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Abstract: The combination of multi-temporal images and deep learning is an efficient way to obtain
accurate crop distributions and so has drawn increasing attention. However, few studies have
compared deep learning models with different architectures, so it remains unclear how a deep
learning model should be selected for multi-temporal crop classification, and the best possible
accuracy is. To address this issue, the present work compares and analyzes a crop classification
application based on deep learning models and different time-series data to exploit the possibility
of improving crop classification accuracy. Using Multi-temporal Sentinel-2 images as source data,
time-series classification datasets are constructed based on vegetation indexes (VIs) and spectral
stacking, respectively, following which we compare and evaluate the crop classification application
based on time-series datasets and five deep learning architectures: (1) one-dimensional convolutional
neural networks (1D-CNNs), (2) long short-term memory (LSTM), (3) two-dimensional-CNNs (2D-
CNNs), (4) three-dimensional-CNNs (3D-CNNs), and (5) two-dimensional convolutional LSTM
(ConvLSTM2D). The results show that the accuracy of both 1D-CNN (92.5%) and LSTM (93.25%) is
higher than that of random forest (~ 91%) when using a single temporal feature as input. The 2D-CNN
model integrates temporal and spatial information and is slightly more accurate (94.76%), but fails to
fully utilize its multi-spectral features. The accuracy of 1D-CNN and LSTM models integrated with
temporal and multi-spectral features is 96.94% and 96.84%, respectively. However, neither model
can extract spatial information. The accuracy of 3D-CNN and ConvLSTM2D models is 97.43% and
97.25%, respectively. The experimental results show limited accuracy for crop classification based
on single temporal features, whereas the combination of temporal features with multi-spectral or
spatial information significantly improves classification accuracy. The 3D-CNN and ConvLSTM2D
models are thus the best deep learning architectures for multi-temporal crop classification. However,
the ConvLSTM architecture combining recurrent neural networks and CNNs should be further
developed for multi-temporal image crop classification.

Keywords: crop type classification; deep learning; multi-temporal; remote sensing

1. Introduction

Detailed and accurate information on crop-type cultivation is essential for developing
economically and ecologically sustainable agricultural strategies in a changing climate,
and for satisfying human food demands [1]. Multi-temporal remote sensing (RS) images
acquired throughout the growing season provide an effective method for acquiring crop
cover information over large areas [1,2]. Multi-temporal images can be used to distinguish
crop growth states and the phenological characteristics of crops. In addition, they provide
enriched features that allow more complex and stable crop classification tasks. They have
thus seen wide use in the field of agricultural RS [3,4].

Two main strategies are available for multi-temporal crop classification. The first strat-
egy is to stack multi-temporal images by time sequence and classify them with classifiers
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such as support vector machine (SVM), random forest and maximum likelihood [5,6]. How-
ever, this approach does not model temporal correlations and uses features independently,
ignoring possible temporal dependencies [6,7]. Most classifiers such as SVM rely heavily on
features that are not designed for time-series data, making it difficult to exploit any inherent
time-series variability features. In addition, the stacked images increase redundancy and
lead to the dimensionality catastrophe with increasing time-series length, which negatively
affects classification performance [6,8]. The second strategy is to obtain new images from
reflectance images by using spectral indices, such as the normalized difference vegetation
index (NDVI) and the enhanced vegetation index (EVI), and then construct time-series
data to reveal the temporal pattern of the different features. With this method, crops and
other vegetation are classified with high accuracy. However, the classification results of
this method are limited strictly by the number of images in the time-series. If the number is
too small, then the temporal pattern has little effect on classification performance [8]. In
addition, manual feature engineering based on human experience and prior knowledge is
essential with this approach, which increases the complexity of processing and computa-
tion [7,9]. Moreover, the construction of VIs based on the specific spectral features ignores
other spectral bands, which in turn affects the classification performance.

Current multi-temporal RS images are multi-spectral, multi-temporal and multi-
spatial. In multi-temporal images, crops are represented via variations in temporal, spectral,
and spatial features. These features can be comprehensively included in four-dimensional
(4D: time, height, width, and band) data that require classification models to learn and
represent temporal, spectral, and spatial features. Multi-temporal images thus pose new
challenges to the models used for data processing, so integrating multi-temporal images
and continuously improving crop classification accuracy requires continued attention.

Deep learning is a breakthrough technique in machine learning that outperforms
traditional algorithms in terms of feature extraction and representation [5–7], which has led
to its application in numerous RS classification tasks [8–10]. Convolutional neural networks
(CNNs) produce more accurate results than other models in most RS image classification
problems [8,9,11]. The one-dimensional CNN (1D-CNN) model is commonly used to
extract spectral features from hyperspectral images or temporal features from time-series
images, providing an effective and efficient method for crop identification in time-series
RS images [12]. The CNN learning process is computationally efficient and insensitive to
data shifts such as image translation, allowing CNN models to recognize image patterns in
two dimensions (2D) [13]. Three-dimensional (3D) CNN models use the spatial, temporal,
and spectral information in multi-temporal images, and therefore are widely used in
multi-temporal crop classification [11,14]. Long short-term memory (LSTM), a variant of
recurrent neural networks (RNNs), is a natural candidate to represent temporal dependency
over various temporal periods with gated recurrent connections [9,15]. LSTM models
have been widely used for multi-temporal crop classification because they can analyze
sequential data [9,16,17]. For multi-temporal crop classification, both CNN and RNN
provide more accurate results than machine learning and traditional classification [5,9,11].
However, various deep learning architectures produce different results when applied to
multi-temporal crop classification, feature learning and representation of crop spectral,
spatial, and temporal information.

