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Abstract: Rapid acquisition of chlorophyll content in maize leaves is of great significance for timely
monitoring of maize plant health and guiding field management. In order to accurately detect the
relative chlorophyll content of summer maize and study the responsiveness of vegetation indices
to SPAD (soil and plant analyzer development) values of summer maize at different spatial vertical
scales, this paper established a prediction model for SPAD values of summer maize leaves at different
spatial scales based on UAV multispectral images. The experiment collected multispectral image
data from summer maize at the jointing stage and selected eight vegetation indices. By using the
sparrow search optimized kernel limit learning machine (SSA-KELM), the prediction models for
canopy leaf (CL) SPADCL and ear leaf (EL) SPADEL were established, and a linear fitting analysis was
conducted combining the measured SPADCL values and SPADEL values on the ground. The results
showed that for SPADCL, the R2 of the linear fitting between the predicted values and measured
values was 0.899, and the RMSE was 1.068. For SPADEL, the R2 of linear fitting between the predicted
values and the measured values was 0.837, and the RMSE was 0.89. Compared with the model
established by the partial least squares method (PLSR), it is found that the sparrow search optimized
kernel limit learning machine (SSA-KELM) has more precise prediction results with better stability
and adaptability for small sample prediction. The research results can provide technical support for
remote sensing monitoring of the chlorophyll content of summer maize at different spatial scales.

Keywords: multispectral remote sensing; vegetation index; SPAD values; SSA-KELM; PLSR

1. Introduction

According to a recent survey, China’s maize production reached 277.23 million tons
in 2022, making it the largest grain crop in China [1]. Therefore, ensuring maize produc-
tion is vital for ensuring China’s economic development and food security [2]. Real-time
monitoring of the growth status of maize in the field and timely guidance of field man-
agement can fully ensure a successful maize yield. Chlorophyll, as the primary pigment
in plant photosynthesis, plays an important role in converting light energy into chemical
energy during photosynthesis and provides material and energy for plant growth and
development [3]. Chlorophyll content is the primary chemical parameter for evaluating
plant photosynthesis and an important indicator of crop health [4,5]. Therefore, monitoring
the content of chlorophyll in plants can help to measure the photosynthetic capacity and
physiological damage of crops [6]. It can also help to evaluate the growth environment, wa-
ter status, and fertilizer management status of crops. Therefore, monitoring the chlorophyll
content of maize leaves at different growth stages plays an important role in maize field
management and ensuring a successful maize yield [7].

The traditional method of manually collecting leaves to detect leaf chlorophyll in the
laboratory is likely to damage the plant and is detrimental tocrop growth and development.
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Efficient and non-destructive monitoring of crop growth is the core of modern precision
agriculture planting [8]. Due to the strong correlation between chlorophyll content and
SPAD values, measuring leaf SPAD values is an effective, non-destructive method for
monitoring chlorophyll content in leaves [9]. Currently, methods for manually measuring
leaf SPAD values face problems such as a small measurement area, large workload, and
poor data representativeness [10], which cannot meet the needs of large-scale and precise
management of field maize. Remote sensing technology has been used to collect non-
destructive agricultural data in many applications [11]. Ground remote sensing collects
crop canopy spectral data through the use of various ground object spectrometers. Due to
the limitations of platform height, this method is only suitable for research experiments
with few sampling points or small sampling ranges [12]. In addition, although satellite
remote sensing and airborne remote sensing monitoring methods can obtain large-scale
crop image data, their low spatiotemporal resolution can easily lead to a lack of key
phenological data for crops in the study area [13]. The lack of flexibility, low efficiency, and
high cost make it difficult to meet the requirements of precision agriculture and real-time
field management [14]. UAV (unmanned aerial vehicle) remote sensing can obtain crop
growth information with a wide range and strong timeliness. Remote sensing images have
high ground resolution (up to centimeter level) and are sensitive to spatial heterogeneity
information [11,12]. Using UAV remote sensing to monitor field growth information can
effectively compensate for the shortcomings of satellite remote sensing and ground remote
sensing and meet the demands for obtaining real-time image data with high spatiotemporal
resolution in small and medium-sized scales, which has good application value [13,14].

