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Abstract: Ensuring food security requires the publication of data in a timely manner, but often this
information is not properly documented and evaluated. Therefore, the combination of databases from
multiple sources is a common practice to curate the data and corroborate the results; however, this also
results in incomplete cases. These tasks are often labor-intensive since they require a case-wise review
to obtain the requested and completed information. To address these problems, an approach based
on Selenium web-scraping software and the multiple imputation denoising autoencoders (MIDAS)
algorithm is presented for a case study in Ecuador. The objective was to produce a multidimensional
database, free of data gaps, with 72 species of food crops based on the data from 3 different open
data web databases. This methodology resulted in an analysis-ready dataset with 43 parameters
describing plant traits, nutritional composition, and planted areas of food crops, whose imputed data
obtained an R-square of 0.84 for a control numerical parameter selected for validation. This enriched
dataset was later clustered with K-means to report unprecedented insights into food crops cultivated
in Ecuador. The methodology is useful for users who need to collect and curate data from different
sources in a semi-automatic fashion.

Keywords: web scraping; denoising autoencoders; plant traits; food security; Ecuador

1. Introduction

Ensuring food security is a task that requires the integration of the will of the agricul-
tural and political sectors [1]. Informed decision making depends on access to relevant data
in a timely and open manner. Unfortunately, in countries such as Ecuador, policies regard-
ing open data are ambiguous and access to government datasets is commonly restrictive to
users. Bureaucratic processes required to obtain permission for the use of data can make
the data unsuitable and unreliable for scientific purposes. In addition, the documentation
of the methodologies and validation procedures of public data is occasionally incomplete.
Therefore, merging these datasets with other non-government data sources is frequently
practiced to fill data gaps and validate the original content [2]. As this information is highly
dependent on web resources, such a task is often labor-intensive. A case-wise review is
required to search, retrieve, and organize the data [3].

Combining different sources is a further challenge. Often, the use of incomplete
databases is inevitable, and procedures to impute them can be counterproductive if they
are based on mean substitution, constant values, or moving windows [4]. This makes it
difficult for researchers and decision makers to obtain reliable information to support food
security in the country, which also depends on information from other resources such as
water availability [5].

Advances in data-enrichment techniques today offer different approaches to enhance
raw data with additional information and make it more valuable and useful for analysis or
decision making. Artificial Intelligence (AI) and machine learning are useful, for example,
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to identify patterns and relationships in large datasets. On the other hand, natural language
processing can extract information from textual sources [6], while geocoding can add
geographical location data to enable location-based analysis [7]. Finally, access to a wide
range of third-party data sources helps users from a variety of disciplines to create more
complete datasets [8–10]. Of all these approaches, it is the latter that is of interest in this
research, as it is often assumed that third-party data sources appear ready for download
and analysis. However, the reality is that it is sometimes difficult to take advantage of them,
due to challenges related to data extraction, data quality, data integration, and data security,
among others [11]. Although there are studies documenting procedures for automating
web data collection (or web scraping) and data analysis, these focus more on computer
science, data science, and business intelligence [12] than on issues such as food safety.
For example, a Google academic search gives us 9000 documents when the terms “web
scraping” and “business” are combined, but less than 500 documents when the latter is
replaced by “food security”. Previous studies recognize the importance of automating the
process of combining different datasets to obtain relevant information for food security [13].
Nonetheless, most of them automatize the process only partly or focus only on market
data [14,15]. Hence, there is a need to investigate and test these new approaches and
specialized methods in areas; this is perhaps of less interest to the scientific community but
is still undoubtedly very important for decision making in the face of challenges such as
climate change.

To cope with this research gap, an approach based on web scraping and denoising
autoencoders to curate food security datasets is presented in this work. This allows for
automating the extraction of data to process it in a database [16] and to impute its missing
data cases with a deep learning-based technique called multiple imputation denoising
autoencoders (MIDAS) [17] to estimate specific values to replace the missing ones [18]. This
approach can reduce the time needed to enrich the data but also curate it, outperforming
other human-aided procedures in data collection [19] and other non-deep learning data
imputation techniques [20]. This approach can be of particular use in the context of food
security when the aim is to study the relationship between plant traits and the nutritional
composition of several crops compiled from different sources, but, when collated, missing
data usually impede the analysis. To illustrate how this problem can be addressed with
the proposed approach, in this study, the Survey of Surface and Continuous Agricultural
Production (ESPAC) of Ecuador [21] was used to combine it with information from two
other open data sources. The first one was the ECOCROP web database, a website that
provides information on plant characteristics and crop environmental requirements for
more than 2000 plant species [22]. The second, called the International Food Composition
Database (FUNIBER), is also a website that describes the main nutrients in foods based on
different nutritional composition tables for eight countries, including Ecuador [23]. This
research aims to produce a multidimensional database, free of data gaps, that helps to
cluster food crops based on their nutritional contents and describe their plant traits and
planted areas in Ecuador.

To meet the objectives of this work, we first describe a brief theory of the methods
applied in the proposed approach and then explain its implementation. The methods’
results are then presented using graphs and tables and their advantages and limitations
are discussed, along with the issues raised by open data policies. We conclude with some
recommendations for users who need to collect and preserve data from different sources in
a semi-automatic way.

