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Abstract: Rice is a staple food for roughly half of the world’s population. Some farmers prefer
rice cultivation to other crops because rice can thrive in a wide range of environments. Several
studies have found that about 70% of India’s population relies on agriculture in some way and
that agribusiness accounts for about 17% of India’s GDP. In India, rice is one of the most important
crops, but it is vulnerable to a number of diseases throughout the growing process. Farmers’ manual
identification of these diseases is highly inaccurate due to their lack of medical expertise. Recent
advances in deep learning models show that automatic image recognition systems can be extremely
useful in such situations. In this paper, we propose a suitable and effective system for predicting
diseases in rice leaves using a number of different deep learning techniques. Images of rice leaf
diseases were gathered and processed to fulfil the algorithmic requirements. Initially, features were
extracted by using 32 pre-trained models, and then we classified the images of rice leaf diseases such
as bacterial blight, blast, and brown spot with numerous machine learning and ensemble learning
classifiers and compared the results. The proposed procedure works better than other methods that
are currently used. It achieves 90–91% identification accuracy and other performance parameters
such as precision, Recall Rate, F1-score, Matthews Coefficient, and Kappa Statistics on a normal
data set. Even after the segmentation process, the value reaches 93–94% for model EfficientNetV2B3
with ET and HGB classifiers. The proposed model efficiently recognises rice leaf diseases with an
accuracy of 94%. The experimental results show that the proposed procedure is valid and effective
for identifying rice diseases.

Keywords: rice leaf disease; machine learning; deep learning; ensemble learning; segmentation;
pre-trained models

1. Introduction

Globally, rice serves as a fundamental food source for over 3.5 billion individuals [1].
Rice, wheat, and maize are the three largest grains. Rice is a highly self-sufficient crop
that is widely consumed as a primary food source in various regions worldwide [2]. It is
the primary source of food all over the world in agriculture. Most people include it as a
complete meal in their meals. Due to its low cost, starchy nature, and high caloric value, rice
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is an affordable and easily accessible food for everyone [3]. Rice crops are very important
for employment on the Asian continent, and they also help to some extent reduce poverty.
Rice crops require hot, humid weather to grow because it grows in water. Rice production
depends on effective irrigation, which includes building dams and having good soil. India
is the second-largest rice producer, producing approximately 116.42 million tonnes [4].

There are a number of factors, including soil quality, environmental factors, the choice
of unfavourable crops, pest weeds, poor manure, and various plant diseases that can
cause different diseases and infections in plants. Plant diseases have a major impact on
agricultural production [5]. Plant diseases that are contagious are brought about by viruses,
fungi, and bacteria, and their impact can vary from minor harm to fruits or leaves to
the death of the plant [6]. Infected leaves can cause significant damage to rice crops and
lower productivity. Once infected, they spread quickly, and the rice crop is susceptible to a
number of different diseases, including blast, brown spot, bacterial blight, tungro, sheath
rot, false smut, and hispa [7]. On rice leaves, these diseases’ symptoms are typically visible.
They can be recognised by a circular or oval spot that is coloured orange and greenish-grey.
Blast is identified by a greyish-green border with a dark green outline; a brown to purple
oval spot on leaves is an indication of brown spot; and bacterial blight is identified by
a greenish-white lesion on the leaves. It effectively lowers the quality and quantity of
the harvest. Table 1 provides a brief explanation of the diseases’ key characteristics [8,9].
Different rice plant diseases can occur, which has an adverse effect on crop growth and, if
they are not identified in time, could have disastrous effects on food security [10].

Table 1. Classification of various rice diseases with symptoms.

Disease Stage Symptoms Important Season Factors for Infection

Blast In growing stage

Green-grey spot with dark
green outline and more

difficult to detect with grey
centre and green outline

Rain shower and
cooled temperature

High humidity and
nitrogen level

Sheath Blight At tillering
Greenish grey irregular
spot between water and

leaf blade
Rainy season

High temperature and
humidity with high

level of nitrogen

False Smut At flowering to
maturity

Follicles are in orange and
at maturity turn greenish

yellow or black
In periodic rain fall Extreme nitrogen and

high humidity

Brown Spot Flowering to maturity Brown to purple-brown
oval spot on leaves Periodic rain

High humidity, soil
deficiency and

high temperature

Bacterial Blight Tillering to heading Tan-greyish to white In wet High temperature
and humidity

Leaf diseases have a direct impact on the rice crop production of a country because the
plants are not consistently monitored. Farmers may not always be aware of these diseases
and their occurrence periods, which can result in diseases appearing unexpectedly on any
plant, ultimately affecting the overall production of rice [11]. In the conventional method, a
knowledgeable expert who is capable of spotting slight variations in leaf colour visually
detects disease. The method is labour-intensive, takes more time, and makes it impossible
to assess the harshness and stained areas in large-scale farming accurately. Predicting and
forecasting diseases affecting rice leaves is crucial for maintaining the quantity and quality
of rice production. Detecting plant diseases at an early stage is crucial in agriculture as it
enables prompt intervention to prevent their spread, promote healthy plant growth, and
increase rice production and supply [12]. Therefore, the identification of plant diseases is
currently a significant requirement in agriculture.
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A large portion of India’s population works in fields, and the sector accounts for
about 17 percent of the country’s GDP. The country of India holds the position of being
the second-largest producer of rice globally, with a yield of 116.42 million tonnes [4].
Automated non-destructive methods for spotting leaf diseases have emerged as a result
of recent advancements in farming technology. Farmers can benefit greatly from a rapid
leaf disease detection tool [13]. In order to diagnose diseases of the rice leaf, advanced
automated techniques such as image processing and machine learning must be used. A
new branch of data mining called machine learning (ML) enables a programme to predict
outcomes more accurately without having to be explicitly programmed. ML algorithms are
frequently divided into supervised and unsupervised categories [14]. Classification refers
to the process of transforming a given set of instances into a designated set of attributes
or labels, commonly referred to as target attributes. DT classifiers, NN, K-NN classifiers,
RF, and SVM are all used in a number of applications. DL is an enhancement of ML that
effectively trains huge data, automatically picks up the input features, and produces results
based on predetermined rules.

A CNN that has already been trained can be transferred to a different problem. As a
result, the proposed model performs better than the model created from scratch, and the
training time for the model can be reduced [15]. Transfer learning can be utilised to create a
model that acts as a fixed feature extractor for a particular dataset by either fine-tuning the
last few layers of the model or removing the fully connected layers. This allows the model
to perform efficiently with the given dataset. Recently, DL techniques have been expanded
in the agricultural sector as well. Many researchers conduct tremendous research for the
early detection of paddy leaf diseases at early stages, such as in Ref. [16] author using the
Minimum Distance (MDC) and the K-NN classifier to accurately classify SR, blast, and
BS rice leaf diseases. However, the same idea is also presented in [17], which compares
two classifiers, Minimum Distance and Naïve-based classifier, for the identification of the
rice crop disease with the R2016 tool. The authors obtained a dataset of 200 digital images
featuring diseased rice leaves, achieving an accuracy rate of 69% with Bayes classifier and
81.06% with MDC.

According to [18], a technique for detecting rice diseases using DCNN is proposed.
The authors trained CNNs to recognize ten distinct rice leaf diseases, achieving an accuracy
of 95.48% with 10-fold cross-validation. The authors of Ref. [19] propose an INC-VGGN
module that combines the inception and VGGNet modules to identify plant diseases. The
module involves the addition of a pooling layer and modification of the activation task.
The VGGNet image net is pooled with the inception module to create the module. The
proposed module achieves an average accuracy of 91.83% on public datasets and 92% in
complex conditions. The authors of Ref. [20] introduced a two-layer detection method
based on the RCNN algorithm for detecting Brown Rice Planthoppers (BRPH) in images.
The method showed good performance in identifying BRPH, with accuracy and recall rates
of 94.5% and 88.0%, respectively. The study also compared the results of this method with
the YOLO v3 algorithm.

The study found that the performance of the BRPH detection algorithm was consistent,
and it outperformed the YOLO v3 algorithm. The authors also introduced a client-server
architecture-based technique in their discussion. There are three aspects to the scheme: a
mobile phone client that allows users to upload photographs to the server; a programme
on the server-side that analyses the images and displays the results to the user; and also,
the server must keep all the relevant results in the database. The authors of Ref. [14]
created a dataset of 5932 field images of rice leaf diseases such as tungro, BB, and BS and
assessed the performance of 11 CNN models in deep learning approaches based on various
parameters, including accuracy, F1-score, FPR, and training time. The results indicated that
SVM outperformed transfer learning methods. The authors of Ref. [21] proposed a model
for detecting rice leaf diseases such as BS, LS, and BB using hue threshold segmentation.
The model also integrated a classification algorithm called gradient boosting decision
tree to improve performance, achieving an accuracy of 86.58% and [5] proposed two
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CNN architectures, namely Simple CNN and Inception ResNetV2, along with their hyper-
parameters. In Inception ResNetV2, transfer learning was used for feature extraction,
and the model aggregated the data for experimentation. The model’s parameters were
optimised for the categorisation task, and it achieved an accuracy of 95.67%. Table 2 shows
the different ML/DL algorithms that can be used to find diseases on rice leaves. The
accuracy of these algorithms ranges from 86% to 95%.

Table 2. Comparative analysis of ML/DL techniques.