Currently, in the study of multispectral remote sensing monitoring of SPAD values of
summer maize, Ma et al. [15] compared the response effects of two multispectral sensors
(MAC and Sequoia) to SPAD values of a maize canopy and found that vegetation indices
constructed in the green and near-infrared bands, respectively, have a higher predictive abil-
ity than vegetation indices constructed in the red and near-infrared bands. Qiao et al. [16]
obtained multispectral remote sensing images of maize at the jointing stage based on un-
manned aerial vehicles and found that the near ground remote sensing vegetation indices
(VI) under medium and low crop coverage was significantly linearly correlated with maize
canopy chlorophyll content. There was a significant nonlinear correlation under high
coverage, and the chlorophyll content monitoring model established based on PLSR had
the best effect. Guo et al. [17] used a support vector machine (SVM) and random forest (RF)
models to estimate the SPAD values of maize based on the optimal combination of spectral
indices and texture indices of unmanned aerial vehicles determined by the SRM model.
The results showed that the SVM model had the best prediction effect. Qiao et al. [18] ex-
tracted maize canopy multispectral reflectance and vegetation indices based on different
image segmentation methods and established a mature maize canopy chlorophyll content
diagnostic model. The results showed that in the model constructed using PLSR, the maize
canopy segmentation method based on wavelet segmentation can improve the diagnostic
accuracy of chlorophyll content. The above studies have shown that the vegetation indices
constructed based on multispectral data have a certain monitoring ability for obtaining
SPAD values of maize plants, but there is little comparison and discussion on the prediction
effects of SPAD values of leaves at different vertical scales of the plant. Only the SPAD
values of a certain part are selected for modeling and analysis, without comparison and
optimization, which gives the prediction model established certain spatial limitations.

Therefore, this study intends to analyze the correlation between summer maize mul-
tispectral vegetation indices and SPAD values and to establish SPAD value prediction
models for different spatial vertical scales based on the SSA-KELM algorithm. Compara-
tive analysis is conducted on the prediction effect and prediction stability of SPAD value
prediction models based on SSA-KELM to establish SPAD value prediction models for
different spatial vertical scales of summer maize with a satisfactory prediction effect and
high stability.
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2. Materials and Methods
2.1. Study Area Description

The experiment was conducted in China’s first tractor company limited intelligent
agriculture demonstration farm in Yiyang County, Luoyang City. The demonstration park
is located in a mid-latitude region with geographic coordinates of 112◦37′11.72′′ E and
34◦47′79.03′′ N. The geographical location is shown in Figure 1. In this experiment, the
main maize planting method is wheat rotation, with a planting density of 8.3 plants m−2,
a row spacing of 0.6 m for maize, and a plant spacing of 0.2 m. The management meth-
ods for irrigation, fertilization, disease, pest, and weeds control are consistent with local
conventional farmland.
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Figure 1. Geographical location of China’s first tractor company limited intelligent agriculture
demonstration farm.

2.2. Data Acquisition and Processing
2.2.1. Multispectral Image Data Acquisition and Preprocessing

The research used a Phantom 4 multispectral unmanned aerial vehicle (DJI, Shenzhen,
China) to collect multispectral remote sensing data for maize. The system was equipped
with 1 visible light sensor and 5 multispectral sensors. The experiment was conducted
from 10:00 am–12:00 am on 22–23 July 2022, during which the light intensity was stable
and data collection was conducted in clear, cloudless, windless, or breezy conditions.

Before image acquisition, the mapping software (DJI Terra, China) was used to
plan the UAV route, and spectral images were collected according to the planned paths.
RGB high-definition image data was obtained synchronically. Due to the limited battery
life of the UAV and the large test area, this study set the UAV to fly at a height of 70 m, the
sensor lens was set vertically downward, the course and lateral overlap ratio was 85%, the
flight direction was heading from north to south, and the speed was controlled at 3.5 m/s.
To perform reflectance correction, a calibration reflection panel was placed on the ground
in the test area before and after image acquisition; a drone was manually controlled to
hover 2 m above the calibration panel to collect spectral images, and thus it obtained the
standard reflectance values during the test. The images of summer maize at the jointing
stage obtained by UAV are shown in Figure 2.
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We imported the collected multispectral image into the Pix4D mapper software
(Pix4D Company, Lausanne, Switzerland) and performed image preprocessing to ob-
tain the reflectance spectrum of summer maize within the ROI area of the sampling point.
The main steps are: (1) conduct DSM and orthophoto image processing; (2) calibrate the
multispectral data of the reflective plate and output the mosaic image; (3) carry out geo-
metric correction using the HD digital images obtained from same period as the reference
(error less than 0.5 pixel); (4) select the ROI area required for this study; and (5) obtain the
average reflectance spectral values within the ROI range, which is the reflectance spectrum
of summer maize in the ROI area.