2. Theoretical Framework
2.1. Web Scraping: Concepts, Methods, and Limitations

Web scraping is defined as the process of extracting data from specific websites to
create or enrich databases to enable data analysis. In this way, a wide range of structured,
semi-structured, and non-structured data types from web sites can be collected, making it
a valuable tool for research and analysis [24]. Although web scraping can help to collect
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large amounts of data, one of its weaknesses is that it relies heavily on the selection of data
sources (whose selection can also be biased) to ensure that the quality and reliability of
the data are acceptable [25]. There are multiple methods for its application, but the most
popular are:

• HTML and XML parsing, which uses a software program that reads in the HTML or
XML code and extracts specific data elements from a website, such as tags, elements,
attributes, and text content [26]. Of the two, XML is more flexible as it is not tied to
specific formats as is HTML.

• Application programming interface (API) scraping, which involves accessing the APIs
to extract data, usually in a structured format and without the need to develop code to
parse HTML [27]. As the number of APIs available is vast, it is recommended to use
platforms, such as Postman [28], for designing, testing, and managing APIs.

• Automated browsing is another method, useful for collecting dynamically generated
data from a website. It consists of software to navigate a website and extract data [29].

The choice of any of these methods will depend on the goals and requirements of
the web-scraping project. However, these tools, as mentioned above, have limitations in
terms of data reliability, as well as legal and ethical aspects [30], since copyright can be
infringed if the databases used in web scraping are not open or used for malicious purposes.
Moreover, technical challenges cannot be ignored as web scraping can be complex, requiring
specialized knowledge of programming languages and web technologies.

2.2. Data Imputation and the MIDAS Algorithm

Data imputation is a technique used to replace missing or incomplete data values
with estimated values to preserve data integrity. This is a common procedure in data
analysis workflows, which assumes that the omission is related to and can be explained by
the observed data. Although there are different imputation techniques that replace data
gaps with measures of central tendency (i.e., mean, median, and mode), as well as others
based on statistical models (e.g., regression models, K-means, and PCA) [31], here we will
focus on one of the most novel ones called MIDAS, as it uses deep learning and has been
well received by the scientific community, especially for data imputation in multivariate
datasets [32–34]. This algorithm is based on denoising autoencoders (DAs) [35,36], which
consist of a deep neural network of interconnected nodes organized in layers that are
commonly used to remove noise from data by reconstructing them from noisy inputs. In
this sense, MIDAS uses autoencoders to impute missing values in a dataset by training a
neural network to reconstruct the complete data matrix from the incomplete dataset D. It
does this by incorporating D into the neural network through an input layer, processing
it through nodes in one or more hidden layers, and returning it through nodes as output
layers as M complete datasets.

To initiate this process, the algorithm prepares D for the training phase, “one-hot”
encoding categorical variables, and rescaling numerical variables between 0 and 1 to
improve the network convergence. Then, a missingness indicator matrix R is built for D to
distinguish the missing Dmiss from the observed Dobs data. During the training phase of
the algorithm, the next steps are performed:

1. D and R are shuffled and divided into mini-batches;
2. Additional missingness to R is introduced;
3. Half of the nodes in hidden layers are corrupted following the standard dropout

implementations [37];
4. A forward pass is performed to initiate the computation of the output values, deriving

the reconstruction error on the predictions of the originally observed corrupted values
Xobs by employing the root mean square error and cross-entropy loss functions for
continuous and categorical variables;

5. The loss values are aggregated into a single term and backpropagate DA, using the
resulting error gradients to adjust the weights for the next epoch.
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Once the training is complete, D is passed into DA to reconstruct the corrupted values
and derive M by replacing Dmiss with predictions of the originally missing values. Accord-
ing to the literature, MIDAS has demonstrated increased accuracy over other algorithms;
flexibility for imputing categorical, logical, or numerical data types; reduced bias with
noisy data; and scalability [34]. It innovates with respect to other implementations of
DA by considering missing values as part of the overall data corruption, minimizing the
reconstruction error on the original observed portion. Moreover, it has a reduced risk of
overfitting as it introduces the dropout technique during the training phase [17].

However, MIDAS depends on certain circumstances to function effectively, and these
depend mainly on the assumptions related to multiple imputation. For example, missing
data not at random (MNAR) is a condition in which the missing data mechanism is non-
random and it is not predictable from other variables in the dataset [38]. Then, if the data
are not MNAR, it is not guaranteed that MIDAS can be biased. Moreover, unconventional
data structures such as non-exchangeable data, multilevel data, and spatially lagged data
are also potentially not well suited to MIDAS. However, it is said that it may perform better
than other algorithms even with these data structures; in addition, given its autoencoder-
based architecture, it has been [17] shown to be able to properly impute datasets with
missingness levels of 20–40% [39]. Finally, the drawbacks associated with neural network
methods, such as complex hyperparameter fitting, the propensity for overfitting (especially
in sparse datasets), the dependence on large datasets, limited interpretability of the model,
and demanding computational resources, are potentially unavoidable and should be taken
into account before using MIDAS [40,41].

3. Materials and Methods
3.1. Agricultural Survey Processing and Construction of Food Crops Database

Since 2014, the National Institute of Statistics and Census of Ecuador (INEC) has
published a survey to gather agricultural statistics. Referred to as ESPAC, this dataset
consists of 20 individual databases describing land use, cultivation areas, livestock and
poultry numbers, and land tenure and work in the production units. Among these, the
land use database is the most informative, as it reports the planted areas of 107 food crops,
along with other crops related to the agroindustry. For this study, the latest survey, which
was conducted in 2021, was used. To process it, the food crop data were filtered out and
exported to the R language [42], which was used to implement the entire methodology
and to generate plots to represent the data using the ggplot and reshape R libraries [43,44].
All datasets collected and processed, as well as the scripts developed in this work, are
available in a GitHub repository for readers interested in reproducing this approach (see
data availability statement).