References ML/DL Technique Disease Type Data Set Size
(Images)

Improved
Technique

Performance
Measure/Score Limitation

[22]
K-NN classifier

with global
threshold

Blast, BS 330 Segmentation Accuracy = 0.76 Lower accuracy

[18] Deep CNN Blast, FS, BS, SB 500 None Accuracy mean = 0.95

Time consuming because
deep learning

architectures contained
several layers

[23] LVQ with CNN BS 500 None Accuracy = 0.86 Only one class is used

[24] DCNN Rice blast 5808 None
Mean

Accuracy = 0.89
AUC = 0.95

Only one rice disease
discussed

[25] Image Processing BB, BS, blast - Segmentation Accuracy = 0.91 Back propagation method
was not discussed

[26] DCNN
VGG-16 BB, FS 6000 None Accuracy 0.95

Feature extraction
technique was not

accurate

[21] Extreme Gradient
Boosting BB, LS, BS 120 Segmentation Accuracy = 0.86

F1-Score = 0.87 Less data set size

[27]
CNN with Transfer

Learning
(VGG 16)

Blight
BS, LB 1649 Augmentation Accuracy = 0.92 Augmentation approach

is not appropriate

[20] RCNN Brown rice plant
hooper 4600 None Accuracy = 0.94

Recall rate = 0.88

Feature extraction
technique was not

appropriate

[28]
VGG16, ResNet50,

ResNet101, and
YOLOv3

SB, BS 5320 None

Mean
F1-score = 0.74,

Recall rate = 0.77
Precision = 0.74

Performance parameters
are low

[29] AlexNet Neural
Network BS, BB, LS 900 Augmentation Accuracy = 0.9 Augmentation technique

was appropriate

[7] ANN BS, LS 96 Segmentation Accuracy = 0.79 Less data set

[9] Probabilistic Neural
Network (PNN) Rice blast 1800 None Accuracy = 0.91

F1-Score = 0.92
Only one rice leaf disease

was discussed

[5] CNN and
InceptionResNeV2 Blast, BB, BS 5200 Augmentation Accuracy = 0.95

Feature extraction
technique was not

appropriate

[30] Neural Network
with YOLOv3

Blast, BS
Streak 6538 None TPR = 0.78 Performance parameters

are not enough

The objective is to present a model for the identification of rice leaf diseases that
helps farmers identify rice leaf diseases timely and also helps to improve production. The
proposed method in this paper employs pre-trained models with knowledge stored in
the weights (ImageNet) that are converted into an experiment for the feature extraction
process using a transfer learning technique. For classification, the approaches of machine
learning and ensemble learning are used, and the outcomes are compared using different
performance metrics.
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The major contributions of this study are as follows:

1. Implementation of the pre-trained deep learning-based feature selection techniques
on segmented images.

2. Implementation analysis of machine and ensemble learning classification techniques
using pre-trained deep learning models based on selected features.

3. The experimental results show the effectiveness of the proposed procedure in com-
parison to existing techniques with high parameters for the classification of rice leaf
diseases.

Further, this paper is organized as follows. In Section 2, the overall procedure of the
proposed model is discussed. Section 3 gives the experimental results and comparative
analysis between normal images and segmented images of rice leaves, and finally, a
conclusion and future scope are discussed in Section 4.

2. Materials and Methods

The overall procedure of our proposed methodology for identifying the rice leaf
diseases is discussed: first, a collection of rice disease images is gathered and properly
labelled based on expert knowledge; then, various image processing techniques, such as
image resizing, reshaping, grey colour conversion, and so on, are performed on the acquired
dataset, and segmentation techniques are used to enhance the data set; and finally, the
proposed method involved feeding both segmented and normal images into the model for
feature extraction, which is then used to train the model. The trained model is subsequently
utilised in the analysis. Thus, the final results are obtained. The proposed model was
trained on the basis of the Algorithm 1.

Algorithm 1: Proposed Algorithm for Pre-trained Deep Neural Network-Based Features Selection Supported
Machine Learning for Rice Leaf Disease Classification

Input: Infected rice leaf images ((Xi, Yi) . . . . . . (Xm, Ym))
Output: Class of rice leaf disease

1. For each K:=1 -> P, where P is the total number of input leaf image do
2. Convert Kth image into RGB leaf image.
3. Read Kth RGB leaf image.
4. Resize Kth image to (h × w) size.
5. Apply segmentation technique to each image. For each T:=1 -> t, where t is the number of pre-trained

model do Load each model by Initializing imagenet weights and extract feature from the second last

layer. Update weights wk = wk−1 − a*
∧
m/(
√

vk + Є where k is the class index, w is the weights, a*

learning rate,
∧
m and vk is the first and second bias. Store extracted feature in Fpt = i × FV, where i is the

number of sample images and FV is the feature vector. End for
6. Input extracted feature (Fpt) for classification to classify function y = f(x).

Further, this section divides the proposed work’s process into several steps for identi-
fying rice leaf diseases, as shown in Figure 1.
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Figure 1. The overall flow of rice leaf disease prediction.

2.1. Data Acquisition and Pre-Processing

In the experiments, we collected 551 images of rice leaf diseases from the internet [31].
It includes the three different types of diseases that affect rice leaves: BB, BS, and blast.
Figure 2 displays a few sample images of leaf diseases. All the images are properly labelled
and saved in JPG format. There are 551 images in total, of which 192 depict bacterial leaf
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blight, 159 depict blast, and 200 depict the brown spot discussed in Table 3. There is only
one disease in each image. The data set is divided into training and test sets in an 80:20
ratio. Initially, the model was trained on 80 percent of the training dataset and 20 percent
of the testing dataset to validate a trained model.
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Table 3. Details of images present in dataset.

Disease Name No. of Images Images for
Training (80%)

Images for
Validation (20%)

Bacterial leaf Blight 192 154 38
Brown Spot 200 160 40
Blast 159 127 32
Total 551 441 110

In order to transform the raw data into useful data and improve the effectiveness and
accuracy of a model, image pre-processing is required. Pre-processing is important because
it makes it possible for input images to be processed more smoothly [8]. Pre-processing is
thought to be a crucial step in processing the images so they are suitable for the detection
process [32]. In order to enhance the quality of the images in the collected dataset, various
pre-processing techniques such as image resizing, reshaping, and converting to greyscale
are applied, resulting in sharper images. Each image is uniformly processed and resized
to 224 × 224 pixels. Formal methods can be used to verify the correctness and safety
of AI-based solutions, including data collection and processing, by providing rigorous
mathematical models and techniques for verification [33]. This can involve using techniques
such as formal proof or program analysis to check that the algorithms are correct and do
not have any unintended behaviours [34].

2.2. Segmentation

The pre-processed images of rice leaves are fed into the segmentation module to
provide high-dimensional data segmentation. Segmentation is used to divide an image into
areas that are homogeneous in terms of one or more characteristics or features (also known
as classes or subsets). Segmentation is a crucial tool for image processing and has numerous
applications such as feature extraction, image measurement, and display [7]. As a crucial
stage in the image processing pipeline, segmentation enables us to locate and extract desired
features from a given image. However, for all imaging applications, there is not a single
standard segmentation method that can deliver satisfactory results [25]. Depending on
the classification scheme, there are numerous ways to categorise segmentation techniques
such as manual, automatic, and semi-automatic; region- and global-based approaches;
low-level thresholding; model-based thresholding, etc. Each method has its own pros and
cons. Segments from the images are represented as a

S = {S1, S2, . . . , Sd, . . . , Sn}

where n is the total number of segments in the image and sd is the dth segment of the image.
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In this study, we separated disease spots from images of rice leaf disease, as shown
in Figure 3. In order to extract features from the images, we used watershed and graph
cut techniques for segmentation as mentioned in Ref. [35]. Compared to the conventional
threshold segmentation method, this method produces better segmentation results. The
two main goals of the image segmentation algorithm are as follows:

(1) It can increase the quality of the image and reduce background noise in the lesion
image, which will increase recognition accuracy.

(2) It can decrease the volume of data, which will shorten the program’s execution time. To
shorten the program’s runtime and increase the program’s recognition effectiveness.
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Figure 3. Segmented image samples.

When applied to complex images, the watershed and graph cut algorithms perform
better than thresholding and contour detection. Remove the background and foreground
elements first, and then use the markers to find the precise edges. Generally speaking, this
algorithm aids in the detection of touching and overlapping objects in images. For markers,
it is possible for the user to define them by manually clicking to obtain the coordinates for
the markers or by using predefined algorithms to reduce noise, such as thresholding or any
morphological operations [36].

2.3. Feature Extraction Using Pre-Trained Models

A quick and effective way to utilise the features that a neural network has already been
trained through feature extraction. The crucial component of the deep learning network is
feature extraction. There are numerous pooling and convolutional layers in it. It aids in the
extraction of image features useful for target positioning and identification [37]. To improve
our model(s), we could experiment with various configurations, such as adding more
layers, changing the learning rate, adjusting the number of neurons per layer, and so on.
Fortunately, by using pre-trained models, we can speed up the process [27]. These models
save computational resources and time. Pre-trained models, or neural networks that have
been trained on large-scale datasets, can be reused for subsequent tasks. These could be
used for extracting the features. By choosing the right feature extractor, system performance
is improved. There are numerous pre-trained models that perform different tasks, such
as Xception, VGG16, VGG19, ResNet101V2, InceptionNetV2, DenseNet, EfficientNetV2,
NasNet, MobileNet, ResNet50, etc.

In our research area, we used 32 pre-trained models for feature extraction. Using
large datasets such as ImageNet, pre-trained models VGG, ResNet, and Inception have
learned to extract meaningful visual features from images. Inputs to subsequent processes
such as object recognition, segmentation, and classification can be derived from these
characteristics. Each segment is modified for the feature extraction process in order to
increase the accuracy of the features in identifying rice leaf diseases. This frequently results
in excellent outcomes with fewer data.

The approach described speeds up the training process and improves the accuracy
by using a specific model architecture consisting of various layers, including reshape,
flatten, dense, dropout, and activation functions. A global pooling layer such as max global
pooling or average global pooling can be utilised to summarise the activations for use
in a classifier or as a feature vector representation of the input [38]. In this study, a new
classifier model is constructed using the output of a layer in the model that precedes the



Agriculture 2023, 13, 936 8 of 24

output layer responsible for classifying rice leaf disease images. Table 4 presents the feature
extractors used in this study, along with their input shape, number of parameters, size, and
feature layer.

Table 4. Feature extractor with Imagenet Weights used in this work.

