. These results confirmed the expectations of laboratory-
induced mixing: the metrics follow the progressive redistribution of EPS particles in the
soil profile. Concerning the identification of the achieved level of mixing, UNIF and DIS
have the highest efficiency, and such metrics are almost uncorrelated between themselves
(r = −0.07). At the same time, UNIF is moderately and negatively correlated with CONT
(r = 0.25) and positively and moderately correlated with ENT (r = 0.36).

Figure 4 shows the indices related to such images expressed as boxplots of the sums
of the metrics. During the progressive mixing of the EPS particles, the sums of the DIS and
CON indices show an increase, meaning that the digital images move from low to higher
spatial frequencies.
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Figure 4. Boxplot representation of the sum of image texture metrics without any EPS on the surface
(0), with the EPS layer before mixing (1), and after each mixing action (2–4).

Figure 5 represents the output of the processing of the indices resulting from the
GCLM analysis on the images from the Carpinello and Ponticelli farms.

After distributing the SA with the same device, the action of different harrows results
in upper soil layers with varying image textures. Based on the studied metrics, the passage
of a combined spike-tooth–disc harrow (Carpinello farm) results in more dispersed compost
particles than a disc harrow (Ponticelli farm). Figure 4 shows such variations: the sums of
DIS, CON, and ENT show a significant decrease (p < 0.05), meaning that, in the region of
interest, the distance between pixels in the Ponticelli soil is lower than in Carpinello. On
the contrary, the UNIF index increased, albeit non-significantly, suggesting the presence of
fewer gray levels in Carpinello than Ponticelli soil, which, as abovementioned, is ascribable
to the existence of more coarse particles of compost in the second farm site.
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4. Discussion

This study focuses on setting up a straightforward image-based methodology to
assess the differences between these two kinds of harrows. Harrows are alternative tillage
implements used for minimum tillage. They cut the soil to a shallow depth for smoothening
and pulverizing it, cutting the weeds, and mixing the materials on the surface with the soil.
The disc harrow operates through a single set or multiple sets of rotating discs mounted
on a common shaft. The discs rotate on the ground as the tractor pulls the harrow ahead,
cutting the lumps of soil, clods, and roots and mixing the material throughout the first
layer of soil. In addition, some disc harrow models may be equipped with horizontal bars
carrying straight teeth (combined spike-tooth–disc harrow) to further smooth and level
the ploughed soil or the seedbed before planting or sowing. The result is a smooth field
with powdery dirt at the surface whose structure is open and homogeneous, allowing
better water movement, particularly when harrowing follows the distribution of compost
or manure [66].

As the touch recognizes various objects according to their tactile texture, the tangible
feel of a surface, in image processing, texture (meant as the set of metrics describing
the spatial variation in pixels’ brightness intensity) is the primary term used to define
objects or concepts of a given image [67]. Therefore, image texture analysis is essential in
computer vision cases (e.g., object and pattern recognition, surface defect detection, and
medical image analysis). Moreover, image texture is one of the most powerful methods
for classifying or segmenting an image [68,69]. With remote sensing techniques, such an
approach proved to be feasible for classifying land use and improving the recognition of
crop early phenological stages using machine learning algorithms [70–72]. In proximal
sensing applications, it allowed recognition of the human skin as an indication of the
presence of people (human limbs or torso) within a digital image [73] or to identify cells
from damaged and intact tissue in histologic images [74].

In this study, the test in laboratory conditions aimed to determine to what extent
and how the considered indices (image features) vary with the progressive mixing of the
upper layer of soil. Under the mixing action of the small shovel, the increasing dispersion
of EPS particles gives rise to images that move towards a growing level of uniformity
(Figure 3). The variation that the calculated image features show for each mixing step
(Figure 4) is remarkable for DIS, CON, and UNIF, but ENT is the measure that changed the
least. According to Hall-Beyer [41], ENT might be able to characterize a particular image
section; however, it might also take on different values from varying edges’ characteristics.
Hall Beyer [75] referred to DIS, CON, and ENT as “edge textures”. These yield high
values when the neighborhood contains abrupt color changes between neighboring pixels,
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which have some spatial coherence to contrasting pixel pairs. Higher ENT values result for
neighborhoods containing very irregular edges or incoherent contrast, whereas straight-line
edges would lower ENT values for the neighborhood.