The ESPAC structure was designed using a sampling frame recommended by the Food
and Agriculture Organization (FAO) of the United Nations. Because this survey structure
is complex, the survey R library was used to conduct the analysis [45]. This tool is designed
to compute survey estimates in complex survey designs using two functions. The first
one, called svydesign, helps to define the survey design by identifying its strata, sampling
weights, and finite population correction. In the case of ESPAC, only the sampling weights
were available, so we applied them to the svydesign function for each available food crop.
The second function, called svyby, calculates statistics based on subsets and factors. As
the ESPAC reference manual warns users that estimates are only valid for the provincial
level, the planted areas for each food crop were calculated for each province. To check that
the above procedure was correct, first the food crop tables published by INEC as official
figures were reproduced. They use data from different databases focusing on 15 permanent
crops and 17 non-permanent crops of commercial interest. After obtaining similar values,
we proceeded to process the 107 crops included in the land use database. To observe their
differences from the INEC official figures, tables of these permanent and non-permanent
food crops were extracted according to their codes to match with those derived from the
land use database. The two figures were differentiated by first adding their provincial
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planted areas to the national totals, assessing their similarities, and noting discrepancies.
This was necessary to validate the results because, in the ESPAC documentation, it is not
specified whether the land use database is valid for deriving planted areas of food crops.

3.2. Web Scraping the Characteristics of Food Crops, Their Environmental Requirements, and
Nutritional Composition

To automate data collection from the web databases, the names of the food crops
derived from ESPAC were synonymized with their scientific names. This allowed for
searches in the ECOCROP database, as retrieving crop information required this nomination.
Since some crops are listed as different species but, according to taxonomy, belong to only
one species (e.g., Colocasia esculenta was linked to two different crops, i.e., “papa china” and
“malanga”), they were merged to follow the taxonomical convention. Similarly, some crops
referring to different parts of the plant were also merged to avoid duplicates. After this step,
a routine with Selenium software [46] was developed. Selenium is open-source software
for automated browsing and web scraping, and has an implementation in the R language,
called the Rselenium R library [47]. This software requires specifying a browser to start the
Selenium server. In our case, Google Chrome version 105.0.5195.19 was used. By specifying
the scientific name of the crop and the code used by ECOCROP to index it, it was possible
to navigate to the web page where the plant data sheet was stored. Thus, by pasting the
root name of the web page, i.e., “https://gaez.fao.org/pages/ecocrop” (accessed on 22
March 2023) and its crop code, a list of links to each crop was obtained. These links were
browsed and parsed automatically to extract their XML/HTML content using the XML
library [48]. XML software includes a function called readHTMLTable, which allows for the
detection of data components, such as header labels, table names, and columns, to store
the information as a database. As the ECOCROP data sheets included 25 different plant
parameters, the numerical data (i.e., 9 parameters) were preferred to the nominal data,
because the nominal categories were not clearly differentiated in the records and rather
merged with other information, which complicated their analysis. Thus, 142 tables were
collected for later integration with the ESPAC dataset.

After this processing, the FUNIBER database was examined. Following the proce-
dure mentioned above, a list of links was obtained by pasting the web page root name:
“https://www.composicionnutricional.com/foods/view/EC-” (accesed on 23 September
2022) to each of the food item codes described in the Ecuadorian database. These links
were browsed and parsed to extract their nutritional content tables, with a total sum of
510 tables. Each of the collected tables was structured in 26 numerical parameters related to
nutritional content, of which 17 were valid since the rest had zero or almost zero variance.
After compiling and integrating the tables into a single database, the food crops were
collated. For averaging the multiple nutrient content tables, their values were averaged
using the median, which was chosen as a conservative measure [49] since some nutrient
content tables included food items that were cooked or processed, and their values varied.

3.3. Missing Data Imputation with MIDAS of the Data-Enriched Food Crops Database

With the data-enriched food crops database, the next step was to fill in the missing
data with the MIDAS algorithm, which has an implementation in the R language called
the rMIDAS library [50]. To apply it, the enriched food crop database was first formatted,
ensuring that the numerical columns were not characters. Other columns referring to dupli-
cate variables and non–informative parameters, such as data identifiers and unstructured
labels, were then filtered out. Since it was deemed necessary to ensure the performance
of the algorithm, a test parameter was created by corrupting the carbohydrate contents
by introducing 43 additional null values from the 8 that occurred in the original dataset.
This parameter was selected because of its numerical format and this made it possible to
compare the results between the original and corrupted values after the data imputation
and to evaluate the algorithm independently of its validation procedure. Following this,
the function convert was applied. This function allows for the reshaping of the database and

https://gaez.fao.org/pages/ecocrop
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prepares it for the training phase, showing which parameters were “one-hot” encoded or
scaled. To build and run the MIDAS algorithm on the supplied missing data, the function
train allows us to control this process. The calibration parameters that were not defined by
default were:

• Training epochs, which defines the number of forward passes. It was set to 100 and had a
processing time of 10 to 2111 s, depending on the complexity of the network architecture.