Model Input Shape Selected
Features Size

Number of
Parameters

Memory
(in Bytes) Feature Layer

Xception (229, 229, 3) 2048 20,861,480 272,784,948 Global Average Pooling 2D

VGG16 (224, 224, 3) 4096 134,260,544 195,307,328 Dense

VGG19 (224, 224, 3) 4096 139,570,240 205,835,328 Dense

ResNet50 (224, 224, 3) 2048 23,587,712 172,064,560 Global Average Pooling 2D

ResNet50V2 (224, 224, 3) 2048 23,564,800 149,085,616 Global Average Pooling 2D

ResNet101 (224, 224, 3) 2048 42,658,176 266,198,320 Global Average Pooling 2D

ResNet101V2 (224, 224, 3) 2048 42,626,560 247,667,120 Global Average Pooling 2D

ResNet152 (224, 224, 3) 2048 58,370,944 374,636,336 Global Average Pooling 2D

ResNet152V2 (224, 224, 3) 2048 58,331,648 361,348,528 Global Average Pooling 2D

InceptionV3 (229, 229, 3) 2048 21,802,784 152,016,332 Global Average Pooling 2D

InceptionResNetV2 (229, 229, 3) 1536 54,336,736 379,140,364 Global Average Pooling 2D

MobileNet (224, 224, 3) 1000 4,253,864 71,638,760 Reshape

DenseNet121 (224, 224, 3) 1024 7,037,504 206,739,952 Global Average Pooling 2D

DenseNet169 (224, 224, 3) 1664 12,642,880 253,015,536 Global Average Pooling 2D

DenseNet201 (224, 224, 3) 1920 18,321,984 327,486,960 Global Average Pooling 2D

NASNetMobile (224, 224, 3) 1056 4,269,716 115,028,536 Global Average Pooling 2D

NASNetLarge (331, 331, 3) 4032 84,916,818 1,247,153,502 Global Average Pooling 2D

EfficientNet B0 224, 224, 3 1280 4,049,571 105,116,063 Dropout

EfficientNet B1 240, 240, 3 1280 6,575,239 167,863,763 Dropout

EfficientNet B2 260, 260, 3 1408 7,768,569 212,211,693 Dropout

EfficientNet B3 300, 300, 3 1536 10,783,535 361,891,419 Dropout

EfficientNet B4 380, 380, 3 1792 17,673,823 739,756,747 Dropout

EfficientNet B5 456, 456, 3 2048 28,513,527 1,464,166,467 Dropout

EfficientNet B6 528, 528, 3 2304 40,960,143 2,466,985,915 Dropout

EfficientNet B7 600, 600, 3 2560 64,097,687 4,252,866,467 Dropout

EfficientNetV2B0 224, 224, 3 1280 5,919,312 70,588,560 Dropout

EfficientNetV2B1 240, 240, 3 1280 6,931,124 107,709,828 Dropout

EfficientNetV2B2 260, 260, 3 1408 8,769,374 143,981,142 Dropout

EfficientNetV2B3 300, 300, 3 1536 12,930,622 228,894,934 Dropout

EfficientNetV2S 384, 384, 3 1280 20,331,360 512,960,320 Dropout

EfficientNetV2M 480, 480, 3 1280 53,150,388 1,301,769,700 Dropout

EfficientNetV2L 480, 480, 3 1280 117,746,848 2,317,398,688 Dropout

2.4. Classification

Classification is a supervised learning technique in which input data is mapped to a
specific class. It is critical to perform data mining and classify data obtained from a database.
Sometimes combinations of more classifiers give reliable and accurate results as compared to
a single classification model [39]. Various machine learning and ensemble learning algorithms
were applied to detect rice leaf diseases. In this work, ten classification algorithms were
applied to detect the diseases. On the normal data set and segmented dataset, we apply
DT, QDA, K-NN, AB, GNB, LR, RF, ET, HGB, and MLP ML to the base classifier. We use
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32 pre-trained models to extract features from different shapes and numerous classifiers to
classify different disease classes. Further details are mentioned in Figure 4.
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2.5. Experimental Setup and Evaluation Metrics

For this experiment, a Windows 10 PC, a Jupyter notebook, 8 GB of storage space on
Google Drive, and a 64-bit operating system were utilised. The Keras 2.4.3 framework
and Tensorflow backend were employed to facilitate the training and validation processes
of the deep neural network. The crucial phase in the proposed model is the evaluation
stage, which enables the calculation of the discrepancy between the predicted and actual
value. This inference will help us achieve a consistently reliable model for identifying
rice diseases. There are a number of parameters, such as accuracy, precision, recall rate,
F1-Score, Matthews Coefficient, and Kappa Statistics, as discussed in Table 5 [40]. In the
next section, we discuss the various results that were achieved during the implementation
process and compare the results.

Table 5. Performance Parameters.

Metrics Definition Formula

Accuracy Comparison between actual and predicted value Accuracy = (TP + TN)/TP + FP + TN + FN)

Precision Actual corrected positive prediction Precision = TP/(TP + FP)

Recall rate Actual positive incorrected prediction Recall = TP/(TP + FN)

F1-score Single value for both precision and recall rate F1-Score = 2TP/(2TP + FP + FN)

MC (Matthews Coefficient) Used to measure of the quality of binary and
multiclass classification.

MC = (TP × TN)(FP ×
FN)/

√
TP + FP)(TP + FN)(TN + FN)

KP (Kappa Statistics) Used to measure the inter-rater reliability for
categorical items. K = (po − pe)/(1 − pe)

3. Results

This section demonstrates and discusses the outcome obtained using the suggested
methods. By using a dataset on rice leaf diseases, this section describes in detail the accuracy,
precision, recall rate, F1-Score, Matthews Coefficient, and Kappa Statistics of the evaluation
of the proposed technique with respect to conventional strategies. Comparative analysis
of different machine learning and deep learning approaches with normal and segmented
datasets is discussed in this section. In case 1, results are discussed on the basis of a normal
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image set. In case 2, an analysis of the segmented image set is discussed, and in case 3, a
comparative analysis of results from the normal and segmented image sets is discussed.

3.1. Analysis of Normal Data

An analysis of the normal data on the basis of accuracy is represented in Table 6,
and it is noted that the maximum accuracy achieved was 91% for the pre-trained model
EfficientNetB3 with ET and HGB classifiers and 90% for EfficientNetV2B3 with ET classifier.
Table 7 shows an analysis based on precision for normal data. It is clear that the classifier
HGB gave the highest precision value of 92% with model EfficientNetV2B3 and 91% with
EfficientNetV2B3, EfficientNetB3 Models with ET, and HGB classifiers.

Table 6. Accuracy on Normal Data.

Classifiers/
Pre-Trained Model DT QDA KNN AB GNB LR RF ET HGB MLP

Xception 0.7 0.35 0.63 0.66 0.66 0.65 0.79 0.8 0.86 0.69

VGG19 0.67 0.39 0.67 0.72 0.59 0.64 0.82 0.83 0.83 0.79

VGG16 0.61 0.36 0.64 0.66 0.69 0.56 0.82 0.81 0.78 0.73

ResNet152V2 0.63 0.38 0.56 0.66 0.57 0.54 0.76 0.78 0.8 0.65

ResNet152 0.74 0.48 0.72 0.77 0.56 0.66 0.83 0.83 0.84 0.7

ResNet101V2 0.56 0.41 0.56 0.67 0.63 0.59 0.74 0.71 0.79 0.7

ResNet101 0.71 0.44 0.68 0.71 0.62 0.7 0.84 0.81 0.81 0.77

ResNet50V2 0.54 0.38 0.53 0.71 0.65 0.53 0.76 0.78 0.73 0.66

ResNet50 0.72 0.47 0.7 0.71 0.6 0.65 0.84 0.81 0.8 0.73

NASNetMobile 0.61 0.45 0.62 0.67 0.51 0.57 0.77 0.77 0.78 0.66

NASNetLarge 0.7 0.44 0.62 0.66 0.36 0.73 0.81 0.78 0.8 0.72

MobileNet 0.61 0.4 0.55 0.61 0.61 0.69 0.79 0.81 0.8 0.7

InceptionV3 0.65 0.39 0.64 0.66 0.77 0.61 0.79 0.83 0.77 0.76

InceptionResNetV2 0.64 0.48 0.68 0.65 0.79 0.67 0.79 0.82 0.8 0.72

EfficientNetV2S 0.72 0.4 0.76 0.69 0.71 0.69 0.91 0.89 0.89 0.73

EfficientNetV2M 0.66 0.38 0.47 0.71 0.67 0.57 0.77 0.79 0.79 0.66

EfficientNetV2L 0.66 0.38 0.66 0.56 0.78 0.64 0.82 0.87 0.87 0.74

EfficientNetV2B3 0.68 0.43 0.72 0.81 0.78 0.76 0.85 0.9 0.89 0.85

EfficientNetV2B2 0.69 0.39 0.61 0.69 0.61 0.56 0.8 0.78 0.81 0.66

EfficientNetV2B1 0.71 0.41 0.61 0.73 0.6 0.63 0.78 0.8 0.82 0.69

EfficientNetV2B0 0.63 0.33 0.63 0.67 0.6 0.57 0.76 0.76 0.74 0.77

EfficientNetB7 0.83 0.46 0.65 0.73 0.79 0.71 0.86 0.86 0.83 0.74

EfficientNetB6 0.71 0.43 0.72 0.63 0.67 0.6 0.9 0.86 0.86 0.74

EfficientNetB5 0.64 0.44 0.69 0.79 0.71 0.63 0.85 0.88 0.83 0.74

EfficientNetB4 0.69 0.46 0.76 0.78 0.71 0.65 0.81 0.83 0.85 0.74

EfficientNetB3 0.76 0.4 0.7 0.81 0.87 0.69 0.89 0.91 0.91 0.86

EfficientNetB2 0.74 0.5 0.61 0.65 0.67 0.66 0.77 0.82 0.78 0.71

EfficientNetB1 0.68 0.4 0.67 0.72 0.63 0.69 0.8 0.83 0.8 0.71

EfficientNetB0 0.65 0.36 0.7 0.73 0.63 0.57 0.8 0.83 0.82 0.71

DenseNet201 0.6 0.34 0.56 0.73 0.64 0.63 0.79 0.77 0.81 0.65

DenseNet169 0.59 0.36 0.64 0.7 0.53 0.66 0.81 0.78 0.77 0.67

DenseNet121 0.72 0.4 0.71 0.74 0.4 0.62 0.79 0.81 0.83 0.72
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Table 7. Precision on Normal Data.