Convolutional LSTM (ConvLSTM) is a type of RNN with internal matrix multiplica-
tion replaced by convolution operations [18]. ConvLSTM, integrating both LSTM and CNN
structures, shows unexpected adaptability to multi-temporal images [19–21]. However,
due to the prevalence of CNNs and RNNs and the requirement for higher data dimen-
sions, the ConvLSTM model is less commonly used in multi-temporal crop classification.
Nevertheless, the potential of the ConvLSTM model deserves further exploration.

To summarize, multi-temporal images pose a new challenge to classification models
in terms of data processing and feature extraction, but also open new opportunities for
using data-driven deep learning to classify RS images. In this work, we use multi-temporal
Sentinel-2 RS images as input data, and analyze the advantages of using such data and the
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structural advantages of various deep learning models. This research investigates (1) the
possibility of using multi-temporal images for more accurately classifying crops; (2) the
contribution of spectral, temporal, and spatial information to multi-temporal crop classifi-
cation; and (3) the potential and requirements of using deep learning for multi-temporal
crop classification. We also (4) search for a feasible and suitable deep learning model that
provides optimum classification accuracy from multi-temporal images. Although such
deep learning models have long been used for RS applications, this work compares and
analyzes multi-temporal crop classification based on the deep learning architectures of
CNN, LSTM, and ConvLSTM.

2. Materials
2.1. Study Area

The study area, Norman county, is located in northwestern Minnesota (Figure 1),
which is a highly productive agricultural state in the United States. Minnesota is in the
Great Plains of the central United States, and agricultural land covers the vast majority
of the study area. The continental climate of the region is cold in the winter and hot and
humid in the summer, with 600 mm/year of precipitation. The highest temperatures occur
in July, and the lowest in January, with an average of 197 sunny days per year. The climatic
and temperature conditions make single-season crop cultivation the main cropping system.
The major crops in this region are corn, soybeans, sugarbeets, and spring wheat, which
are planted in about 89% of the study area. Corn begins being planted at the end of April,
matures in September, and is harvested through October. Soybeans are planted in May and
harvested from mid-September through the end of October. Spring wheat is sown in early
April and harvested from mid-July through August. Sugarbeets are planted in mid-April,
mature in September, and are harvested by the end of October.
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Figure 1. False color image and the Cropland Data Layer (CDL) of study areas.

2.2. Data
2.2.1. Remote Sensing Images

Sentinel-2 images were downloaded from the Sentinel Hub (https://www.sentinel-
hub.com/ (accessed on 28 October 2022)). Cloud-free images from April 2021 to October
2021 were selected to encompass the entire crop growing season. A total of 13 Sentinel-2
images (Tables 1 and 2) were selected as the main input data of the experiment. Data
preparation involved stacking and resampling the 20 m spectral bands to 10 m and the
removal of the coastal band, water vapor, and the cirrus band, accomplished through the
Sentinel Application Platform (SNAP).

https://www.sentinel-hub.com/
https://www.sentinel-hub.com/
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Table 1. Spectral bands of Sentinel-2 images.

Band
Names

Spectral
Band

Central
Wavelength (nm)

Band
Names

Spectral
Band

Central
Wavelength (nm)

Blue B2 490 Red-Edge B7 775
Green B3 560 NIR B8 842
Red B4 665 NIR B8a 865

Red-Edge B5 705 SWIR B11 1610
Red-Edge B6 740 SWIR B12 2190

Table 2. Acquisition time of Sentinel-2 images.

Day of Year (DOY) Acquisition Time Day of Year (DOY) Acquisition Time

112 22 April 2021 230 18 August 2021
137 17 May 2021 235 23 August 2021
150 30 May 2021 242 30 August 2021
165 14 June 2021 257 14 September 2021
192 11 July 2021 270 27 September 2021
207 26 July 2021 295 22 October 2021
225 13 August 2021

2.2.2. Training and Validation Samples

The Cropland Data Layer (CDL) is a crop-type distribution product published by the
United States Department of Agriculture and the National Agricultural Statistics Service.
The 2021 CDL (Figure 1) for Norman County has a spatial resolution of 30 m, and was
obtained from the CropScape website portal (https://nassgeodata.gmu.edu/CropScape/
(accessed on 20 October 2022)). Although the CDL is not the absolute ground truth, it is
the most accurate crop-type product available, especially for corn and soybeans, with over
95% accuracy [22]. In Minnesota, the accuracies for several major crop types are close to
or above 95% [23]. Therefore, a result of visual interpretation of multi-temporal Sentinel-2
images based on CDL data was used to select the crop samples for training and testing our
crop classification model.

Based on the CDL, crop types in the study area were classified as corn, soybeans, sugar
beets, spring wheat, and “other.” The latter category (“other”) includes all surface cover
types except for the four major crops. To ensure the representativeness of the samples and
the data size requirements of the deep learning model, the samples are selected to ensure
that the sample points are distributed throughout the study area, that the central sample
pixel type is consistent with the type of surrounding pixels, and that the sample pixel type
is the dominant type in the local neighborhood. The sample points were created from a
function of randomly created points and labeled by visual interpretation. Table 3 details the
samples used for training the classification model and evaluating the accuracy. To train the
model, the training and validation samples in Table 3 are randomly divided into training
samples and validation samples in a ratio of 7:3.