• Layer structure, which specifies the number of nodes in each layer of the network. A
total of 3 network architectures were tested: (1) the default mode, which consists of
3 layers, each with 256 nodes; (2) following Mac et al. [51], a deep autoencoder network
of 5 layers with nodes of sizes: 128, 40, 8, 40 and 128; and (3) an empirical approach
using 2 layers, each with 72 nodes.

Since elevating the number of parameters may result in an improved generalization [52],
the three network architectures were multiplied by the factor results of the logarithmic
sequence: 1, 8, 27, 64, and 125. Therefore, MIDAS was run 5 times per network architecture,
except in default mode, where factor 125 was omitted, as it exceeded the available comput-
ing resources (i.e., Intel core i7-8700 CPU, 40 GB RAM). After training, the complete function
was applied to impute the missing values and retrieve a complete dataset. By default,
10 datasets were built, so this value was maintained. To identify the one that was more
accurate, the test parameter (i.e., predicted carbohydrate contents) was compared with
the one in the original dataset to derive the R-square and select the maximum among the
10 datasets predicted by MIDAS. The last step was to compare the network architectures
and their multiplied factors to decide which achieved the highest R-square. Its complete
dataset was then used in food crop clustering and reporting.

3.4. Food Crops Clustering and Report

The completed dataset was applied to cluster food crops based on their nutritional
composition. For this, the K-means algorithm [53], implemented in the stats R base library,
was used as it performed better than the other methods tested [53], but also because the
nutritional composition parameters were all numeric. The K-means allows for partitioning n
observations into k clusters in which each observation belongs to the cluster with the nearest
mean. To define k, the elbow method [54], implemented in the factoextra R library [55],
was applied. It is based on a graph showing the sum of the squared distances between the
observations and clusters on the Y-axis, followed by the sum of the squared distances for
all clusters (a metric called the total within the sum of the square), and on the X-axis, the k
clusters to identify the “elbow point”. The elbow point is the point at which the value starts
to decrease slowly and corresponds to the best k number. After observing the plot (Figure 1)
and identifying that after 3 clusters, it became flat, the food crops were clustered. These
clusters had sizes of 5, 53, and 13, which explain 76.4% of the total variance of the database.
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4. Results
4.1. Database Integration after Web Scraping

The simplified ESPAC database resulted in 948 observations and 6 features, describing
the common names, food crop identification codes, and their planted areas, disaggregated
by provinces. After merging crop varieties to have them listed by plant species, the number
of food crops was reduced from 107 to 89. As a result, from the web scraping from the
ECOCROP database, 26 plant parameters were obtained for 72 food crops and collected in
~216 s, as each link was web scraped at 3 s delay intervals to avoid congesting the server.
The categorical parameters obtained included information about the plant physiology, life
form, habit, vegetable category, life span, planting attributes, plant uses, light requirements,
soil characteristics (e.g., depth, texture, fertility, salinity, and drainage), and Koppen–Geiger
climate types. The numerical parameters described the optimum crop requirements in nine
columns, including temperature, rainfall, soil pH, early-growth killing temperature, and
crop cycle duration. Since the FUNIBER server was slower to retrieve links, the interval
applied between link web scraping was 5 s, resulting in a data collection time of ~2250 s.
The information collected describes the nutritional content per 100 g of food, specifically:
carbohydrates, monounsaturated and polyunsaturated fats, saturated fats, fiber, energy,
protein, fat, calcium, iron, phosphorus, thiamine, vitamins A and B, pyridoxine, ascorbic
acid, and tocopherol content. The integration of the information that was obtained for
the same crop ranged from 1 to 18 tables, but in other cases, it resulted in no tables. The
latter occurred for 8 out of 72 available food crops, and thus, data were obtained for 64
crop species. As a result of the integration of all databases, the food crops, their plant
characteristics and environmental requirements, and their average nutritional contents were
summarized in 49 parameters. However, of the information on the nutritional contents,
11.1% had missing values, while for the rest of the parameters, this reached 4.9%.

4.2. MIDAS Imputation and Accuracy

As mentioned in Section 3.3, duplicate variables and other non–informative parameters
were filtered out before MIDAS imputation. The duplicated parameters were mostly
categorical versions of quantitative variables such as soil fertility, salinity, and texture, which
do not improve results. This resulted in 39 target parameters to be used with the rMIDAS
functions, where 14 corresponded to nutrient contents and the rest to plant characteristics
and environmental requirements. After the data imputation, network architectures were
compared. In this regard, the architecture based on 3 layers and 256 nodes, multiplied
by a factor of 64 (i.e., 1024 nodes for each layer), resulted in the best accuracy (Figure 2,
green line on the left graph), which achieved an R-square of 0.84. In addition, the difference
with the carbohydrate content parameter, which was used as a control, shows that this
network architecture was the least variable (SD = 8.38) and the closest to the mean value
(Mean = −0.78) (Figure 2, right graph). However, this model seems to underestimate
carbohydrate content more often than the other models.

4.3. Differences in Planted Areas between the Land Use Database and INEC Tables

The enriched food crop database was constructed using the land use database, which
is also used by INEC to report areas of permanent and transitory crops, pasture, fallow,
and natural cover. The difference between this database and those reported for specific
crops in the INEC tables is presented here. The INEC tables account for 29 of the 72 food
crops processed with the land use database and enriched with the other databases. Figure 3
shows a bar chart to facilitate comparison of the tables.