Classifiers/
Pre-Trained Model DT QDA KNN AB GNB LR RF ET HGB MLP

Xception 0.67 0.23 0.52 0.69 0.64 0.44 0.72 0.77 0.83 0.64

VGG19 0.62 0.23 0.6 0.69 0.59 0.62 0.77 0.78 0.79 0.74

VGG16 0.55 0.21 0.62 0.67 0.67 0.39 0.77 0.75 0.73 0.67

ResNet152V2 0.59 0.23 0.49 0.59 0.55 0.36 0.66 0.7 0.76 0.61

ResNet152 0.69 0.3 0.67 0.72 0.61 0.61 0.78 0.78 0.79 0.67

ResNet101V2 0.51 0.25 0.5 0.63 0.62 0.5 0.67 0.62 0.74 0.63

ResNet101 0.66 0.3 0.65 0.66 0.71 0.47 0.79 0.75 0.76 0.7

ResNet50V2 0.48 0.24 0.45 0.66 0.69 0.54 0.69 0.73 0.67 0.63

ResNet50 0.67 0.28 0.57 0.67 0.62 0.58 0.79 0.75 0.74 0.7

NASNetMobile 0.57 0.29 0.57 0.63 0.44 0.53 0.71 0.71 0.72 0.61

NASNetLarge 0.66 0.23 0.57 0.64 0.6 0.5 0.77 0.74 0.78 0.6

MobileNet 0.59 0.15 0.52 0.56 0.69 0.64 0.75 0.74 0.76 0.65

InceptionV3 0.62 0.22 0.53 0.69 0.73 0.43 0.75 0.78 0.71 0.71

InceptionResNetV2 0.6 0.28 0.63 0.65 0.76 0.47 0.75 0.79 0.76 0.67

EfficientNetV2S 0.67 0.24 0.7 0.63 0.7 0.62 0.89 0.85 0.85 0.68

EfficientNetV2M 0.61 0.24 0.4 0.66 0.63 0.58 0.68 0.72 0.7 0.55

EfficientNetV2L 0.59 0.21 0.58 0.6 0.73 0.66 0.77 0.85 0.85 0.67

EfficientNetV2B3 0.62 0.26 0.66 0.75 0.72 0.84 0.81 0.91 0.92 0.81

EfficientNetV2B2 0.66 0.27 0.56 0.67 0.62 0.48 0.74 0.72 0.75 0.62

EfficientNetV2B1 0.67 0.21 0.57 0.71 0.53 0.46 0.73 0.76 0.78 0.66

EfficientNetV2B0 0.59 0.22 0.59 0.63 0.68 0.62 0.71 0.7 0.68 0.72

EfficientNetB7 0.79 0.28 0.56 0.69 0.75 0.65 0.88 0.9 0.79 0.7

EfficientNetB6 0.71 0.27 0.68 0.66 0.7 0.43 0.88 0.82 0.82 0.69

EfficientNetB5 0.61 0.28 0.66 0.74 0.69 0.42 0.82 0.86 0.81 0.71

EfficientNetB4 0.65 0.28 0.67 0.74 0.7 0.46 0.78 0.79 0.8 0.7

EfficientNetB3 0.72 0.24 0.66 0.78 0.84 0.72 0.89 0.91 0.9 0.84

EfficientNetB2 0.67 0.32 0.57 0.65 0.64 0.63 0.7 0.76 0.74 0.66

EfficientNetB1 0.64 0.25 0.61 0.72 0.66 0.62 0.75 0.78 0.77 0.66

EfficientNetB0 0.63 0.18 0.63 0.68 0.63 0.53 0.74 0.76 0.76 0.65

DenseNet201 0.55 0.19 0.53 0.71 0.63 0.43 0.72 0.7 0.75 0.61

DenseNet169 0.56 0.2 0.57 0.66 0.58 0.55 0.75 0.71 0.71 0.62

DenseNet121 0.69 0.26 0.69 0.71 0.55 0.61 0.73 0.76 0.78 0.68

Following that, recall rate analysis is represented in Table 8, and it is seen that Effi-
cientNetB3 with the ET and HGB classifiers achieved the highest recall rate of 89. Model
EfficientNetV2B3 with the HGB classifier achieved a recall rate of 86%. Moreover, pre-
trained models EfficientNetB5, EfficientNetB6, and EfficientV2S with ET, HGB classifier
gave an 84% recall rate value. Next, analysis was conducted on the basis of the metric
F1-Score, and from Table 9, it was observed that model EfficientNetB3 with ET and HGB
gave the maximum F1-Score value, i.e., 90%. EfficientNetV2B3 with the HGB classifier gave
a value of 89%.
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Table 8. Recall Rate on Normal Data.

Classifiers/
Pre-Trained Model DT QDA KNN AB GNB LR RF ET HGB MLP

Xception 0.67 0.39 0.53 0.67 0.63 0.52 0.69 0.76 0.84 0.63

VGG19 0.63 0.38 0.6 0.68 0.56 0.55 0.78 0.78 0.78 0.74

VGG16 0.55 0.36 0.62 0.68 0.68 0.45 0.78 0.76 0.72 0.66

ResNet152V2 0.47 0.41 0.45 0.66 0.66 0.48 0.68 0.72 0.66 0.64

ResNet152 0.67 0.47 0.58 0.67 0.56 0.58 0.79 0.75 0.74 0.7

ResNet101V2 0.58 0.39 0.49 0.59 0.49 0.43 0.66 0.7 0.74 0.61

ResNet101 0.68 0.45 0.68 0.72 0.52 0.61 0.79 0.78 0.8 0.68

ResNet50V2 0.51 0.41 0.5 0.61 0.57 0.49 0.66 0.62 0.71 0.62

ResNet50 0.66 0.52 0.67 0.67 0.58 0.56 0.8 0.76 0.77 0.69

NASNetMobile 0.57 0.51 0.56 0.62 0.43 0.52 0.7 0.71 0.7 0.61

NASNetLarge 0.66 0.38 0.57 0.63 0.46 0.59 0.76 0.73 0.74 0.6

MobileNet 0.61 0.32 0.51 0.55 0.54 0.6 0.72 0.72 0.75 0.62

InceptionV3 0.61 0.36 0.54 0.66 0.71 0.48 0.72 0.75 0.71 0.69

InceptionResNetV2 0.59 0.48 0.63 0.63 0.76 0.54 0.76 0.77 0.74 0.67

EfficientNetV2S 0.68 0.38 0.71 0.61 0.72 0.62 0.87 0.84 0.84 0.69

EfficientNetV2M 0.62 0.39 0.4 0.65 0.62 0.48 0.68 0.71 0.68 0.55

EfficientNetV2L 0.59 0.35 0.58 0.59 0.73 0.52 0.74 0.8 0.85 0.66

EfficientNetV2B3 0.62 0.43 0.65 0.76 0.72 0.62 0.78 0.85 0.86 0.79

EfficientNetV2B2 0.68 0.47 0.56 0.67 0.58 0.49 0.73 0.71 0.74 0.6

EfficientNetV2B1 0.68 0.35 0.57 0.73 0.5 0.5 0.72 0.76 0.77 0.61

EfficientNetV2B0 0.57 0.35 0.59 0.63 0.64 0.56 0.71 0.69 0.68 0.73

EfficientNetB7 0.79 0.45 0.56 0.69 0.72 0.58 0.83 0.8 0.78 0.67

EfficientNetB6 0.73 0.43 0.67 0.66 0.67 0.47 0.86 0.83 0.84 0.68

EfficientNetB5 0.6 0.48 0.68 0.74 0.69 0.5 0.82 0.84 0.78 0.71

EfficientNetB4 0.64 0.45 0.67 0.75 0.71 0.52 0.8 0.81 0.81 0.71

EfficientNetB3 0.73 0.39 0.65 0.8 0.85 0.59 0.87 0.89 0.89 0.84

EfficientNetB2 0.67 0.5 0.57 0.63 0.65 0.61 0.69 0.77 0.75 0.66

EfficientNetB1 0.63 0.42 0.6 0.73 0.64 0.62 0.75 0.78 0.79 0.66

EfficientNetB0 0.64 0.31 0.61 0.69 0.61 0.49 0.74 0.75 0.74 0.63

DenseNet201 0.55 0.32 0.52 0.71 0.58 0.5 0.72 0.7 0.76 0.61

DenseNet169 0.56 0.31 0.57 0.65 0.56 0.55 0.75 0.7 0.7 0.62

DenseNet121 0.7 0.45 0.68 0.71 0.46 0.58 0.73 0.76 0.79 0.69
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Table 9. F1-Score on Normal Data.