2.2.2. Data Acquisition of Chlorophyll SPAD Values

Studies have shown that there is a good correlation between crop chlorophyll content
and SPAD values measured by portable chlorophyll meters [19,20]. Therefore, this study
uses a portable SPAD-502Plus chlorophyll meter (Konica Minolta, Tokyo, Japan) to measure
the chlorophyll content of leaves. In this experiment, root leaf SPAD (SPADRL), ear leaf
SPAD (SPADEL), and canopy leaf SPAD (SPADCL) of the same maize plant were collected
simultaneously. The measurement site is shown in Figure 3b. According to the growth
gradient and expert experience, 20 sites with an area of 10 × 5 m2 were selected as the test
area (ROI areas, as shown in Figure 3a). In each experimental area, 5 maize plants were
selected using the 5-point sampling method, and the SPAD values from the base, middle,
and tip of the root leaf, ear leaf, and canopy leaf of each plant were collected avoiding the
leaf veins (SPAD values acquisition site, as shown in Figure 3b). Acquisition of each part
was repeated twice, and the average of the 6 datapoints was taken as the relative content of
the chlorophyll values of the leaf. The experiment first eliminated abnormal data caused by
sensor errors and then calculated the average SPAD values of the root leaf, ear leaf, and
canopy leaf of the 5 plants in the experimental area as the relative chlorophyll content of
the corresponding parts of the maize plant in the area. Due to the time-sensitive nature of
chlorophyll content in leaves [21], the collection of measured data from ground SPAD was
conducted simultaneously with the multispectral data collected by UAV.
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2.3. Selection of Vegetation Indices

The vegetation indices weaken the interference of factors such as background on
the spectral characteristics of vegetation to a certain extent through combined changes
in reflectance at different wavelengths, which helps to improve the accuracy of remote
sensing data in expressing chlorophyll content [22]. This experiment extracts the spectral
reflectance of 20 ROI regions and constitutes vegetation indices through a linear or non-
linear combination. According to the characteristics of chlorophyll content monitoring,
SPSS software was used to analyze the significance of the selected vegetation indices and
SPAD values, and the vegetation indices with high correlation and wide application were
selected [23], as shown in Table 1.

Table 1. Vegetation indices and their calculation formulae.

Vegetation Indices Equation References

GRVI NIR/G Motohka T et al. [24]
GOSAVI (1 + 0.16)*(NIR − RE)/(NIR + RE + 0.16) Marin D B et al. [25]

VIopt (1 + 0.45)*(2NIR + 1)/(R + 0.45) Motohka T et al. [24]
NDVI (NIR − R)/(NIR + R) Deng L et al. [26]
GDVI NIR − G Qinglin N et al. [27]
RVI NIR/R Jiang J et al. [28]

GNDVI (NIR − G)/(NIR + G) Jiang J et al. [28]
CCCI (NIR − RE)/(NIR + RE) Shu M et al. [29]

Note: R is the red band, G is the green band, NIR is the near-infrared band, and RE is the red edge band.

2.4. Data Analysis and Model Construction

A kernel-based extreme learning machine (KELM) is a single hidden layer feedfor-
ward neural network. It is an improved algorithm based on ELM and is combined with
kernel functions, which to some extent improves the shortcomings of local optimization
and large iteration times in traditional gradient descent training algorithms. KELM can
improve the prediction performance of the model while retaining the advantages of ELM.
The basic principle of the kernel-based extreme learning machine is shown by the authors
of [30]. However, the prediction performance of KELM is greatly affected by the regular-
ization coefficient C and the kernel function parameter S. If the parameter optimization
ability is insufficient and the local search ability is poor, it can easily lead to problems such
as falling into a local optimal solution and low prediction accuracy.

The sparrow search algorithm (SSA) is a population-intelligent optimization algorithm
proposed by Xue et al. [31] in 2020, which is mainly inspired by a sparrow’s foraging behav-
ior and anti-predatory behavior. It has good local search ability and has the advantages of
strong optimization ability and fast convergence speed. In the process of foraging, the spar-
row population is divided into discoverers and scroungers. The discoverers are responsible
for finding food in the population and providing foraging areas and directions for the entire
sparrow population, while the scroungers use the discoverers to obtain food. In order to
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obtain food, sparrows usually use these 2 behavioral strategies, discovering and scrounging,
to seek food. The scroungers in the group will constantly monitor the discoverers in the
group and compete for food resources to improve their predation rate. In addition, when
the sparrow population is attacked by predators, it will engage in anti-predatory behavior.