Here, the areas reported in the INEC tables are shown in red, and those obtained
from the land use database are shown in blue. The bar chart on the left shows the crop
names (for Spanish and scientific crop names, please see ) with planted areas greater than
40,000 ha, while the one on the right shows those below this area threshold. The figures
in the INEC tables are higher for most food crops (i.e., 27 of 29 cases), which represent, in
total, 1,116,669 ha (or 22%) more than those estimated from the land use database. Some
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important differences were observed for food crops such as coffee, corn, and soy, which
represent less than 80% of the area reported in the INEC tables. Only 10 of the 29 food crops
matched were below 20%, indicating comparable figures. Because of these discrepancies,
the planted areas of food crops shown later in this section correspond to the data in the
INEC tables.
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4.4. Cluster Center Descriptions Based on Their Nutritional Content

The resulting clusters are represented in the form of bar graphs in Figure 4, in which
the nutritional contents are shown.
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Figure 4. Nutritional composition observed in the clusters.

These were classified according to the micronutrient and macronutrient groups.
Clusters 1, 2, and 3 accounted for 5, 53, and 13 food crops, respectively (for crop names of
each cluster, please see Table S1). Crops that resembled cluster centers were: (1) spinach
and coriander; (2) lettuce and pineapples; and (3) barley and peanut. The scales for each
parameter were deduced after reviewing the literature, as the units were not specified in the
source. Nevertheless, the three clusters can be easily differentiated among the parameters
and nutrient groups. Starting with energy, it can be seen that cluster 3 achieved the highest
value, i.e., 367 cal., followed by clusters 2 and 1, with 52 and 40 cal., respectively. Concern-
ing macronutrients, cluster 3 also had higher values, with 56 g of carbohydrates, 14 g of
proteins, 11 g of fat, and 5 g of fiber. For clusters 1 and 2, these values were lower, except
carbohydrates were higher for cluster 2 (12 g). In more detail, the types of fats describe
saturated and unsaturated fats (mono and poly). These stood out in cluster 2 as they were
the highest of all the types, reaching a maximum of 0.21 g for monounsaturated fats and
values above 0.05 g for the others. In the following, the micronutrients are described, and
differentiated results were observed among the clusters. For example, in minerals, cluster 3
had the highest phosphorous (334 mg), while cluster 1 had the highest calcium (155 mg).
Iron achieved the lowest value but was slightly higher for cluster 3 (5 mg). For vitamins,
cluster 3 led for pyridoxine (0.17 mg); cluster 1 for vitamin B2 (0.21 mg); and cluster 3 for
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thiamine (0.21 mg) and tocopherol (0.007 mg). Other relevant vitamin parameters were
vitamin A, where cluster 1 peaked at 501 µg, along with ascorbic acid at 93 µg.

4.5. Food Crops and Plant Traits According to Clusters

Following the cluster descriptions, plant traits define the environments and uses of
food crops. As the number of categorical parameters was greater than the numerical ones,
Figure 5 shows, in the first two rows, a selection of different parameters in the form of
bar graphs. The Y-axis shows, as percentages, the different categories of plant types, their
uses, and their edaphoclimatic requirements. Therefore, it can be observed that cluster 1 is
characterized mainly by herbs (100%), while cluster 2 is more heterogeneous and includes
mostly herbs (45%), trees (27%), and shrubs (11%). Cluster 3 mainly shows a predominance
of herbs (42%) and grasses (28%). With respect to life span, annual crops characterize
cluster 3 (76%), and perennial crops, cluster 2 (65%). Cluster 1 is more heterogeneous,
indicating a combination of food crops with annual (40%), biannual (40%), and perennial
(20%) life spans. The following parameters show the different uses of food crops. In this
sense, the three most important uses in clusters 1 and 2 indicate those related to food and
beverages, medicinal, and material sectors (ranging from 13 to 29% of all food crops). These
uses are also important in cluster 3, except for medicinal, which is replaced with animal food
(17%). Other values that stand out are: cluster 1, food additive (21%); cluster 2, animal food
(11%); and cluster 3, medicinal (15%). The next parameters are those related to pedology.

Agriculture 2023, 13, x FOR PEER REVIEW 12 of 20 
 

 

Figure 5. Plant traits observed in the clusters as percentages in the categorical 
parameters and boxplots in the numerical ones. 

The first one is soil fertility, which characterizes all clusters with high soil fertility 
requirements at 53–62%. With moderate soil fertility requirements, all clusters indicate 
percentages between 37 and 46%. A related parameter is the soil depth, which indicates 
medium (50–150 cm) and deep (>150 cm) soil requirements for clusters 2 and 3, with 
percentages ranging from 30 to 61%. In contrast, cluster 1 shows only medium and 
shallow (20–50 cm) ranging percentages of 40–60%. The next parameter is climate, which 
is based on the Koppen–Geiger climate classification. This system establishes a 
hierarchical classification of climates based on a three-letter code, where the first character 
corresponds to one of the five general climate types, i.e., A: tropical, B: dry, C: temperate, 
D: continental and E: polar [46]. In this sense, cluster 1 represents more D types (38%), 
followed by C types (30%). In the case of cluster 2, types C (36%) and A (31%) are more 
relevant. Finally, in cluster 3, types C (31%) and D (29%) are the most representative. For 
the E types, a low proportion is observed, but cluster 1 has the lowest proportion of these 
(2%). The last row of Figure 5 shows the numerical variables as boxplots. On the left side, 
the annual precipitation rates are shown, where cluster 2 exhibits a more variable 
interquartile range (800–1950 mm), followed by cluster 3 (600–1500 mm) and cluster 1 
(825–1350 mm). The average temperatures are similar, as the interquartile range of cluster 
2 (18–28.7 °C) is more variable than that of cluster 3 (18–27 °C) and cluster 1 (15–23 °C). 
The last parameter, i.e., killing temperature, describes the temperature at which plants can 
be severely damaged or killed. Thus, it can be observed that cluster 1 shows no tolerance 
to temperatures below 0°, but cluster 2 shows more tolerance with an interquartile range 

Figure 5. Plant traits observed in the clusters as percentages in the categorical parameters and
boxplots in the numerical ones.