Classifiers/
Pre-Trained Model DT QDA KNN AB GNB LR RF ET HGB MLP

Xception 0.67 0.28 0.52 0.64 0.62 0.47 0.7 0.77 0.83 0.63

VGG19 0.62 0.29 0.6 0.68 0.55 0.54 0.78 0.78 0.78 0.74

VGG16 0.55 0.27 0.62 0.64 0.66 0.4 0.78 0.76 0.73 0.66

ResNet152V2 0.47 0.3 0.44 0.66 0.62 0.47 0.68 0.72 0.66 0.63

ResNet152 0.66 0.35 0.55 0.66 0.53 0.58 0.79 0.75 0.74 0.69

ResNet101V2 0.58 0.29 0.49 0.59 0.49 0.39 0.65 0.7 0.74 0.6

ResNet101 0.68 0.35 0.67 0.72 0.47 0.61 0.79 0.78 0.79 0.66

ResNet50V2 0.51 0.31 0.5 0.61 0.57 0.48 0.66 0.62 0.71 0.62

ResNet50 0.66 0.36 0.65 0.66 0.57 0.51 0.79 0.75 0.76 0.69

NASNetMobile 0.57 0.36 0.55 0.62 0.42 0.52 0.71 0.71 0.7 0.61

NASNetLarge 0.66 0.28 0.57 0.62 0.37 0.54 0.76 0.73 0.75 0.59

MobileNet 0.59 0.21 0.51 0.54 0.54 0.61 0.73 0.73 0.75 0.63

InceptionV3 0.6 0.27 0.53 0.64 0.72 0.44 0.73 0.76 0.71 0.7

InceptionResNetV2 0.59 0.35 0.63 0.62 0.76 0.5 0.75 0.78 0.74 0.67

EfficientNetV2S 0.67 0.29 0.7 0.6 0.69 0.62 0.88 0.85 0.85 0.68

EfficientNetV2M 0.61 0.29 0.4 0.65 0.63 0.46 0.68 0.71 0.68 0.54

EfficientNetV2L 0.59 0.26 0.58 0.55 0.73 0.5 0.75 0.81 0.85 0.66

EfficientNetV2B3 0.62 0.32 0.66 0.76 0.72 0.58 0.79 0.87 0.89 0.8

EfficientNetV2B2 0.66 0.32 0.56 0.65 0.57 0.48 0.73 0.71 0.74 0.6

EfficientNetV2B1 0.68 0.25 0.57 0.7 0.48 0.45 0.72 0.76 0.77 0.62

EfficientNetV2B0 0.57 0.26 0.59 0.62 0.59 0.53 0.7 0.69 0.68 0.72

EfficientNetB7 0.79 0.34 0.55 0.68 0.72 0.56 0.85 0.83 0.78 0.68

EfficientNetB6 0.7 0.33 0.67 0.62 0.65 0.42 0.87 0.82 0.83 0.68

EfficientNetB5 0.6 0.34 0.67 0.74 0.68 0.46 0.82 0.85 0.79 0.7

EfficientNetB4 0.64 0.34 0.67 0.73 0.69 0.48 0.78 0.8 0.8 0.7

EfficientNetB3 0.72 0.29 0.65 0.78 0.84 0.59 0.87 0.9 0.9 0.84

EfficientNetB2 0.67 0.39 0.57 0.62 0.63 0.61 0.69 0.77 0.74 0.66

EfficientNetB1 0.63 0.31 0.6 0.7 0.59 0.61 0.75 0.78 0.77 0.66

EfficientNetB0 0.62 0.23 0.61 0.68 0.58 0.48 0.74 0.76 0.75 0.63

DenseNet201 0.55 0.24 0.52 0.69 0.58 0.46 0.72 0.7 0.75 0.61

DenseNet169 0.55 0.24 0.57 0.65 0.49 0.54 0.75 0.7 0.7 0.62

DenseNet121 0.69 0.32 0.69 0.7 0.4 0.56 0.73 0.76 0.79 0.68

Analysis on the basis of the Matthews Coefficient and the Kappa Statistics is repre-
sented in Tables 10 and 11, and it is noted that the maximum value is 86% for both the
Matthews Coefficient and the Kappa Statistics with model EfficientNetB3 and ET, HGB
classifiers. For model EfficientNetV2B3 with Classifiers ET, the Matthews Coefficient value
is 85% and Kappa Coefficient value is 84%.
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Table 10. Matthews Coefficient Value.

Classifiers/
Pre-Trained Model DT QDA KNN AB GNB LR RF ET HGB MLP

Xception 0.53 0.1 0.4 0.53 0.49 0.43 0.66 0.68 0.78 0.51

VGG19 0.49 0.09 0.48 0.58 0.39 0.42 0.71 0.73 0.73 0.66

VGG16 0.38 0.03 0.43 0.52 0.53 0.28 0.71 0.7 0.64 0.57

ResNet152V2 0.27 0.11 0.25 0.54 0.49 0.26 0.61 0.64 0.58 0.46

ResNet152 0.57 0.23 0.52 0.56 0.39 0.44 0.74 0.69 0.68 0.59

ResNet101V2 0.43 0.06 0.3 0.46 0.33 0.23 0.6 0.64 0.67 0.44

ResNet101 0.6 0.23 0.57 0.64 0.36 0.46 0.73 0.73 0.75 0.55

ResNet50V2 0.31 0.11 0.3 0.48 0.41 0.33 0.59 0.54 0.66 0.52

ResNet50 0.54 0.26 0.51 0.55 0.43 0.51 0.75 0.7 0.7 0.62

NASNetMobile 0.38 0.24 0.4 0.5 0.21 0.32 0.62 0.63 0.64 0.46

NASNetLarge 0.53 0.12 0.39 0.49 0.24 0.57 0.7 0.65 0.68 0.55

MobileNet 0.4 0.02 0.28 0.39 0.4 0.5 0.66 0.69 0.68 0.52

InceptionV3 0.46 0.1 0.41 0.53 0.63 0.36 0.66 0.73 0.63 0.61

InceptionResNetV2 0.44 0.25 0.5 0.49 0.67 0.46 0.66 0.71 0.68 0.56

EfficientNetV2S 0.57 0.06 0.61 0.52 0.58 0.5 0.86 0.83 0.83 0.58

EfficientNetV2M 0.47 0.12 0.14 0.54 0.47 0.34 0.62 0.66 0.66 0.44

EfficientNetV2L 0.46 0.02 0.45 0.38 0.65 0.45 0.71 0.8 0.8 0.59

EfficientNetV2B3 0.49 0.16 0.55 0.7 0.65 0.61 0.76 0.85 0.83 0.76

EfficientNetV2B2 0.53 0.19 0.38 0.54 0.43 0.3 0.67 0.64 0.69 0.47

EfficientNetV2B1 0.55 0.05 0.38 0.6 0.36 0.42 0.64 0.68 0.71 0.52

EfficientNetV2B0 0.43 0.06 0.41 0.49 0.47 0.36 0.62 0.62 0.6 0.63

EfficientNetB7 0.73 0.19 0.43 0.6 0.66 0.53 0.78 0.78 0.73 0.59

EfficientNetB6 0.58 0.13 0.56 0.47 0.54 0.36 0.85 0.78 0.79 0.59

EfficientNetB5 0.43 0.23 0.52 0.67 0.56 0.38 0.76 0.81 0.73 0.6

EfficientNetB4 0.53 0.19 0.61 0.66 0.57 0.43 0.71 0.74 0.76 0.6

EfficientNetB3 0.63 0.13 0.52 0.71 0.8 0.54 0.83 0.86 0.86 0.78

EfficientNetB2 0.59 0.28 0.38 0.48 0.5 0.47 0.63 0.71 0.65 0.54

EfficientNetB1 0.51 0.09 0.47 0.6 0.48 0.5 0.68 0.73 0.7 0.54

EfficientNetB0 0.47 0 0.52 0.59 0.45 0.31 0.68 0.73 0.71 0.54

DenseNet201 0.36 -0.03 0.3 0.6 0.45 0.39 0.66 0.63 0.7 0.44

DenseNet169 0.37 0.06 0.43 0.54 0.35 0.44 0.69 0.64 0.63 0.49

DenseNet121 0.57 0.15 0.54 0.61 0.22 0.42 0.66 0.7 0.73 0.57
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Table 11. Kappa Statistics values.

Classifiers/
Pre-Trained Model DT QDA KNN AB GNB LR RF ET BG MLP

Xception 0.53 0.08 0.39 0.5 0.48 0.4 0.65 0.68 0.78 0.51

VGG19 0.48 0.08 0.47 0.57 0.38 0.39 0.71 0.73 0.73 0.66

VGG16 0.38 0.03 0.42 0.49 0.52 0.25 0.71 0.7 0.64 0.57

ResNet152V2 0.27 0.09 0.24 0.54 0.46 0.23 0.6 0.64 0.58 0.46

ResNet152 0.57 0.18 0.5 0.55 0.35 0.43 0.74 0.69 0.68 0.58

ResNet101V2 0.43 0.05 0.3 0.46 0.3 0.22 0.6 0.64 0.67 0.44

ResNet101 0.6 0.15 0.56 0.63 0.3 0.46 0.73 0.73 0.75 0.54

ResNet50V2 0.31 0.09 0.3 0.47 0.39 0.32 0.58 0.54 0.65 0.52

ResNet50 0.54 0.21 0.5 0.55 0.37 0.49 0.75 0.7 0.7 0.62

NASNetMobile 0.38 0.19 0.39 0.49 0.2 0.32 0.62 0.63 0.64 0.46

NASNetLarge 0.53 0.08 0.39 0.48 0.17 0.55 0.69 0.64 0.67 0.54

MobileNet 0.39 0.01 0.28 0.38 0.34 0.49 0.65 0.69 0.68 0.51

InceptionV3 0.45 0.08 0.41 0.5 0.62 0.33 0.66 0.72 0.63 0.61

InceptionResNetV2 0.44 0.2 0.49 0.47 0.66 0.44 0.66 0.71 0.67 0.56

EfficientNetV2S 0.57 0.04 0.61 0.51 0.56 0.5 0.86 0.83 0.83 0.58

EfficientNetV2M 0.47 0.1 0.14 0.54 0.47 0.28 0.62 0.66 0.65 0.43

EfficientNetV2L 0.46 0.01 0.45 0.36 0.65 0.38 0.71 0.79 0.8 0.59

EfficientNetV2B3 0.49 0.13 0.55 0.7 0.64 0.58 0.76 0.84 0.83 0.76

EfficientNetV2B2 0.53 0.15 0.38 0.53 0.41 0.29 0.67 0.64 0.69 0.46

EfficientNetV2B1 0.55 0.03 0.38 0.59 0.33 0.36 0.64 0.68 0.71 0.49

EfficientNetV2B0 0.43 0.05 0.41 0.49 0.42 0.33 0.62 0.61 0.6 0.63

EfficientNetB7 0.73 0.14 0.42 0.59 0.65 0.51 0.78 0.77 0.73 0.58

EfficientNetB6 0.57 0.1 0.55 0.45 0.51 0.3 0.85 0.78 0.78 0.59

EfficientNetB5 0.42 0.19 0.52 0.67 0.56 0.36 0.76 0.81 0.72 0.59

EfficientNetB4 0.52 0.14 0.61 0.66 0.56 0.4 0.71 0.74 0.76 0.6

EfficientNetB3 0.62 0.1 0.52 0.7 0.8 0.48 0.83 0.86 0.86 0.78

EfficientNetB2 0.59 0.2 0.38 0.47 0.49 0.46 0.62 0.71 0.65 0.54

EfficientNetB1 0.51 0.07 0.47 0.58 0.45 0.5 0.68 0.73 0.69 0.54

EfficientNetB0 0.46 0 0.51 0.58 0.43 0.29 0.68 0.73 0.71 0.53

DenseNet201 0.36 -0.02 0.29 0.59 0.41 0.36 0.66 0.63 0.7 0.44

DenseNet169 0.36 0.05 0.43 0.54 0.32 0.44 0.69 0.64 0.63 0.48

DenseNet121 0.57 0.12 0.54 0.61 0.18 0.39 0.66 0.7 0.73 0.57

Discussion. From the case 1 analysis, it is observed that pre-trained models Efficient-
NetV2B3 and EfficientNetB3 gave better results with classifiers such as ET and HGB.