In this case, the ENT value does not change significantly from picture 1 to picture 4,
meaning that the captured complexity does not change significantly and that the matrix
elements are almost equal [33] following a large amount of uniform soil compared to
the EPS particles. DIS and CON follow the same dynamics under the findings of Hall-
Beyer [75]; moreover, the increasing values indicate high variations in the gray level of
image matrices, which means the texture becomes irregular following the dispersion of
EPS particles. On the other hand, such particle redistribution causes UNIF to drop because
the edge indicating the cut-off line between the soil and EPS particles fades.

When applying such achievements to the images taken in the organic fields after SA
distribution, the metrics point out that the pictures taken in the Ponticelli site have more
constant pixels than Carpinello (Figure 5). Moreover, the significantly lower value of ENT
(p < 0.05) provides insights that the pixels of the image taken in Ponticelli are significantly
more texturally uniform, meaning that the used machinery caused SA to be more dispersed
in the soil profile.

The desired aggregate size of soils in seedbeds varies because of crop-specific require-
ments. However, in practice, soil conditions for seedbed preparation are mainly based
on farmers’ qualitative field assessment, which relies on observing the breaking of soil
aggregates. Although farmers can carry out the qualitative assessment of soil with fair
precision, the results are subjective because the method is intuitive and, therefore, operator-
dependent [76]. Oduma et al. [77] pointed out that the soil type affects the performance of
the implementation, reporting harrowing field efficiencies of 85.83% for loamy sandy soils
(such as Ponticelli) and 84.95% for clay loam soil (such as Carpinello). Such a difference in
field efficiency may explain the improved mixing that image texture metrics suggest for the
Ponticelli site.

Concerning the machinery, the adopted harrows are pretty widespread in the organic
farms of the region; the main difference relies upon the different forces the soil particles
undergo when varying the functional elements of the harrow. On the one hand, the only
discs of the disc harrow operate mainly a horizontal displacement of the soil particles: first
outwards to the working section and then conveying them back towards the inner part of
the working section. On the other, the presence of the vertical elements determines deeper
cracks throughout the profile, which allow a more profound mixing of the SA with the soil
particles.

5. Conclusions

The study presents an image characterization of amended soil pictures resulting from
SA distribution using a combined spike-tooth–disc harrow (Carpinello farm) and a disc
harrow (Ponticelli farm) to evaluate the possibility of using image texture analysis to assess
the uniformity of distribution of the soil amendment through the upper horizon.

A laboratory-scale experiment pointed out the dynamics of four texture metrics (i.e.,
dissimilarity, contrast, entropy, and uniformity) at increasing levels of dispersion of EPS
particles, mimicking the behavior of SA particles in the soil.

The results of this study indicate that the GLCM approach is an effective method for
evaluating the dispersion of the compost particles added onto soil and afterwards dispersed
in the surface layer under the action of the harrows. The image texture metrics successfully
evaluated the changes occurring in the morphology and surfaces of the EPS particles
increasingly dispersed through the upper horizon of the soil, and provided helpful hints to
infer the level of SA dispersion in the studied sites resulting from the different used harrows.
In addition, the metric dynamics indicate that developing an image evaluation tool can
be important for targeting the SA dispersion, thus improving the efficiency of the added
organic matter. Based on the processing results, the action of a combined spike-tooth–disc
harrow results in better SA mixing with soil particles than a disc harrow.
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Further studies (e.g., aimed at the automatic recognition of shades of gray correspond-
ing to the compost particles) are, however, needed to widen the applicability of the tested
method and include it in a machine learning algorithm for the automated recognition of
the mixing level that a machinery achieves.
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