Agriculture 2023, 13, 1015 11 of 19

The first one is soil fertility, which characterizes all clusters with high soil fertility
requirements at 53–62%. With moderate soil fertility requirements, all clusters indicate
percentages between 37 and 46%. A related parameter is the soil depth, which indicates
medium (50–150 cm) and deep (>150 cm) soil requirements for clusters 2 and 3, with
percentages ranging from 30 to 61%. In contrast, cluster 1 shows only medium and
shallow (20–50 cm) ranging percentages of 40–60%. The next parameter is climate, which is
based on the Koppen–Geiger climate classification. This system establishes a hierarchical
classification of climates based on a three-letter code, where the first character corresponds
to one of the five general climate types, i.e., A: tropical, B: dry, C: temperate, D: continental
and E: polar [46]. In this sense, cluster 1 represents more D types (38%), followed by C
types (30%). In the case of cluster 2, types C (36%) and A (31%) are more relevant. Finally,
in cluster 3, types C (31%) and D (29%) are the most representative. For the E types, a
low proportion is observed, but cluster 1 has the lowest proportion of these (2%). The last
row of Figure 5 shows the numerical variables as boxplots. On the left side, the annual
precipitation rates are shown, where cluster 2 exhibits a more variable interquartile range
(800–1950 mm), followed by cluster 3 (600–1500 mm) and cluster 1 (825–1350 mm). The
average temperatures are similar, as the interquartile range of cluster 2 (18–28.7 ◦C) is more
variable than that of cluster 3 (18–27 ◦C) and cluster 1 (15–23 ◦C). The last parameter, i.e.,
killing temperature, describes the temperature at which plants can be severely damaged or
killed. Thus, it can be observed that cluster 1 shows no tolerance to temperatures below
0◦, but cluster 2 shows more tolerance with an interquartile range of −1.8–0 ◦C, which is
less variable than that observed in cluster 3, but the latter has a greater range of tolerance
(−3.3–0 ◦C).

4.6. Planted Areas and Production Estimates of Food Crops in Clusters

The last result relates to the planted areas, which were obtained from the INEC tables.
According to its source, these data were derived as estimates from the ESPAC complex
survey for 15 permanent and 17 non-permanent crops whose processing is similar to
that applied to the land use database (see Section 3.1). Since 29 food crops matched the
clustered ones, they were summed according to each cluster. However, data could only be
obtained for clusters 2 and 3, as none of the food crops in cluster 1 appeared in the INEC
tables. In addition to the planted areas, these tables also included information regarding
harvest, production, and sales data. All these estimates are shown in Table 1, where both
clusters 2 and 3 have higher planted areas than harvested areas. In this regard, cluster 3
shows a slightly larger difference between planted and harvested areas, as it represents
7.1% of the total planted areas compared to 6.9% observed in cluster 2. In contrast, a larger
difference is observed between clusters 2 and 3 when production and sales differences are
compared. For example, in cluster 2, this difference represents 36% of the total production
tons, while cluster 3 only represents 4%.

Table 1. Cluster surface areas and production estimates.

Cluster 1 Food Crops
(Count) Planted (ha) Harvested (ha) Production (Tons) Sales

(Tons)

2 17 563,387 524,416 20,004,473 12,662,308
3 12 1,503,735 1,396,318 3,714,659 3,563,620

1 ESPAC data were not available for Cluster 1.

5. Discussion
5.1. Possibilities and Challenges of Web Scraping, Data Imputation, and Database Integration

Web scraping allowed for the collection of 26 numerical and 17 categorical parameters
from ECOCROP and FUNIBER databases in addition to those observed in the original
ESPAC database. It took less than 15 min to search, retrieve, and organize the collected data
when the request was directed at specific food crops. In this sense, the web-scraping tech-
nologies applied, i.e., Selenium and XML parsing, were favorable for our data-extraction
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objectives and are recommended in the literature [56–58], but other open-source alterna-
tives, such as BeautifulSoup, Scrapy, or Puppeteer for the Python [59] and Node.js [60]
languages, are not less important. In addition, there are also commercial software alterna-
tives which simplify web scraping when users are not familiar with programming such
as Octoparse, ParseHub, or WebHarvy [61]. However, some particularities should be
mentioned. In the FUNIBER database, for example, this procedure was not possible as
multiple crop species concurred when using the search criteria using the crop name. It was
necessary to download the entire base to later link the crop common names that were used
in the database to specific species. This task required more time than expected (15–30 min.),
in addition to the time spent on the web-scraping supervision, as the routine occasionally
stopped due to the late response of the server. Most of the time required to implement the
methods of the proposed approach was spent on data cleaning (Table 2), without taking
into account the time spent on debugging the web-scraping routines. This is because the
need to review the procedure resulted in a decrease in the number of food crop species
as more databases were collated, but an increase in the number of associated parameters.
These missing data were fixed with MIDAS, but its application required calibration until a
network architecture and node number resulted in the best data imputation result.