The kernel extreme learning machine based on the sparrow search algorithm op-
timization (SSA-KELM) uses the sparrow search algorithm to optimize and select the
regularization coefficient C and kernel function parameter S, thereby improving the predic-
tion ability of the model. At the same time, in order to avoid the phenomenon of overfitting
in the process of establishing the nonlinear regression model, the data were preprocessed
by normalization at the beginning of the experiment. The processed data are divided into
a training set and a test set, and the cross-validation method is used for model selection
and parameter optimization to avoid overfitting of the model. In order to further select
the regularization coefficient C and the kernel function parameter S, the fitness function is
designed as the error MSE of the training set:

MSE =
1
n∑n

i=1(y− x)2 (1)

f itness = argmin
(

MSEpridect

)
(2)

where x is the estimated value; y is the measured value; and n is the number of samples.
The fitness function selects the MSE error after training. The smaller the MSE error,

the higher the coincidence between the predicted data and the original data. The output of
the final optimization is the optimal regularization coefficient C and the kernel function
parameter S. Then, the network trained using the optimal regularization coefficient C and
kernel function parameter S is used to test the test dataset. The SSA-KELM algorithm
flowchart is shown in Figure 4.
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In summary, this study used the kernel-based extreme learning machine based on
sparrow search algorithm (SSA-KELM) optimization to construct regression models for phe-
notypic parameters and SPAD values of summer maize at different spatial vertical scales.

2.5. Model Evaluation Parameters

In this paper, the determination coefficient R2, root mean square error RMSE, and
average relative error MRE are used to determine the prediction effect of the model. The
closer the R2 value approaches to 1, the closer the model predicted values are to the
measured values and the higher the accuracy of the model prediction. The smaller the
RMSE, the higher the accuracy of the model. MRE describes the error between the predicted
results and the actual values of the model and evaluates the stability of the model. The
smaller the MRE, the more stable the model is.

3. Results and Discussion
3.1. Results of SPAD Content Distribution at Different Spatial Vertical Scales

Chlorophyll content in crop leaves showed spatial and vertical heterogeneity [32]. The
distribution boxplots of SPADRL, SPADEL, and SPADCL values for 20 ROI regions are
shown in Figure 5, and the statistics of SPAD values are shown in Table 2.
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Table 2. Statistical table of SPAD values of blades with different spatial vertical scales.

DS Maximum Minimum Mean Standard Deviation Variance

SPADCL 49.750 37.747 44.459 3.430 11.745
SPADEL 58.107 51.470 54.856 2.250 5.053
SPADRL 61.10 52.877 57.067 2.064 4.260

It can be seen from Figure 5 that during the jointing stage of maize, the relative
chlorophyll content is SPADRL > SPADEL > SPADCL. It can be seen that with the deepening
of the spatial vertical scale, the chlorophyll content accumulates with the growth cycle, and
this trend can also be drawn from the comparison of the maximum, minimum, and average
values in Table 2. Similarly, from Table 2, it can be seen that the standard deviation and
variance of SPAD values all show the same trend, SPADRL < SPADEL < SPADCL, indicating
that with the increase in leaf chlorophyll content, the dispersion degree of leaf SPAD values
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gradually decreases, further indicating that with the deepening of the vertical scale of leaf
space, the distribution of chlorophyll content becomes more uniform.

Due to the fact that most of the spectral information in vertical observation by UAV
remote sensing comes from the surface of the canopy, the shielding effect of the canopy top
makes it difficult for the component information in the lower layer of the crop to appear in
the vertically observed spectrum, which greatly weakens the monitoring ability of remote
sensing for the middle and lower layers (especially the root leaf) [21,22,33]. Therefore, the
accuracy of using multispectral remote sensing data to monitor the root leaf is not high,
and the significance of predicting the SPADRL values is small [34], Therefore, this study
only constructs and analyzes regression models for SPADCL and SPADEL.

3.2. Results of the Predictive Ability of A Single Vegetation Index to SPAD

A linear regression model (y = ax0 + b) for SPAD values was established using the
single vegetation index in Table 1. The parameters, determination coefficient (R2), and root
mean square error (RMSE) of the linear regression model for canopy leaf and ear leaf are
shown in Tables 3 and 4.