3.2. Analysis on Segmented Data

To enhance the performance of our model, we apply the segmentation technique
to the same data set. Further, use the same approach to analyse the various parameters.
We observed that after segmentation, our results were improved. Table 12 represents the
analysis of proposed pre-trained models with machine learning and ensemble learning
classifiers using accuracy. The most accurate model was found to be EfficientNetV2B3 with
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HGB and ET, with 94% and 93% accuracy, respectively. Similarly, classifier RF and HFB gave
an accuracy of 91% with mode EffiecientNetB3, respectively. The precision-based value
analysis is shown in Table 13, which is the same as the accuracy model, EfficientNetV2B3,
which achieved 93% accuracy with the ET and 92% precision with the HGB classifier.
EfficientNetB3 with the HGB classifier achieved a 92% precision value.

Table 12. Accuracy on Segmented Data Set.

Classifiers/
Pre-Trained Model DT QDA KNN AB GNB LR RF ET HGB MLP

Xception 0.73 0.37 0.68 0.74 0.81 0.65 0.85 0.86 0.89 0.82

VGG19 0.66 0.48 0.76 0.76 0.68 0.69 0.76 0.77 0.81 0.72

VGG16 0.63 0.4 0.72 0.68 0.68 0.62 0.76 0.79 0.85 0.76

ResNet152V2 0.62 0.37 0.52 0.64 0.52 0.59 0.74 0.71 0.78 0.61

ResNet152 0.69 0.4 0.56 0.76 0.67 0.46 0.77 0.79 0.84 0.76

ResNet101V2 0.68 0.37 0.56 0.66 0.51 0.48 0.69 0.72 0.7 0.67

ResNet101 0.66 0.43 0.68 0.71 0.66 0.59 0.84 0.82 0.87 0.79

ResNet50V2 0.63 0.35 0.52 0.64 0.64 0.51 0.73 0.73 0.76 0.65

ResNet50 0.69 0.36 0.69 0.72 0.79 0.7 0.8 0.81 0.81 0.7

NASNetMobile 0.64 0.39 0.59 0.64 0.64 0.67 0.77 0.8 0.73 0.71

NASNetLarge 0.65 0.45 0.52 0.68 0.38 0.46 0.81 0.83 0.79 0.69

MobileNet 0.55 0.43 0.52 0.74 0.57 0.52 0.77 0.76 0.73 0.67

InceptionV3 0.78 0.45 0.7 0.74 0.82 0.69 0.86 0.87 0.85 0.82

InceptionResNetV2 0.77 0.38 0.66 0.73 0.79 0.68 0.83 0.82 0.87 0.8

EfficientNetV2S 0.72 0.38 0.77 0.74 0.72 0.71 0.84 0.85 0.89 0.82

EfficientNetV2M 0.66 0.48 0.6 0.76 0.78 0.56 0.8 0.85 0.85 0.78

EfficientNetV2L 0.74 0.38 0.64 0.77 0.67 0.62 0.8 0.84 0.87 0.71

EfficientNetV2B3 0.71 0.44 0.71 0.8 0.87 0.77 0.9 0.93 0.94 0.84

EfficientNetV2B2 0.71 0.4 0.64 0.77 0.63 0.59 0.8 0.83 0.85 0.77

EfficientNetV2B1 0.72 0.32 0.68 0.68 0.59 0.68 0.82 0.81 0.77 0.77

EfficientNetV2B0 0.67 0.46 0.66 0.74 0.65 0.53 0.79 0.79 0.79 0.7

EfficientNetB7 0.71 0.47 0.68 0.78 0.81 0.77 0.86 0.87 0.89 0.8

EfficientNetB6 0.82 0.47 0.69 0.76 0.74 0.71 0.86 0.87 0.9 0.81

EfficientNetB5 0.71 0.41 0.72 0.77 0.74 0.7 0.76 0.8 0.81 0.77

EfficientNetB4 0.79 0.45 0.74 0.79 0.72 0.67 0.87 0.9 0.83 0.74

EfficientNetB3 0.73 0.43 0.8 0.8 0.9 0.76 0.91 0.88 0.91 0.85

EfficientNetB2 0.69 0.49 0.68 0.72 0.73 0.71 0.84 0.82 0.85 0.76

EfficientNetB1 0.59 0.41 0.7 0.74 0.72 0.68 0.83 0.84 0.84 0.73

EfficientNetB0 0.79 0.37 0.67 0.71 0.74 0.61 0.82 0.84 0.77 0.74

DenseNet201 0.68 0.46 0.66 0.78 0.72 0.57 0.83 0.83 0.82 0.73

DenseNet169 0.71 0.43 0.54 0.74 0.68 0.67 0.81 0.84 0.82 0.7

DenseNet121 0.71 0.45 0.67 0.74 0.71 0.67 0.76 0.78 0.85 0.77
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Table 13. Precision value on Segmented Data Set.

Classifier/
Pre-Trained Model DT QDA KNN AB GNB LR RF ET HGB MLP

Xception 0.66 0.23 0.58 0.72 0.75 0.45 0.84 0.85 0.87 0.78

VGG19 0.63 0.29 0.71 0.72 0.65 0.63 0.72 0.73 0.77 0.7

VGG16 0.61 0.23 0.68 0.65 0.63 0.46 0.72 0.75 0.82 0.7

ResNet152V2 0.55 0.2 0.4 0.61 0.59 0.56 0.68 0.61 0.76 0.54

ResNet152 0.68 0.26 0.5 0.67 0.54 0.42 0.68 0.69 0.78 0.69

ResNet101V2 0.66 0.23 0.53 0.67 0.62 0.45 0.6 0.63 0.64 0.63

ResNet101 0.59 0.24 0.62 0.67 0.65 0.52 0.82 0.78 0.84 0.77

ResNet50V2 0.6 0.22 0.46 0.61 0.59 0.35 0.66 0.65 0.71 0.59

ResNet50 0.65 0.27 0.63 0.67 0.78 0.7 0.76 0.78 0.76 0.64

NASNetMobile 0.57 0.25 0.54 0.67 0.59 0.6 0.7 0.74 0.7 0.66

NASNetLarge 0.6 0.27 0.56 0.63 0.58 0.37 0.77 0.81 0.73 0.73

MobileNet 0.51 0.15 0.39 0.71 0.54 0.48 0.7 0.7 0.65 0.56

InceptionV3 0.72 0.27 0.65 0.73 0.76 0.47 0.81 0.82 0.81 0.76

InceptionResNetV2 0.7 0.24 0.62 0.71 0.76 0.63 0.78 0.79 0.85 0.74

EfficientNetV2S 0.7 0.23 0.73 0.69 0.69 0.68 0.81 0.81 0.86 0.78

EfficientNetV2M 0.62 0.29 0.54 0.71 0.74 0.51 0.76 0.8 0.8 0.74

EfficientNetV2L 0.69 0.25 0.59 0.72 0.63 0.66 0.74 0.78 0.81 0.66

EfficientNetV2B3 0.68 0.29 0.65 0.8 0.87 0.84 0.88 0.93 0.92 0.81

EfficientNetV2B2 0.68 0.24 0.61 0.73 0.65 0.54 0.76 0.81 0.81 0.73

EfficientNetV2B1 0.67 0.27 0.65 0.68 0.65 0.67 0.76 0.75 0.69 0.73

EfficientNetV2B0 0.63 0.26 0.6 0.71 0.62 0.66 0.71 0.71 0.72 0.64

EfficientNetB7 0.66 0.3 0.63 0.75 0.74 0.67 0.84 0.84 0.89 0.72

EfficientNetB6 0.78 0.27 0.64 0.69 0.67 0.48 0.83 0.85 0.88 0.77

EfficientNetB5 0.66 0.26 0.66 0.72 0.71 0.73 0.69 0.77 0.76 0.7

EfficientNetB4 0.75 0.28 0.7 0.76 0.65 0.45 0.84 0.88 0.79 0.69

EfficientNetB3 0.7 0.26 0.76 0.77 0.93 0.85 0.9 0.88 0.92 0.82

EfficientNetB2 0.66 0.29 0.65 0.68 0.7 0.7 0.79 0.78 0.83 0.72

EfficientNetB1 0.55 0.24 0.66 0.69 0.7 0.65 0.77 0.8 0.8 0.68

EfficientNetB0 0.73 0.22 0.62 0.64 0.69 0.49 0.77 0.79 0.7 0.68

DenseNet201 0.62 0.27 0.63 0.73 0.68 0.5 0.79 0.78 0.76 0.7

DenseNet169 0.66 0.27 0.48 0.7 0.62 0.64 0.77 0.8 0.81 0.63

DenseNet121 0.7 0.24 0.59 0.69 0.51 0.63 0.69 0.71 0.81 0.71

Next, an analysis on the basis of recall rate and F1-Score is represented in
Tables 14 and 15. It is noted that, as measured by precision, EfficientNetV2B3 with the
HGB classifier achieved a 92% recall rate and an F1-Score.
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Table 14. Recall Rate on Segmented Data Set.