Table 3. The five categories used in the present study for classification and the number of samples.

Sample Type Training and Validation
Samples Testing Samples

Corn 1481 4096
Soybeans 1487 4738

Spring Wheat 1445 4674
Sugarbeets 1471 4167

Others 1546 5210

https://nassgeodata.gmu.edu/CropScape/
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3. Methodology
3.1. Methodological Overview

The overall workflow of this study is shown in Figure 2. Firstly, we selected samples
as described in Section 2.2.2. Next, different time-series images were constructed for the
subsequent classification experiments (Section 3.2). Multiple deep learning models were
constructed (Section 3.5), in which random forest was used as benchmark model. Details of
the experiments can be found in Section 3.6. Finally, all classification results were validated,
compared and analyzed.
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3.2. Temporal Phenological Patterns

Two main strategies are available to represent the temporal patterns of crops for
multi-temporal image crop classification: (1) time-series VIs constructed from spectral
characteristics, and (2) time-series multi-spectral bands based on spectral stacking [5],
which means stacking multi-temporal images by time sequence. Both strategies have been
used to construct time-series data to represent the temporal characteristics of crops. Given
the sensitivity of the NDVI [24] and EVI [25] to the physiological state of vegetation and
their wide application [5,9], these indices have been used to construct time-series data.
Their formulas are as follows:

NDVI = (NIR − RED)/(NIR + RED) (1)

EVI = G × (NIR − RED)/(NIR + C1 × RED − C2 × BLUE + L), (2)

where G = 2.5, C1 = 6.0, C2 = 7.5, and L = 1.0. NIR, RED and BLUE represent the spectral
reflectance bands of B8(NIR), B4(Red) and B2(Blue) in Sentinel-2 (Table 1).

3.3. Deep Learning Models

A CNN is a multilayer feed-forward neural network. The advantages of local con-
nectivity and weight sharing not only decrease the number of parameters but also reduce
the complexity of the model and make CNNs more suitable for processing numerous
images [9,26]. CNNs may be one-dimensional (1D-CNN), two-dimensional (2D-CNN),
or three-dimensional (3D-CNN), by having convolution kernels of different dimensions.
Sequence data are fed into 1D-CNNs for learning and representing sequence relationships.
Patch-based 2D-CNNs can be used for learning and representing spatial and spectral fea-
tures in images. Cube-based 3D-CNNs correspond to the spectral, spatial, and temporal
features in multi-temporal images [12,14]. The LSTM solves the problems of vanishing
gradient, exploding gradient, and deficiencies in long-term dependency representation
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that appear in RNNs. In LSTM, the gate mechanisms, which include the input gate, output
gate, and forget gate, enhance or weaken the state of the data in the cell for information
protection and control [16,17]. The ConvLSTM model is an improvement and extension of
the LSTM model, wherein matrix multiplication in LSTM is replaced by a convolution at
each gate [20]. The ConvLSTM model combines the structural advantages of LSTM and
CNN, and not only captures the spatial context of the image, but also models the long-term
dependencies in the spectral domain. In addition, inter- and intra-layer data transfer
enables the ConvLSTM to extract features more efficiently than a CNN or LSTM [18,19].

3.4. Sample Dimensions

Limited by the size and dimensions of samples in multi-temporal RS images, classifi-
cation samples contain different spectral, temporal, and spatial information. This study
uses various deep learning models to learn and represent spectral, temporal, and spatial
information from multi-temporal images. The time-series classification data constructed
from VI have only temporal characteristics [9], and their samples are one-dimensional
vectors (Figure 3a). The time-series data constructed directly using multi-spectral, multi-
temporal images are two-dimensional matrices with the shape of (band, time) (Figure 3b).
The time-series data constructed from VIs including the spatial neighborhood are three-
dimensional matrices (Figure 3c) with the shape of (height, width, time). The multi-spectral
features combined with the spatial neighborhood in multi-temporal images produce four-
dimensional matrices with the shape of (time, height, width, band) (Figure 3d). The “time”
in three- or four-dimensional matrices means the number of temporals in time-series.
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3.5. Deep Learning Architectures