Table 3. Linear regression models for predicting SPADCL using different vegetation indices.

Vegetation Indices a b R2 RMSE

GRVI −1.420 52.154 0.572 1.521
GOSAVI −29.005 58.390 0.681 1.482

VIopt −15.280 92.5885 0.653 1.782
NDVI −19.426 57.781 0.687 2.381
GDVI −48.278 53.920 0.662 1.660
RVI −0.602 49.395 0.492 1.761

GNDVI −27.113 62.063 0.733 2.377
CCCI −41.989 59.768 0.458 1.632

Note: R2: accuracy of fitting between the predicted values and the measured values of the model; RMSE: the
degree of deviation between the predicted values and the measured values of the model.

Table 4. Linear regression models for predicting SPADEL using different vegetation indices.

Vegetation Indices a b R2 RMSE

GRVI 0.643 53.562 0.363 1.386
GOSAVI 14.391 50.134 0.412 1.941

VIopt 7.652 32.944 0.336 1.293
NDVI 10.289 49.99 0.561 1.677
GDVI 23.155 52.509 0.464 1.339
RVI 0.265 54.874 0.283 1.146

GNDVI 13.673 48.168 0.373 2.407
CCCI 20.104 49.717 0.399 1.519

Note: R2: accuracy of fitting between the predicted values and the measured values of the model; RMSE: the
degree of deviation between the predicted values and the measured values of the model.

As can be seen from Table 3, in the established SPADCL unitary linear regression model,
the R2 distribution is between 0.450 and 0.733, and the RMSE distribution is between 1.482
and 2.381. The model decision coefficient R2 based on vegetation index GNDVI fitting is the
largest (0.733) and the R2 of model based on CCCI fitting is the smallest (0.458). From Table 4,
it can be seen that in the univariate linear regression model fitting each vegetation index
with SPADEL, the R2 distribution is between 0.336 and 0.531, and the RMSE distribution
is between 1.293 and 2.407. The R2 of the prediction model fitted with GDVI and SPADEL
values is the largest (0.561), while the R2 of the prediction model fitted with RVI and
SPADEL values is the smallest (0.283). The above data indicate that compared to SPADEL,
the vegetation indices selected in the experiment have stronger prediction abilities for
SPADCL values. However, the correlation advantage of the normalized vegetation index
NDVI [35] commonly used in previous studies in building models has not been reflected in
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this experiment, which also indicates that any vegetation index does not have universality.
When selecting a vegetation index to monitor the chlorophyll content of maize plants in
different growth periods, different growth environments, and even different varieties, do
not cling to previous empirical conclusions, which are also similar to the research results of
some scholars [36]. In addition, the absolute slope (|a|) of the SPADCL value prediction
model is greater than that of the SPADEL values, indicating that the vegetation indices
constructed from multispectral data are more sensitive to the SPADCL values.

Comparing the RMSE of different vegetation indices and SPADCL and SPADEL fit-
ting models, as shown in Figure 6, the model accuracy of vegetation indices (excluding
GOSAVI and GNDVI) for predicting SPADEL values is higher due to the lower dispersion
degree of SPADEL values compared to SPADCL values, which means that the fluctuation in
chlorophyll content in ear leaf is relatively small.
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Based on the above analysis, it can be seen that the univariate linear regression model
fitted with a single vegetation index as an input variable has a certain predictive ability for
SPAD values, which is consistent with previous studies [15–18].

3.3. Results of Prediction Models for SSA-KELM

With the increase in input characteristic variables, the relationship between variables
cannot be described only by linear relationships, which requires modeling methods to
have higher non-linear fitting capabilities. SSA-KELM improves the nonlinear fitting
performance of the model by optimizing the regularization coefficient C and kernel function
parameter S in the KELM algorithm using the powerful local search ability of the sparrow
search algorithm. Therefore, this study uses SSA-KELM to establish a prediction model
for SPAD values of multiple vegetation indices at different spatial vertical scales. The
experiment divided 70% of the data Into training sets and 30% Into verification sets [21]. The
relationship between the predicted values and the measured values of the SPAD prediction
models based on SSA-KELM is shown in Figure 7.
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As can be seen from Figure 7, the linear fitting results between the predicted values and
the measured values of the SSA-KELM-SPADCL model are R2 = 0.899 and RMSE = 1.068.
The predicted values fluctuate greatly relative to the measured values, and the prediction
accuracy of the model is relatively low. Compared with the linear regression models
constructed with a single vegetation index (R2