Classifier/
Pre-Trained Model DT QDA KNN AB GNB LR RF ET HGB MLP

Xception 0.67 0.38 0.58 0.73 0.73 0.51 0.79 0.79 0.87 0.78

VGG19 0.65 0.49 0.71 0.75 0.65 0.6 0.74 0.75 0.81 0.73

VGG16 0.61 0.38 0.63 0.65 0.64 0.48 0.74 0.76 0.84 0.68

ResNet152V2 0.55 0.33 0.42 0.62 0.59 0.48 0.66 0.61 0.71 0.54

ResNet152 0.7 0.44 0.5 0.67 0.55 0.4 0.67 0.68 0.78 0.65

ResNet101V2 0.67 0.38 0.52 0.68 0.57 0.43 0.6 0.63 0.64 0.63

ResNet101 0.59 0.41 0.61 0.67 0.61 0.5 0.8 0.78 0.84 0.76

ResNet50V2 0.58 0.38 0.44 0.6 0.59 0.4 0.66 0.65 0.71 0.58

ResNet50 0.64 0.46 0.63 0.69 0.71 0.58 0.76 0.78 0.76 0.64

NASNetMobile 0.57 0.43 0.53 0.64 0.58 0.59 0.7 0.74 0.71 0.67

NASNetLarge 0.61 0.4 0.5 0.64 0.47 0.35 0.78 0.78 0.73 0.6

MobileNet 0.5 0.33 0.42 0.73 0.49 0.44 0.68 0.68 0.65 0.56

InceptionV3 0.73 0.45 0.64 0.74 0.76 0.55 0.79 0.82 0.84 0.76

InceptionResNetV2 0.7 0.41 0.62 0.73 0.72 0.55 0.78 0.75 0.83 0.73

EfficientNetV2S 0.73 0.39 0.73 0.7 0.7 0.62 0.82 0.81 0.86 0.8

EfficientNetV2M 0.62 0.51 0.54 0.7 0.75 0.48 0.77 0.81 0.81 0.74

EfficientNetV2L 0.69 0.43 0.59 0.73 0.63 0.54 0.74 0.78 0.79 0.66

EfficientNetV2B3 0.7 0.49 0.66 0.83 0.79 0.62 0.87 0.89 0.92 0.77

EfficientNetV2B2 0.7 0.41 0.59 0.74 0.65 0.53 0.76 0.78 0.81 0.7

EfficientNetV2B1 0.68 0.44 0.65 0.66 0.6 0.67 0.75 0.75 0.69 0.74

EfficientNetV2B0 0.63 0.43 0.59 0.73 0.61 0.51 0.71 0.69 0.72 0.65

EfficientNetB7 0.66 0.51 0.63 0.78 0.72 0.65 0.78 0.82 0.81 0.73

EfficientNetB6 0.79 0.46 0.64 0.7 0.66 0.56 0.83 0.86 0.9 0.75

EfficientNetB5 0.66 0.43 0.66 0.73 0.71 0.58 0.69 0.74 0.77 0.7

EfficientNetB4 0.76 0.48 0.69 0.79 0.64 0.53 0.84 0.88 0.8 0.69

EfficientNetB3 0.72 0.44 0.76 0.78 0.83 0.61 0.89 0.87 0.89 0.79

EfficientNetB2 0.67 0.49 0.66 0.68 0.72 0.66 0.8 0.79 0.8 0.71

EfficientNetB1 0.53 0.4 0.64 0.69 0.72 0.61 0.77 0.78 0.82 0.68

EfficientNetB0 0.74 0.37 0.61 0.63 0.7 0.49 0.77 0.8 0.7 0.67

DenseNet201 0.62 0.46 0.61 0.74 0.7 0.48 0.8 0.79 0.76 0.72

DenseNet169 0.66 0.44 0.48 0.71 0.61 0.62 0.74 0.76 0.75 0.63

DenseNet121 0.66 0.4 0.59 0.7 0.57 0.6 0.69 0.71 0.81 0.72
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Table 15. F1-Score on Segmented Data Set.

Classifier/
Pre-Trained Model DT QDA KNN AB GNB LR RF ET HGB MLP

Xception 0.66 0.28 0.58 0.7 0.73 0.47 0.8 0.81 0.87 0.77

VGG19 0.63 0.37 0.71 0.72 0.64 0.6 0.72 0.73 0.78 0.7

VGG16 0.59 0.28 0.63 0.64 0.63 0.44 0.72 0.74 0.82 0.69

ResNet152V2 0.54 0.24 0.4 0.6 0.52 0.46 0.67 0.6 0.73 0.54

ResNet152 0.67 0.31 0.5 0.67 0.53 0.38 0.68 0.68 0.78 0.66

ResNet101V2 0.65 0.28 0.52 0.64 0.5 0.42 0.6 0.63 0.64 0.62

ResNet101 0.59 0.3 0.61 0.66 0.6 0.5 0.81 0.78 0.84 0.76

ResNet50V2 0.58 0.27 0.44 0.6 0.59 0.36 0.66 0.65 0.71 0.58

ResNet50 0.64 0.3 0.63 0.67 0.72 0.57 0.76 0.78 0.76 0.64

NASNetMobile 0.57 0.31 0.53 0.62 0.57 0.59 0.7 0.74 0.69 0.66

NASNetLarge 0.6 0.3 0.52 0.63 0.39 0.26 0.77 0.79 0.73 0.61

MobileNet 0.49 0.2 0.4 0.71 0.47 0.42 0.68 0.69 0.65 0.55

InceptionV3 0.72 0.34 0.64 0.71 0.76 0.5 0.8 0.82 0.82 0.76

InceptionResNetV2 0.7 0.29 0.61 0.7 0.73 0.52 0.78 0.76 0.84 0.73

EfficientNetV2S 0.7 0.29 0.73 0.69 0.69 0.62 0.81 0.81 0.86 0.79

EfficientNetV2M 0.61 0.37 0.54 0.7 0.75 0.48 0.76 0.81 0.81 0.74

EfficientNetV2L 0.68 0.3 0.59 0.72 0.62 0.54 0.74 0.78 0.8 0.66

EfficientNetV2B3 0.68 0.35 0.66 0.78 0.81 0.59 0.87 0.9 0.92 0.79

EfficientNetV2B2 0.68 0.3 0.6 0.73 0.6 0.53 0.76 0.79 0.81 0.71

EfficientNetV2B1 0.67 0.27 0.65 0.65 0.57 0.64 0.75 0.75 0.69 0.73

EfficientNetV2B0 0.63 0.33 0.59 0.71 0.6 0.42 0.71 0.7 0.72 0.64

EfficientNetB7 0.66 0.37 0.63 0.75 0.73 0.65 0.8 0.83 0.82 0.73

EfficientNetB6 0.78 0.34 0.64 0.69 0.66 0.52 0.83 0.85 0.89 0.76

EfficientNetB5 0.66 0.32 0.66 0.72 0.7 0.58 0.69 0.75 0.76 0.7

EfficientNetB4 0.75 0.35 0.69 0.76 0.64 0.48 0.84 0.88 0.79 0.69

EfficientNetB3 0.7 0.32 0.76 0.76 0.85 0.58 0.9 0.87 0.9 0.8

EfficientNetB2 0.65 0.36 0.65 0.67 0.7 0.67 0.8 0.78 0.81 0.71

EfficientNetB1 0.53 0.3 0.65 0.68 0.69 0.61 0.77 0.79 0.81 0.68

EfficientNetB0 0.73 0.27 0.61 0.63 0.69 0.46 0.77 0.8 0.7 0.67

DenseNet201 0.62 0.34 0.6 0.73 0.69 0.48 0.79 0.79 0.76 0.7

DenseNet169 0.66 0.32 0.48 0.7 0.61 0.62 0.75 0.78 0.76 0.62

DenseNet121 0.67 0.3 0.59 0.69 0.53 0.6 0.69 0.71 0.81 0.71

Analysis on the basis of Matthews Coefficient and Kappa Statistics is represented in
Tables 16 and 17, and it is noted that the maximum values were 90% for both Matthews
Coefficient and Kappa Statistics with EfficientNetV2B3 for HGB classifiers.
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Table 16. Matthews Coefficient on Segmented Data Set.