The main deep learning classification models used in the study are 1D-CNN, LSTM,
2D-CNN, 3D-CNN, and ConvLSTM2D. The temporal, spectral, and spatial information of
multi-temporal images can be learned and represented by different deep learning models
corresponding to different types of samples. Both 1D-CNN and LSTM models can represent
temporal features, and the model input corresponds to 1D and 2D samples (Figure 3a,b).
1D-CNN (Conv1D) models acquire the temporal patterns of sequence data through a 1D
convolution, and Conv1D layers learn local features by stacking in a shallow network,
whereas a deeper network synthesizes more pattern features within a larger receptive field.
The representation of sequence patterns by LSTM models at different temporal frequencies
is advantageous for analyzing the temporal characteristics within a crop growing season. 3D
times-series samples (Figure 3c) are used as 2D-CNN input, and the Conv2D layer captures
the crop temporal and spatial variations through convolution of the spatial domain and
through time sequences of the multi-temporal images. 3D-CNN convolves multi-temporal
images from different dimensions and represents features of shallow and deep temporal,
spatial, and spectral information of crops by stacking convolutional layers (Conv3D). Like
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LSTM, ConvLSTM2D is sensitive to temporal patterns, and convolutional operations inside
the ConvLSTM2D cell efficiently capture spatial information. The structure (ConvLSTM2D)
learns and represents temporal, spectral, and spatial information similar to that of the
3D-CNN models. Both 3D-CNN and ConvLSTM2D models use 4D time-series samples
(Figure 3d) as model input. Figure 4 shows the different network architectures.
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Because of the versatility and complexity of deep learning architectures, no stan-
dard procedure exists to search for the optimal combination of hyperparameters and the
associated layers [18,19]. As a result, an extremely large number of potential network
architectures must be considered, making it impossible to try them all. In this paper, the
hyperparameter setting and optimization of model are based on strategies from the litera-
ture [8,9]. The hyperparameters of the deep learning models include the type and number
of hidden layers and the number of neurons in each layer. The layer channels are 16, 32, 64,
128, 256 and the sample sizes are 3, 5, 7, 9. The learning rate is 0.01 or 0.05. The length of
the time series is 13. The convolution kernel width is 3 [26,27]. Pooling layers are fixed as
max-pooling, with a window size of 2. Dropout with probabilities of 0.3, 0.5, and 0.8 is a
regularization technique that randomly drops neurons in a layer during training to prevent
the output of the layer from relying on only a few neurons. Each model contains two fully
connected layers at the output end. The last layer contains five neurons corresponding to
the probability of the five classes.

The hyper-parameters are selected and determined step-by-step, based on numerous
training experiments. Each deep learning model (Figure 4) is determined by stepwise
optimization and adjustment [9]. A large number of training experiments have shown
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that the epoch of 400 can meet the training requirements of the model. All deep learning
architectures are trained by a backpropagation algorithm, where the stochastic gradient
descent is used as the optimizer for model training. The parameters of the stochastic
gradient descent are decay = 10 − 5 and momentum = 0.99. The sample size of the
architectures is 9. The learning rate and batch size are 0.01 and 32, respectively. The
dropout probability in LSTM is 0.8. Binary cross entropy serves as the loss function. Deep
learning models were built using the Keras library and TensorFlow. Finally, the confusion
matrix and kappa coefficient from Scikit-learn are metrics for evaluating the accuracy of
crop classification. The calculation of VIs and the construction of time-series data are
implemented in Python.

3.6. Experiment Design

The multi-temporal images are divided into different experimental groups based on
the multiple sample types presented in Section 3.2, and the different deep learning models
are used to classify the crops based on multi-temporal images. Additionally, random forest
is used as a benchmark model in E1, E2, E3 and E6. See Table 4 for details. The B2348
(Table 4) corresponds to the four spectral bands in Table 1. The same applies to the other
features (Table 4).

Table 4. Experiment groups.

Number Features Samples
Dimensions Model

E1 NDVI
1-D time-series 1D-CNN LSTME2 EVI

E3 B2348

2-D time-series 1D-CNN LSTM
E4 B2348 + B11 + B12
E5 B2345678
E6 All Bands

E7 NDVI
3-D time-series 2D-CNNE8 EVI

E9 B2348
4-D time-series 3D-CNN ConvLSTM-2DE10 All Bands

E1 and E2 are time-series VI datasets with temporal features constructed from a single
VI. E3–E6 are multi-temporal images acquired with different spectral combinations. E3 is a
conventional spectral combination of red–green–blue and near-infrared bands. E4 and E5
add shortwave infrared (SWIR) and red-edge spectral bands to E3, respectively. E6 contains
the 10 spectral bands of Sentinel-2 images. 1D-CNN and LSTM models are used for crop
classification with different spectral combinations and to analyze how multi-spectral and
temporal information affect classification accuracy. E7 and E8 are used to classify crops
with a 2D-CNN model, and the comparison with E1 and E2 is designed to quantify the
contribution of spatial information in multi-temporal crop classification. E9 and E10 are
used to classify crops with 3D-CNN and ConvLSTM2D models; E9 uses conventional
spectral bands as input and E10 uses the 10 spectral bands of Sentinel-2 images. The
comparison and analysis of crop classification with the different experimental groups show
how temporal, spectral, and spatial information affect classification accuracy.

4. Results

The accuracy of crop classification via multi-temporal images mainly depends on three
factors: time-series data construction, feature extraction, and classification method. Our
experiments verify the contribution of time-series data and deep learning models. Various
time-series data are constructed based on the strategy presented in Section 3.2 and feed
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into the deep learning architectures (Figure 4) of Section 3.3 for different experiments. The
classification results and accuracies are given in subsequent sections.

4.1. Classification Based on VI Time Series

E1 and E2 in Figure 5 and Table 5 show the results of time-series crop classification
based on NDVI and EVI. The classification accuracies produced by the 1D-CNN (Figure 4b)
and LSTM (Figure 4a) models for E1 and E2 exceed 92%, and the kappa coefficient is greater
than 0.9. The highest overall accuracy (OA) for E2 (LSTM) is close to 94%. Compared
with random forest, deep learning models based on 1D-CNN and LSTM have higher
accuracy (Table 5) and better performance in local regions (Figure 5). These results show
that the 1D-CNN and LSTM models constructed herein are suitable for multi-temporal crop
classification based on VI. Compared with E1, the OA for E2 increases by 0.26% and 0.69%
for the 1D-CNN and LSTM models, respectively. This reflects the variability of different
VIs and the similarity of time-series VI for crop classification. Compared with the 1D-CNN
model, the LSTM model is more accurate; the OA improves by 0.75% and 1.18% for E1 and
E2, respectively. These results show that both the LSTM and 1D-CNN models can capture
temporal features, although the LSTM model is more accurate.