max = 0.733, RMSEmin = 1.482), R2 increased
by 0.166, RMSE decreased by 0.414, and the prediction accuracy of the model is improved.
The predicted values of the SSA-KELM-SPADEL prediction model are linearly fitted to
the measured values with R2 = 0.837 and RMSE = 0.890. The predicted values fluctuate
slightly relative to the measured values, and the prediction accuracy of the model is high.
Compared with the regression models with a single vegetation index as input (R2

max = 0.561,
RMSEmin = 1.146), R2 increased by 0.276 and RMSE decreased by 0.256. From the above
analysis, it can be seen that SPAD prediction models with different spatial vertical scales
based on SSA-KELM fitting have greatly improved both prediction effect and model
accuracy.

3.4. Discussion
3.4.1. Comparative Analysis of Prediction Effects for Different Prediction Models

In order to verify the prediction effect of the SPAD prediction models established based
on SSA-KELM, this study selected the partial least squares [37] (PLSR) method suitable for
small sample modeling to establish SPAD value prediction models with different spatial
vertical scales and conducted a comparative analysis.

PLSR [38] is a method for finding the best matching function for a group of data
by minimizing the sum of squares of errors. It combines statistical methods, such as
correlation analysis, principal component analysis, and multiple linear regressions, to
effectively solve the problem of data collinearity. Compared with the multiple linear
regression algorithm, PLSR can establish multiple linear models under the condition that
the independent variables have multiple correlations and the number of sample points is
small, and it can ensure the prediction accuracy of the model. The linear fitting comparison
between the predicted values and the measured values of the SPAD prediction models
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based on PLSR is shown in Figure 8. The fitting effect comparison of the SPAD prediction
models built based on PLSR and SSA-KELM algorithms is shown in Table 5.
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Table 5. Comparison of SPAD prediction models constructed by PLSR and SSA-KELM algorithms.

Algorithm Model
SPADCL SPADEL

R2 RMSE R2 RMSE

PLSR 0.787 1.220 0.723 0.903
SSA-KELM 0.899 1.068 0.837 0.890

Note: R2: accuracy of fitting between the predicted values and the measured values of the model; RMSE: the
degree of deviation between the predicted values and the measured values of the model.

As can be seen from Figure 8, the predicted values and the measured values of
PLSR-SPADCL are linearly fitted with R2 = 0.787 and RMSE = 1.220. Compared with
the linear regression models constructed with a single vegetation index (R2

max = 0.733,
RMSEmin = 1.482), R2 increased by 0.054 and RMSE decreased by 0.262. The prediction abil-
ity and accuracy of the models are improved. The predicted values and the measured values
of PLSR-SPADEL are linearly fitted with R2 = 0.723 and RMSE = 0.903. Compared with the
regression models with a single vegetation index as input (R2

max = 0.561, RMSEmin = 1.146),
R2 increased by 0.162 and RMSE decreased by 0.243, indicating that the prediction effect of
the SPAD multiple linear prediction model based on PLSR is better than that of the single
vegetation index fitting, which indicates that when performing linear fitting, increasing
the number of characteristic variables can improve model prediction effects and model
prediction accuracy.

As can be seen from Table 5, for the prediction of SPADCL, the fitting accuracy
(R2 = 0.899) of the predicted values and measured values of the SSA-KELM-based predic-
tion model is higher than that of the PLSR-based prediction model (R2 = 0.787), and its
prediction accuracy (RMSE = 1.068) is also more satisfactory than that of the PLSR-based
prediction model (RMSE = 1.220). Similarly, the prediction of SPADEL for ear position
leaf has the same conclusion. It can be seen that compared with prediction models based
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on PLSR, the prediction models based on SSA-KELM have higher prediction accuracy,
stronger stability, and better prediction.

At the same time, comparing the prediction accuracy of the SPADCL model and the
SPADEL model, it can be seen that in the SSA-KELM-based prediction models, the fitting
accuracy (R2 = 0.899) of the SPADCL predicted values and the measured values is higher
than the fitting accuracy (R2 = 0.837) of the SPADEL predicted values and the measured
values, but the RMSE of its predicted values is approximately 1.068, which is greater
than the RMSE (0.890)of the SPADEL predicted values, indicating that there is significant
fluctuation in the SPADCL predicted values compared to the measured values, that is,
the prediction accuracy of the prediction model is relatively low. It can be seen that in
the established multiple regression prediction models, the prediction accuracy of SPADEL
values is better than that of SPADCL values.