Classifier/
Pre-Trained Model DT QDA KNN AB GNB LR RF ET HGB MLP

Xception 0.57 0.08 0.48 0.62 0.69 0.43 0.76 0.78 0.83 0.72

VGG19 0.48 0.24 0.62 0.63 0.52 0.5 0.63 0.64 0.71 0.58

VGG16 0.44 0.1 0.54 0.51 0.49 0.4 0.61 0.67 0.77 0.6

ResNet152V2 0.39 -0.02 0.23 0.45 0.34 0.3 0.58 0.53 0.64 0.37

ResNet152 0.54 0.17 0.29 0.6 0.47 0.1 0.62 0.65 0.74 0.6

ResNet101V2 0.52 0.08 0.3 0.52 0.36 0.15 0.5 0.55 0.52 0.49

ResNet101 0.45 0.15 0.48 0.56 0.49 0.32 0.74 0.71 0.79 0.66

ResNet50V2 0.44 0.06 0.24 0.45 0.42 0.17 0.57 0.57 0.61 0.44

ResNet50 0.53 0.18 0.5 0.57 0.66 0.51 0.67 0.69 0.69 0.52

NASNetMobile 0.43 0.15 0.34 0.5 0.44 0.46 0.63 0.68 0.59 0.56

NASNetLarge 0.45 0.12 0.22 0.5 0.25 0.09 0.7 0.72 0.66 0.5

MobileNet 0.31 -0.01 0.22 0.61 0.33 0.21 0.62 0.6 0.58 0.46

InceptionV3 0.65 0.17 0.54 0.63 0.71 0.49 0.78 0.79 0.77 0.71

InceptionResNetV2 0.63 0.11 0.47 0.6 0.66 0.48 0.73 0.71 0.8 0.67

EfficientNetV2S 0.58 0.1 0.62 0.6 0.57 0.53 0.74 0.76 0.83 0.71

EfficientNetV2M 0.48 0.25 0.35 0.6 0.65 0.29 0.68 0.76 0.76 0.64

EfficientNetV2L 0.6 0.15 0.42 0.64 0.48 0.4 0.68 0.74 0.79 0.54

EfficientNetV2B3 0.56 0.25 0.55 0.72 0.8 0.62 0.85 0.88 0.9 0.74

EfficientNetV2B2 0.56 0.11 0.41 0.64 0.48 0.33 0.67 0.72 0.76 0.62

EfficientNetV2B1 0.57 0.16 0.49 0.54 0.44 0.52 0.71 0.69 0.62 0.63

EfficientNetV2B0 0.47 0.18 0.45 0.62 0.47 0.32 0.65 0.65 0.66 0.53

EfficientNetB7 0.55 0.29 0.5 0.67 0.69 0.62 0.78 0.79 0.83 0.68

EfficientNetB6 0.71 0.21 0.51 0.61 0.58 0.53 0.78 0.8 0.85 0.69

EfficientNetB5 0.55 0.18 0.55 0.63 0.6 0.53 0.61 0.67 0.69 0.62

EfficientNetB4 0.67 0.19 0.6 0.69 0.55 0.45 0.8 0.85 0.73 0.59

EfficientNetB3 0.58 0.17 0.67 0.7 0.85 0.61 0.86 0.81 0.86 0.76

EfficientNetB2 0.52 0.26 0.5 0.57 0.59 0.53 0.75 0.71 0.76 0.61

EfficientNetB1 0.37 0.12 0.51 0.6 0.59 0.48 0.73 0.74 0.75 0.57

EfficientNetB0 0.67 0.06 0.47 0.55 0.59 0.35 0.71 0.75 0.62 0.59

DenseNet201 0.49 0.2 0.48 0.65 0.56 0.32 0.73 0.73 0.71 0.59

DenseNet169 0.54 0.2 0.28 0.6 0.5 0.47 0.69 0.74 0.71 0.53

DenseNet121 0.54 0.16 0.47 0.6 0.53 0.46 0.61 0.64 0.76 0.63
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Table 17. Kappa Statistics on Segmented Data Set.

Classifier/
Pre-Trained Model DT QDA KNN AB GNB LR RF ET HGB MLP

Xception 0.57 0.06 0.47 0.61 0.69 0.39 0.75 0.77 0.83 0.71

VGG19 0.47 0.19 0.61 0.62 0.51 0.49 0.62 0.64 0.7 0.57

VGG16 0.43 0.08 0.54 0.51 0.49 0.34 0.61 0.67 0.76 0.6

ResNet152V2 0.39 -0.02 0.22 0.45 0.31 0.29 0.58 0.53 0.63 0.37

ResNet152 0.53 0.13 0.29 0.6 0.46 0.09 0.62 0.65 0.74 0.59

ResNet101V2 0.51 0.06 0.3 0.5 0.31 0.14 0.5 0.55 0.52 0.48

ResNet101 0.45 0.12 0.48 0.55 0.46 0.31 0.74 0.71 0.79 0.65

ResNet50V2 0.43 0.05 0.24 0.44 0.42 0.16 0.57 0.57 0.61 0.44

ResNet50 0.52 0.13 0.5 0.57 0.65 0.49 0.67 0.69 0.69 0.52

NASNetMobile 0.43 0.12 0.33 0.47 0.42 0.46 0.63 0.68 0.59 0.55

NASNetLarge 0.45 0.08 0.21 0.5 0.18 0.04 0.69 0.72 0.66 0.48

MobileNet 0.3 0 0.22 0.6 0.29 0.19 0.61 0.6 0.58 0.45

InceptionV3 0.65 0.13 0.53 0.61 0.71 0.47 0.78 0.79 0.77 0.71

InceptionResNetV2 0.63 0.09 0.46 0.59 0.65 0.45 0.73 0.7 0.79 0.67

EfficientNetV2S 0.57 0.08 0.62 0.6 0.56 0.52 0.74 0.76 0.83 0.71

EfficientNetV2M 0.48 0.2 0.35 0.6 0.64 0.28 0.68 0.76 0.76 0.64

EfficientNetV2L 0.59 0.12 0.42 0.63 0.48 0.35 0.68 0.74 0.79 0.54

EfficientNetV2B3 0.56 0.2 0.55 0.7 0.79 0.6 0.85 0.88 0.9 0.74

EfficientNetV2B2 0.55 0.09 0.41 0.64 0.45 0.32 0.67 0.72 0.76 0.62

EfficientNetV2B1 0.57 0.11 0.49 0.52 0.4 0.5 0.71 0.69 0.62 0.63

EfficientNetV2B0 0.47 0.14 0.45 0.61 0.46 0.23 0.65 0.65 0.66 0.52

EfficientNetB7 0.55 0.23 0.5 0.66 0.69 0.61 0.77 0.79 0.82 0.68

EfficientNetB6 0.71 0.17 0.5 0.61 0.58 0.5 0.78 0.8 0.85 0.69

EfficientNetB5 0.55 0.15 0.55 0.63 0.59 0.49 0.61 0.67 0.69 0.62

EfficientNetB4 0.67 0.16 0.59 0.67 0.55 0.43 0.8 0.85 0.73 0.59

EfficientNetB3 0.58 0.13 0.67 0.69 0.84 0.58 0.86 0.81 0.86 0.76

EfficientNetB2 0.52 0.2 0.5 0.57 0.59 0.53 0.74 0.71 0.76 0.6

EfficientNetB1 0.36 0.09 0.51 0.6 0.58 0.47 0.73 0.74 0.75 0.57

EfficientNetB0 0.66 0.05 0.47 0.54 0.59 0.33 0.71 0.74 0.62 0.58

DenseNet201 0.49 0.16 0.47 0.65 0.56 0.31 0.73 0.73 0.71 0.59

DenseNet169 0.54 0.16 0.27 0.6 0.5 0.46 0.69 0.74 0.7 0.52

DenseNet121 0.53 0.12 0.47 0.6 0.52 0.45 0.61 0.64 0.76 0.63

From the case 2 analysis, it is observed that pre-trained model EfficientNetV2B3,
EfficientNetB3, and EfficientNetB4 gave better results with classifiers such as ET and HGB.

3.3. Comparative Discussion

In comparison to all mentioned algorithms, maximum accuracy resulted from the
approaches EfficientNetV2B3, EfficientNetB3, EfficientNetV2S, and EfficientNetB6 with
classifiers such as RF, ET and HGB classifier, and it was near 91 percent. However, by
implementing comparative analysis with the segmented dataset, the highest accuracy was
94 and 93 percent with the EfficientNetV2B3 model with HGB, the ET classifier. Similarly,
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the other efficiency parameters such as precision, recall rate, F1-Score, and Matthews and
Kappa Coefficients achieved their highest values with the same models and classifiers
discussed in Table 18.

Table 18. Comparative analysis on normal and segmented data.

D
ata

Pre-Trained
M

odel

C
lassifier

A
ccuracy

Precision

R
ecall

F1-Score

M
atthew

C
oefficient

K
appa

Statistics

Normal
Data

EfficientNetB3 HGB 0.91 0.90 0.89 0.90 0.86 0.86

EfficientNetV2B3 HGB 0.89 0.92 0.86 0.89 0.83 0.83

Segmented
Data

EfficientNetV2B3 HGB 0.94 0.92 0.92 0.92 0.90 0.90

EfficientNetV2B3 ET 0.93 0.93 0.89 0.90 0.88 0.88

4. Conclusions

Rice leaf diseases have a devastating effect on global food security and are the primary
threats to agricultural progress around the world. There may be no harvest at all if the
leaf disease is severe [41]. To ensure the productivity of rice products, the prompt and
precise identification of rice leaf diseases is essential. For this reason, it is very important
to look for quick, less expensive, and accurate ways to identify rice leaf disease cases. In
solving the majority of the technological issues related to the classification of leaf diseases,
pre-trained transfer learning algorithms have demonstrated excellent performance. In this
study, we proposed an analysis of various pre-trained models with different classifiers
for the detection of rice leaf diseases. The three major rice leaf diseases, BB, BS, and blast,
are considered for this research. Image-based rice leaf disease data set was collected and
pre-processed according to algorithmic requirements. Initially, 32 pre-trained models were
used to extract features, and then the images were classified using various machine and
ensemble learning classifiers. Images are enhanced by the segmentation process, and the
results are compared on various performance parameters such as accuracy, precision, recall
rate, F1-Score, Matthews Coefficient, and Kappa Statistics. Experiments were performed
on both the normal image data set and the segmented image data set. With the pre-trained
models EfficientNetB3, EfficientNetB6, EfficientNetV2S, and EfficientNetV2B3 with an
Extra Tree and HGB classifier, the proposed model achieves 91% accuracy on a normal data
set and 94% accuracy on a segmented data set. In the future, we will deploy these results
with mobile devices to recognise the rice leaf disease automatically, and also this model
could be used to classify other related crops in agriculture.
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Abbreviation

Abbreviation Definition Abbreviation Definition
ML Machine Learning GNB Gaussian Naïve Bayes
DL Deep Learning K-NN K-Nearest Neighbour
DCNN Deep CNN LR Logistic Regression
FS False Smut SVM Support Vector Machine
BS Brown Spot DT Decision Tree
SB Sheath Blight RF Random factor
SB Stem Borer QDA Quadratic Discriminant Analysis
LS Leaf Smut AB Ada-boost
SR Sheath Rot ET Extra Tree
FS False Smut HGB Histogram Gradient boosting
BB Bacterial Blight GB Gradient Boosting
MLP Multi-LayerPreceptron FN False Negative
TP True Positive MC Matthews Coefficient
TN True Negative KP Kappa Statistics
FP False Positive YOLO You only look once
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