Table 2. Food crops, data parameters, and task times.

Food Crops
Data Parameters (Count)

Missing Cases (%) Operation Task Time
(Approx.) 1Numeric Categorical

107
1 5 0

ESPAC raw data collection short
89 Data cleaning, scientific names assignation large
72 9 17 4.9 ECOCROP web scraping short
64 17 0 11 FUNIBER web scraping medium
72 27 22 0 MIDAS data imputation medium

1 Depends of the number of items. Short: <30 min; medium: 30–60 min; large: >60 min.

Although this can be tedious, the results of the MIDAS algorithm were certainly more
reliable since the accuracy was beyond our expectations. Other imputation tools based
on linear models, such as AMELIA [62], imputeTS [63], or Multivariate Imputation via
Chained Equations [64] may not fit our analysis well, as our data were noisy and nonlinear
relationships between variables were expected. However, MIDAS is not the only alternative
and users of this approach are encouraged to try other methods based on deep learning,
e.g., Generative Adversarial Imputation Networks [65], Fancyimpute [66], or Deep-Fill [67].
When performing experiments with these tools, it is recommended to pay attention to
model tuning as, in our case, it was difficult to decide which categorical or numerical
variables should be included in the imputation model to increase performance.

On the other hand, it was observed that data gaps were mainly due to divergences
between datasets, e.g., in the case of species names due to the absence of scientific names
in the databases. This limitation is not intrinsic to the web-scraping and data-imputation
procedures, but a consequence of their assumption regarding the quality and reliability of
the datasets. Therefore, it is strongly recommended that potential users of this approach
evaluate critical aspects of the target database before collecting their data. Among these we
can recommend:

• Metadata and methodological documents should be available and well-documented.
In our case, the documentation of the FUNIBER database was not available, thus
limiting our understanding of the reliability of this dataset, as well as that of the units
of measurement of the nutrients analyzed.

• The existence of at least one binding parameter (e.g., scientific names, unique iden-
tifiers, date/time). This is required to be as unambiguous as possible to perform
database integration. When a binding parameter is absent, it is recommended to
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attribute this information by geocoding, which could also benefit from other spatial
datasets (e.g., satellite imagery and GIS data).

• Ensure that data are open to the public and that no copyright is infringed when
collecting data through web scraping. This may seem obvious, but it is common that
there are no statements about the use of the data, so users should observe the presence
of explicit mechanisms to stop web scraping such as captchas, robots.txt, IP blocking,
and speed limiting.

5.2. Insights into the Nutritional Value of Widespread Planted Crops in Ecuador and Their
Vulnerability to Climate Change

Classifying food crops according to their nutritional importance is relevant when
talking about food security and the ability of individuals to use food to meet their nutritional
needs [68]. This study gives unprecedented insights into the nutritional value of crops
that are cultivated in Ecuador. The resulting clusters show that most food crops that are
grown in the country are those qualified as “cash crops”, i.e., those destined to market
food production derivates (e.g., cacao, rice, sugar cane, corn, bananas). Even though our
results show that many food crops that are rich in energy and macro- and micronutrients
(except for vitamins A and C) are cultivated in the country, their productivity is difficult
to estimate since plant areas are not available for some species. For example, this is true
for cluster 1 and partly for the food crops of cluster 2. These nutrient-rich food crops
are mainly cereals (e.g., barley, rice, rye, wheat, corn, oatmeal) and other grains (e.g., soy,
peanut, quinoa, Andean lupin). Only a minority (7%) of the food crop species are high in
vitamin A and C contents. This last group is composed of vegetables (e.g., spinach, turnip,
carrots) and herbs (e.g., parsley and coriander), which were observed only in cluster 1. Of
the 7 crops that occupy large farmland areas (more than a total of 40 ha at the national level
according to both the INEC reports and the database estimates), 4 (57%) are part of the
nutrient-rich cluster. Most of these crops are food staples (including two corn species and
rice), while the remaining one is cocoa, which is currently an export product, but hardly
eaten regularly to supply the nutritional needs of the local population. Other crops that
currently occupy large farmland areas are not particularly nutritious but are important
at a macroeconomic level as they are export products. These include two banana species
and sugarcane. Published studies on food security in Ecuador coincide with the results
obtained in this study by emphasizing the importance of cereals and grains [69]. Other
authors, however, gave an even higher priority to less nutritious food staples, such as
potatoes [70]. Food crops from cluster 1, rich in vitamins A and C, have not been given as
much attention in the literature, regardless of their importance for nutrition, even when
food staples are usually poor in micronutrient contents. Even though our data suggest
that some highly nutritious crops are currently cultivated at both large and small scales
in Ecuador, it is not clear which are the actual areas dedicated to their cultivation, and
thus it is hard to estimate whether yields are enough to cover the country’s needs. The
discrepancies between the land use areas per food crop reported in the INEC tables and the
numbers that were derived from the land use database raise questions about the validity
of the data. On the other hand, the results on nutritious contents and clusters obtained
in this study are based on the FUNIBER database, which has poor documentation about
the methodologies that were used to obtain the data. Thus, the results on the nutritional
content of the crops presented in this article should be further studied.