In summary, compared with the univariate linear regression models and the multi-
variate linear prediction models established based on PLSR, the multivariate nonlinear
prediction models based on SSA-KELM have the best prediction effects, and the predic-
tion accuracy of the SPADEL values model is superior to the prediction accuracy of the
SPADCL model.

3.4.2. Stability Analysis of Prediction Model Based on SSA-KELM

When establishing a nonlinear model, the presence of multicollinearity among inde-
pendent variables can compromise the reliability of model testing and lead to unstable
analysis results [39]. In order to analyze the stability of the prediction model, a training set
and a verification set with the same proportions as the modeling set were selected. The
SPAD prediction models based on SSA-KELM and PLSR were tested 100 times at random,
and the mean relative errors (MRE) of the prediction results of the 100 tests were calculated,
as shown in Figure 9.
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Figure 9. Prediction effects of SPAD models established from PLSR and SSA-KELM. PLSR-SPADCL

represents a canopy leaf prediction model based on PLSR, and SSA-KELM-SPADCL represents the
canopy leaf prediction model based on SSA-KELM. PLSR-SPADEL represents the ear position and
leaf prediction model established based on PLSR, and SSA-KELM-SPADEL represents the ear position
and leaf prediction model established based on SSA-KELM. (a) Prediction effects of SPADCL mod-
els. (b) Prediction effects of SPADEL models.

As can be seen from Figure 9a, the mean relative errors of the PLSR-SPADCL model
have a large fluctuation range, with a median of 5.5% and a mean value of 5.8%. However,
the fluctuation range of the average relative errors of the SSA-KELM-SPADCL model
experiences a certain decrease compared with PLSR-SPADCL, with a median of 4.5% and
a mean value of 4.7%, indicating that compared with the PLSR model, the model has
stronger stability when using SSA-KELM for small sample data. At the same time, it can
be seen from Figure 9b that the mean relative errors of the PLSR-SPADEL model have a
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small fluctuation range, with a median of 6.4% and a mean value of 6.3%. However, the
fluctuation range of the mean relative errors of the SSA-KELM-SPADEL model experiences
a certain increase compared with the PLSR-SPADEL model; however, overall, its mean
relative errors are smaller than that of the PLSR-SPADEL model, with a median of 3.9% and
a mean value of 3.8%. This also indicates that the model established using SSA-KELM for
small sample data has stronger stability.

This experiment only examined and analyzed the SPAD values of different spatial
and vertical scales of maize plants at the jointing stage. This period is a relatively vigorous
stage of maize growth and development. Although the chlorophyll content in the canopy
leaf is rapidly accumulating, there is still a significant difference in content compared to
the ear leaf and root leaf. As the growth cycle progresses, the predictions of SPAD values
at different spatial vertical scales in different growth stages, such as the heading stage,
the silking stage, and the filling stage after the jointing stage, require further research and
analysis by scientific researchers [40]. In addition, because the spectral data in this article
are obtained through vertical monitoring with a UAV multispectral camera, the ability to
perceive physiological information of the lower leaves of the maize plant is limited [7]. In
the future, the spectral camera will adjust its angle and height multiple times to capture
a greater amount of spectral information from maize plants in three-dimensional space,
enabling accurate monitoring of physiological data from lower leaves.

4. Conclusions

In this study, SPAD values of summer maize at different spatial scales were modeled
and analyzed based on UAV multispectral image data. The conclusions are as follows.
When establishing SPAD value prediction models for canopy and ear leaves, the prediction
accuracy of the models based on PLSR is inferior to that of the SSA-KELM-based models,
while both are higher than the prediction accuracy of the univariate linear regression
model based on a single vegetation index. Moreover, the models based on SSA-KELM
have superior prediction effects and greater stability. Among them, the R2 of linear fitting
between the predicted values and the measured values of the SSA-KELM-SPADCL model is
0.899, and the RMSE is 1.068. The R2 of linear fitting between the predicted values and the
measured values of the SSA-KELM-SPADCL model is 0.837 and the RMSE is 0.890, which
indicates that the prediction accuracy of SPADEL values based on the SSA-KELM model is
higher than that of SPADCL values.
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