Agriculture 2023, 13, x FOR PEER REVIEW 9 of 19 
 

 

4. Results 

The accuracy of crop classification via multi-temporal images mainly depends on 

three factors: time-series data construction, feature extraction, and classification method. 

Our experiments verify the contribution of time-series data and deep learning models. 

Various time-series data are constructed based on the strategy presented in Section 3.2 

and feed into the deep learning architectures (Figure 4) of Section 3.3 for different experi-

ments. The classification results and accuracies are given in subsequent sections. 

4.1. Classification Based on VI Time Series 

E1 and E2 in Figure 5 and Table 5 show the results of time-series crop classification 

based on NDVI and EVI. The classification accuracies produced by the 1D-CNN (Figure 

4b) and LSTM (Figure 4a) models for E1 and E2 exceed 92%, and the kappa coefficient is 

greater than 0.9. The highest overall accuracy (OA) for E2 (LSTM) is close to 94%. Com-

pared with random forest, deep learning models based on 1D-CNN and LSTM have 

higher accuracy (Table 5) and better performance in local regions (Figure 5). These results 

show that the 1D-CNN and LSTM models constructed herein are suitable for multi-tem-

poral crop classification based on VI. Compared with E1, the OA for E2 increases by 0.26% 

and 0.69% for the 1D-CNN and LSTM models, respectively. This reflects the variability of 

different VIs and the similarity of time-series VI for crop classification. Compared with 

the 1D-CNN model, the LSTM model is more accurate; the OA improves by 0.75% and 

1.18% for E1 and E2, respectively. These results show that both the LSTM and 1D-CNN 

models can capture temporal features, although the LSTM model is more accurate. 

 

Figure 5. Crop classification results based on VI time-series (see red boxes for more detail).



Agriculture 2023, 13, 906 10 of 19

Table 5. Classification accuracy produced by various models with VI time series.

Number Model
Accuracy

OA Kappa

E1
RF 91.02 0.891

1D-CNN 92.50 0.906
LSTM 93.25 0.915

E2
RF 91.24 0.893

1D-CNN 92.76 0.909
LSTM 93.94 0.924

E7 2D-CNN 94.74 0.934
E8 2D-CNN 94.76 0.934

Differences in architecture also affect classification accuracy. Compared with the other
results in Figure 5, the RF-based results (Figure 5a,e) are worse locally, while almost no
salt-and-pepper noises appear in Figure 5c,h. Compared with E1 and E2, the accuracy of
E7 and E8 improved by 0.82% to 2.24%, and the improvement exceeds RF by 3.5%. E7 and
E8 classified by the 2D-CNN model (Figure 4c) produce a favorable overall classification
accuracy of above 94.7% and a kappa coefficient of 0.934, which is attributed to the effective
learning and representation of temporal and spatial information in patch-based time-series
VI data by 2D-CNN.

Figure 5 and Table 5 also show that the classification results based on deep learning
outperform the random forest. However, the misclassification of crop types in Figure 5
indicates that further optimization is still needed. Based on the same model, there is
no significant accuracy difference in E1 and E2. This indicates that improving accuracy
solely using time-series data (temporal features) constructed from a single VI is difficult.
However, the addition of spatial information not only improves crop classification accuracy
but also eliminates salt-and-pepper noise. In addition, the 1D-CNN and LSTM architectures
limit the possibility of exploiting spatial information in multi-temporal crop classification,
whereas the 2D-CNN model produces more accurate crop classification based on single VI
time-series data.

4.2. Classification Based on Multi-Spectral Time Series

Figure 6 and Table 6 show the classification results of E3–E6 based on the time-
series data constructed from multi-spectral, multi-temporal images. The crop classification
accuracy of the 1D-CNN model is less than that of the LSTM model applied to E3–E6,
which is similar to the results of the LSTM model. Therefore, hereinafter, we consider only
the crop classification results based on LSTM.