In a different way, the ECOCROP provided information on the environmental re-
quirements of crops, which were well-documented, giving us information on the crops’
tolerance to different environmental factors such as temperature, rainfall, soil type, and
altitude. This dataset was useful for understanding that ESPAC crops were more related
to annual herbaceous life forms with requirements for fertile soils with medium depths
(50–150 cm). Moreover, climate requirements indicated the predominance of tropical (e.g.,
Aw, Ar) and subtropical (e.g., Cs, Cf) types according to the Koppen–Geiger classification.
These climates types are located in areas close to the equator but also in coastal areas, where



Agriculture 2023, 13, 1015 14 of 19

during the wet season there is significant rainfall that favors the growth of vegetation and
agricultural crops. However, during the dry season, in the subtropical type, there is little or
no rainfall and the temperature is usually high. These climates are influenced by several
factors, such as proximity to the equator, the movement of the Intertropical Convergence
Zone (ITCZ), and the topography of the region [71]. As a result, the crops associated with
these climates are also vulnerable to the effects of climate change, such as changes in rainfall
patterns, more frequent droughts and floods, and temperature variations [72]. Therefore,
Ecuador’s listed food crops, which depend on these climate types, can be expected to
be affected by a reduction in agricultural productivity due to higher temperatures [73],
changing rainfall patterns, and more frequent extreme weather events such as droughts
and floods [74,75]. In addition, changes in weather patterns can make it difficult for farmers
to plan planting and harvesting schedules, resulting in lower crop yields and reduced
incomes [76]. The distribution and abundance of pests and diseases, which can affect
crops and livestock, can also be a problem, while water availability can impact agricultural
production. If food security in Ecuador and similar countries is highly dependent on
these climate types, then it is important to adopt strategies that could include developing
drought-tolerant crop varieties [77], improving water management practices [78], promot-
ing climate-smart agriculture [79], and implementing early warning systems for extreme
weather events [80]. Finally, it is no less important to continue efforts to mitigate climate
change by reducing greenhouse gas emissions to limit the magnitude of future impacts on
food security in these regions.

5.3. Open Data and Requirements for Food Security

There is a growing tendency to share and publish datasets relevant to food security
worldwide, as it is recognized as an important strategy to support decision making [81].
Nonetheless, the results of the agricultural censuses in Ecuador continue to be partly
confidential even for research purposes. The United Nations member states have adopted
the Sustainable Development Goals (SDGs) as a commitment and goal before 2030. A high
priority was given to SDG2 “End hunger, achieve food security and improved nutrition and
promote sustainable agriculture”. In 2015, the Ecuadorian government adhered to the SDG
agenda [82], which calls for a coordinated effort of the public, civil, and private sectors. As
part of the efforts to work towards the goals and due to intrinsic interest to have reliable and
timely information about the agricultural sector (which contributes to a relevant percentage
of the gross domestic product), the ESPAC survey has been carried out yearly since 2002
(and since 2014 under the FAO framework). This census adheres to the national statistics
law, which establishes that only numerical summaries, global concentrations, totalizations,
and, in general, impersonal data, will be published [83]. Hence, all impersonal data should
be of open access, not only to be congruent with the law but also to foster the collaboration
among sectors that is enacted in the SDG agenda [84]. However, in practice, the ESPAC
data content could only be partly obtained for this study. Important limitations to the use
of the data and access to specific technical details were experienced in this work, even after
contacting the developers of the datasets. Although the effort of implementing the ESPAC
survey and the publication of part of the data must be recognized, we suggest that future
data collections in the field of agriculture in Ecuador should consider additional criteria
to design the surveys (e.g., scientific names of food crops), along with open discussions
with academia to incorporate a holistic method to describe the food system, in addition to
economic and statistical approaches.

Databases from non-governmental organizations used in this work enriched those
obtained from public institutions. This was possible because of their open data policies
that allow for innovation with novel approaches, such as the one proposed in this research.
However, as mentioned before, such databases need to be thoroughly evaluated for their
use in scientific projects. When methodological and metadata files are absent, a validation
process is required. Despite these limitations, there are vast amounts of data to be collected
and used, with proper documentation. In this regard, we point out that the ECOCROP
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database was well-documented and organized at the time of our study, allowing for its use
for research purposes.

6. Conclusions

In this paper we present an innovative approach to building food safety datasets.
By combining web scraping to collect data and interpolating the gaps with the MIDAS
algorithm, we were able to produce an enriched version of a public database with null
information in terms of environmental and nutritional information. This approach can be
applied to several areas of research, being relevant in its contribution to the automation of
a process that, if performed manually, involves more work time and a higher probability of
making mistakes. However, these advantages can only be fully exploited when high-quality
databases linked to the Sustainable Development Goals are open to the public, especially in
areas such as food security. Access to such data can assist in prioritizing goals, improving
action plans, and measuring their outcomes. Open data on food security can also aid
farmers to make informed decisions, facilitate the transition to organic production, manage
food prices, adapt to climate change, promote healthy diets, identify food shortages, and
comprehend farm–ecosystem interactions.

In our case study in Ecuador, achieving the curation of the food dataset was challenging
as the quality and accessibility of the ESPAC data were limited and did not allow us to fully
characterize the production areas, including the nutritional values for the crops obtained
from FUNIBER. However, with the plant traits the results were better, since the ECOCROP
database allowed us to achieve a better idea of the environmental constraints, which can be
useful for designing strategies aimed at achieving food security in the country. Therefore,
we suggest that future research on this topic explores additional indicators, such as the
quantities of the nutrient-rich crops not identified in this study, along with the economic
and physical accessibility of these products and the sustainability of their production, to
better understand Ecuador’s food security prospects.
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