The input data in E3–E6 have both multi-spectral and -temporal features, differing
only in the number of multi-spectral bands, as explained in Section 3.4. Table 6 shows
that the accuracy of RF-based is lower than deep learning, and Figure 6 also shows that
results of deep learning are better in local areas. The OA of E3–E6 is 95.31%, 96.72%, 96.37%,
and 96.94%, respectively. Compared with E3, the addition of spectral bands, especially
red-edge bands (E5) or SWIR bands (E4), improves the crop classification accuracy, with
SWIR bands contributing slightly more than red-edge bands. Using the LSTM model
with E6 surprisingly remains the most accurate configuration, with the crop-classification
accuracy improving by 1.63% with respect to E3. This indicates that the advantage of the
number of spectral bands in multi-spectral images cannot be neglected. With the addition
of spectral bands, salt-and-pepper noise is eliminated to varying degrees, with the least
salt-and-pepper noise coinciding with the most accurate crop classification (Figure 6f),
indicating that the salt-and-pepper phenomenon is weakened but hardly eliminated by
using multi-spectral bands. Combined with the presentation in Section 4.1, these results
further demonstrate how spatial information affects multi-temporal crop classification.
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Furthermore, the addition of different spectral bands in E3–E6 increases the diversity of
input classification data. In the same experimental group, the accuracy difference between
1D-CNN and LSTM varies from 0.1% to 0.44%, with the minimum difference of 0.1%
presented in E6. However, in the different experimental groups, the accuracy difference of
the same model varies from 1.06% to 1.95%, with E6 showing an accuracy improvement
of nearly 2% compared to E3. In E9 and E3, the spatial information causes differences in
the input data. The accuracy difference between different deep learning models with the
same input data is small, ranging from 0.21% to 0.42%. In contrast, the accuracy difference
between the same models with different input data is larger, ranging from 1.88% to 1.25%.
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This indicates that increasing the diversity of input data is more important for improving
crop classification accuracy than using different deep learning models.

Table 6. Classification accuracy produced by various models and multi-spectral time-series data.

Number Model
Accuracy

OA Kappa

E3
RF 93.48 0.918

1D-CNN 94.89 0.936
LSTM 95.31 0.941

E4
1D-CNN 96.28 0.953

LSTM 96.72 0.959

E5
1D-CNN 96.02 0.950

LSTM 96.37 0.955

E6
RF 95.51 0.944

1D-CNN 96.84 0.960
LSTM 96.94 0.962

E9
3D-CNN 96.77 0.960

ConvLSTM2D 96.56 0.957

E10
3D-CNN 97.43 0.968

ConvLSTM2D 97.25 0.966

Figure 7 and Table 6 present the classification results of E9 and E10 using the 3D-CNN
(Figure 4d) and ConvLSTM2D (Figure 4e) models. The OA of 3D-CNN in E9 and E10 was
96.77% and 96.56%, respectively, with kappa coefficients of 0.960 and 0.957. The OA of
ConvLSTM2D in E9 and E10 was 97.43% and 97.25%, respectively, with kappa coefficients
of 0.968 and 0.966. The accuracy is slightly greater when using the 3D-CNN model than
when using the ConvLSTM2D model. The use of the 3D-CNN model on E10 produces
the greatest crop classification accuracy of 97.43%, which translates into an OA improved
by 3.69%, 2.67%, 0.49%, and 4.93% with respect to E2 (LSTM), E8 (2D-CNN), E6 (LSTM),
and E1 (1D-CNN), respectively. Compared with the E6 (LSTM), the salt-and-pepper noise
is eliminated in E9 and E10 (Figure 7b,d), although the improvement in accuracy is not
obvious. E10 produces more accurate results than E9 because it contains more spectral
bands in the input data.

The classification results of the different experiments verify the feasibility of the model
constructed herein (Figure 4) for multi-temporal crop classification. The comparison of
the results of the different experiments shows that both the construction of the time-series
data and that of the classification model influence the crop classification accuracy. The
LSTM model produces more accurate crop classification results than the 1D-CNN model.
However, when using time-series data constructed from VIs, the 2D-CNN model produces
more accurate results than the 1D-CNN and LSTM models after the elimination of the
salt-and-pepper noise. When using time-series data constructed by stacking spectral
bands, increasing the number of bands in the input data improves the crop classification
accuracy while somewhat reducing the salt-and-pepper noise. Additionally, the LSTM
model again produces slightly more accurate crop classifications than the 1D-CNN model,
which indicates that the LSTM model is more able to capture temporal features.

E10 treated by the 3D-CNN and ConvLSTM2D models (Figure 4) produces the most
accurate crop classification of all experiments. In addition, the architectures of the 3D-
CNN and ConvLSTM2D models lead to better learning and representation for multi-
temporal crop features, making these models more suitable for crop classification from
multi-temporal images.



Agriculture 2023, 13, 906 13 of 19Agriculture 2023, 13, x FOR PEER REVIEW 13 of 19 
 

 

 

Figure 7. Crop classification results based on temporal, spectral, and spatial information. 

The classification results of the different experiments verify the feasibility of the 

model constructed herein (Figure 4) for multi-temporal crop classification. The compari-

son of the results of the different experiments shows that both the construction of the time-

series data and that of the classification model influence the crop classification accuracy. 

The LSTM model produces more accurate crop classification results than the 1D-CNN 

model. However, when using time-series data constructed from VIs, the 2D-CNN model 

produces more accurate results than the 1D-CNN and LSTM models after the elimination 

of the salt-and-pepper noise. When using time-series data constructed by stacking spectral 

bands, increasing the number of bands in the input data improves the crop classification 

accuracy while somewhat reducing the salt-and-pepper noise. Additionally, the LSTM 

model again produces slightly more accurate crop classifications than the 1D-CNN model, 

which indicates that the LSTM model is more able to capture temporal features. 

E10 treated by the 3D-CNN and ConvLSTM2D models (Figure 4) produces the most 

accurate crop classification of all experiments. In addition, the architectures of the 3D-

CNN and ConvLSTM2D models lead to better learning and representation for multi-tem-

poral crop features, making these models more suitable for crop classification from multi-

temporal images. 

Combined with the previous analysis of classification accuracy, VI time-series data 

using only temporal information only slightly improves the crop classification accuracy. 

The addition of multi-spectral data based on temporal information improves crop classi-

fication accuracy, and the salt-and-pepper noise is more easily alleviated upon increasing 

the number of spectral bands. As the number of input features increases, the contribution 

of spatial information in improving classification accuracy decreases. However, the elim-

ination of salt-and-pepper noise through the use of spatial information remains a clear 

advantage in crop mapping. Therefore, making full use of the temporal, spectral, and spa-

tial information is a more feasible strategy for multi-temporal crop classification. The deep 

Figure 7. Crop classification results based on temporal, spectral, and spatial information.

Combined with the previous analysis of classification accuracy, VI time-series data
using only temporal information only slightly improves the crop classification accuracy.
The addition of multi-spectral data based on temporal information improves crop classifi-
cation accuracy, and the salt-and-pepper noise is more easily alleviated upon increasing
the number of spectral bands. As the number of input features increases, the contribution
of spatial information in improving classification accuracy decreases. However, the elim-
ination of salt-and-pepper noise through the use of spatial information remains a clear
advantage in crop mapping. Therefore, making full use of the temporal, spectral, and
spatial information is a more feasible strategy for multi-temporal crop classification. The
deep learning architecture fed with 4D data involving multi-temporal images is thus the
best model for accurate crop classification based on multi-temporal images.

5. Discussion
5.1. Analysis of Time-Series Profile

Figure 8 shows the temporal profiles of crops produced by VIs and spectra. The
buffer areas of crop profiles overlap throughout the growing season, despite the difference
in average reflectance or VI values. In the middle of the growing season, the spectral
overlap within the crop becomes smaller (~DOY 200–220) than in the early or late growing
season. During this period, the temporal curves of crops with one standard deviation
are more stable and distinguishable, which indicates that this feature should be useful
for differentiating between crops. In addition, the temporal windows always serve for
single-temporal crop classification [28]. However, the similarity and overlap of profiles
over the whole growing season make it difficult to distinguish crops such as corn and
soybeans based solely on single images [1,2].
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Figure 8. Time-series spectral band and vegetation indices are aggregated for crop fields. The buffers
indicate one standard deviation calculated from the fields.

The differences in the time series curves (Figure 8) between crops in different spectral
ranges and time periods make it possible to distinguish between crops [29]. For example,
the gap in B8 (Figure 8) during the middle growing season (≈DOY 180–220) makes it
possible to distinguish between spring wheat and sugar beets. Figure 8 shows that almost
no spectral overlap occurs between corn and soybeans in B11 and B12 during the period of
time (≈DOY 170–200). The gap observed in the profiles of sugarbeets and other crops in
bands B6-B8 and B8A, as shown in Figure 8, occurs during two periods of time, which are
around DOY 180–220 and 250–270. Spring wheat can be directly distinguished from profiles
in B2–B5 (Figure 8) around DOY 225 and in B11 and B12 in the period DOY 210–240. Corn
and soybeans can be differentiated with greater probability in the period DOY 170–200 in
B11 and B12. In addition, the overlap in temporal profile based on the NDVI is similar to
the other spectra in Figure 8. The profiles of corn and soybeans almost overlap over the
entire growing season, which explains the difficulty of distinguishing between these two
crops [3,4]. The profiles of sugarbeets and spring wheat clearly differ between DOY 260
and 170.

As previously mentioned, time-series images based on single VI or band are insuffi-
cient to accurately distinguish between different crops. However, different crops exhibit
spectral differences in the time-series curves of each spectral band (Figure 8), indicating the
potential of each spectral band to distinguish between different crops. Better utilization of
the advantages of multi-spectral bands has greater potential to improve the accuracy of
crop classification [30]. The addition of different types of spectral bands such as red-edge
and SWIR has reinforced this conclusion in classification experiments [9].

5.2. Effects of Temporal, Spectral, and Spatial Feature

The effects of temporal, spectral, and spatial information on crop classification are
revealed in the different time-series data. The crop classification results due to the different
time-series classification data are shown in Figures 5–7 and Tables 5 and 6. Using only
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temporal features may not be sufficient for accurate crop classification due to salt-and-
pepper noise (Figures 5 and 6), which can affect pixel-based classification. Fully exploiting
the abundant spectral and spatial information in multi-temporal images can be challenging
when using only VI, but it provides more possibilities for improving accuracy. [5,31] pointed
out that spatial features such as texture can lead to good classification performance, and a
similar result occurs for 2D-CNN classification (Figure 5). In addition, based on the analysis
in the previous sections, the contribution to the accuracy of spatial information such as
texture [9,32] decreases as the number of input features increases. Moreover, the spatial
information contributes significantly to the classification accuracy for a feature input of a
single VI. [8] also suggested that more information-dense data are required to improve the
crop-classification accuracy based on multi-temporal images. The diversity of information
and the differences in time-series data depicted in Figure 8 provide more possibilities for
accurate classification and can alleviate the salt-and-pepper phenomenon. Nevertheless,
spatial information remains a vital ingredient to eliminate salt-and-pepper noise.

5.3. Comparison of Deep Learning Models

The temporal dependencies in multi-temporal images are long term and complex,
and crops have unique temporal, spectral, and spatial features (Figure 8). Sufficient model
complexity and automated feature learning and representation satisfy the data-processing
needs of models in multi-temporal crop classification [9,12]. Differing from the result
that 1D-CNN accuracy is higher than that of LSTM [9], increasing the number of spectral
bands in this work causes the accuracy of 1D-CNN to be close to that of LSTM. This
indicates that input features and application scenarios (more crop types) may also affect
the accuracy of the classification. The architecture of 2D-CNN models is limited by their
structure, meaning that they can only accept time-series data constructed by a single VI
or spectral band as input. This prevents 2D-CNN models from exploiting multi-spectral
information. The analysis in Section 4 also points out that 2D-CNN models are less accurate
than 1D-CNN and LSTM models using multiple spectral bands. In contrast with 2D-CNN
models, both 3D-CNN and ConvLSTM2D models require 4D data that perfectly fit the
temporal, spectral, and spatial features. The classification results (Figures 7 and 9) of
3D-CNN and ConvLSTM2D models are also significantly more accurate and stable than
other comparative models. [30] also pointed out that models such as 3D-CNN should be
considered for crop classification from multi-temporal images.
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As described in Section 3.5, each model is trained extensively to achieve the best
classification results. Therefore, the parameters of deep learning models in this work will
likely need to be adjusted to achieve satisfactory accuracy for other classification tasks.
Additionally, numerous model training experiments are necessary in this process.
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5.4. Potential of 3D-CNN and ConvLSTM2D for Crop Classification from Multi-Temporal Images

Crop classification from multi-temporal RS images often has a time lag due to data
acquisition [5,6]. However, time-series data can alleviate this issue, whereby different
objects have the same spectrum, and the same objects have different spectra in the back-
ground of relatively complex crop cultivations. Previous analyses also revealed that fully
exploiting the temporal, spectral, and spatial information in multi-temporal images should
be a major avenue to improve classification accuracy. 3D-CNN and ConvLSTM2D models
can integrate multi-temporal information and have advantageous structures not found
in other models such as 2D-CNN and SVM [11,19]. The best classification accuracies are
provided by 3D-CNN and ConvLSTM2D models, and exceed 97% (Table 6). Figure 10
shows the strong correlation between the results obtained herein and the CDL for the area
ratio of different crops. It also shows potential applications for crop classification based on
multi-temporal images.
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vertical label. The scatter points mean the fraction of different crop over the study area. The red line
reflects the consistency of crop area between the classification results and the CDL.)

Different network structures in deep learning models such as inception [33], dropout [8],
and transformer [34] all enhance the feature learning and representation capabilities of the
network. Deep learning models (Figure 4) are constructed by simple stacking of modules,
so they lack special design for multi-temporal images and cannot treat scale effects [35]
in images. In addition, information redundancies (Figure 8) with high inter-band simi-
larity must be considered. Both architectures have inherent advantages for processing
multi-temporal images. Although ConvLSTM2D has fewer applications in multi-temporal
image crop classification than 3D-CNN [14], the results of this study show that this model
approaches the classification capability of 3D-CNN. References [13,36] pointed out that
3D-CNN is not suitable for establishing long-term dependencies of time-series data due
to locally computed convolutions, whereas ConvLSTM2D combines the sequence pro-
cessing capability of LSTM and the structure of CNN, which facilitates the addition of
multiple special structures and modules so that it can be exploited to classify crops from
multi-temporal images.

6. Conclusions

This paper constructs various time-series datasets based on Sentinel-2 multi-temporal
images by VI or spectral stacking, and develops deep learning models with different
structures for classifying crops from multi-temporal images. The results lead to the follow-
ing conclusions:

(1) Greater data diversity (temporal, spectral and spatial information) is effective in
improving crop classification accuracy. The temporal feature only provides limited
improvement in the accuracy of crop classification from multi-temporal images. As
more spectral information is added, the accuracy can be further improved, and the
impact of salt-and-pepper noise can be alleviated. The inclusion of spatial information
can eliminate salt-and-pepper noise, and its contribution to accuracy decreases as the
number of input features increases.
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(2) Various deep learning models have limitations in crop classification from multi-
temporal images. 1D-CNN and LSTM models cannot extract spatial features while
integrating temporal and spectral features. Additionally, a 2D-CNN is suitable for crop
classification of time-series data given a single feature such as a VI or band because
the multi-spectral advantages are hard to consider when combining temporal and
spatial information. The 3D-CNN and ConvLSTM2D models are the most accurate
for classifying crops and are more suitable for multi-temporal crop classification than
other deep learning models.

(3) The deep learning models based on Conv3D and ConvLSTM2D, which integrate
temporal, spectral, and spatial information, are the most accurate models for multi-
temporal crop classification. In addition, the advantages of incorporating RNN and
CNN and the more flexible structure mean that ConvLSTM should be investigated.

In this paper, smaller areas and simple crop types are used for deep learning multi-
temporal crop classification application studies. In future research, crop classification
based on deep learning is still needed for large-scale study areas and complex planting
systems, such as crop rotation and more crop types. In addition, the impact of clouds on
image acquisition is difficult to avoid. While the acquisition of synthetic aperture radar
(SAR) is not affected by clouds, which can also increase the diversity of classification data.
Therefore, research into crop classification by synergistic SAR and optical images with
different acquisition frequencies will be carried out. Additionally, the ConvLSTM model
will be used as the classification model to explore its potential in multi-source image crop
classification.
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