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Abstract: Harvesting is an integral component of the agricultural cycle, necessitating the use of
high-performance grain harvester combines, which are utilized for a short period each year. Given
the seasonality and significant cost involved, list prices ranging from a quarter to almost a million
euros, a fact-based investment assessment decision-making process is essential. However, there is
a paucity of research studies forecasting the remaining value of grain harvester combines in recent
years. This study proposes a straightforward methodology based on public information that employs
various parametric and non-parametric models to develop a robust and user-friendly model that can
assist decision makers, such as farmers, contractors, sellers, and finance and insurance entities, in
optimizing their harvesting operations. The model employs a power regression mode, with RMSE of
1.574 and RSqAdj of 0.8457 results, to provide accurate and reliable insights for informed decision-
making. The robust model transparency enables us to easily create a mainstreamed spreadsheet-based
dashboard tool.

Keywords: agricultural harvester combines; previously owned; second hand; residual value;
depreciation; cost of ownership; cost of operation

1. Introduction

Making the right investments in capital assets, such as machinery, is critical to long-
term success [1]. Due to the seasonal nature of agricultural work, agricultural machinery is
used during brief time periods during the year. Machinery costs include the cost of owner-
ship, operation, and penalties for lack of timeliness. Ownership costs include depreciation
of the machine, interest on the investment and cost of taxes, insurance, and housing of the
machine. Depreciation is the reduction in the value of a machine value with time and use.
It is often the largest single cost of machine ownership [2].

The harvesting operation, cutting, threshing, separating, cleaning, and residue man-
agement of the grain (rice, wheat, corn, soybeans, barley, oats, sorghum, dry beans, canola,
etc.) can be performed by one machine in a single pass over the field commonly known as
combines [3].

Drawing from the analysis of [4], as reported by [5], it is noteworthy that combines
rank third in Euros among the largest agricultural machinery categories, following tractors
and machine parts (Figure 1). Given this significant contribution to the agricultural sector,
it is imperative to focus on forecasting the remaining value of combines.

Having a thorough understanding of the combine cost of ownership is paramount to
establishing the most efficient usage strategy as it is the key factor in order to opt (1) to
acquire the good by means of either paying in full or using conventional finance schemes
or financial leases; (2) to acquire the usage by means of either operational leases or machine
rental; or (3) acquire the task by means of custom hiring the requested task. The usage
strategy evaluation might have consequences on the machine type selection (tangential
or axial separation and/or threshing), machine size (therefore, performance), brand and
model, as it might be different for each of the above-mentioned usage strategies.
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Isaac et al. (2006) created a combine harvester econometric model to determine the
maximum harvested net income and the optimum forward speed for a given harvesting
scenario. For the base case, the machinery cost was 48% of the total harvest cost, and
the combine ownership cost was the highest machinery cost, comprising 40% of the total
harvest cost [6].

The current manufacturer’s portfolio offering has a list price from slightly above a
quarter million EUR to slightly below one million EUR (Figure 2); therefore, it is quite an
investment that requires thorough analysis.
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1.1. Previous Studies

When compared to the passenger car industry in Europe [7], the number of used
combine sales in the region is relatively small [8]. The amount of large passenger car
operators (financing, leasing, and renting entities) as well as independent pre-owned
passenger car resellers is vastly superior to that of the agricultural machinery and even
more so to combines. Moreover, the statistical sample of used combine sales is significantly
fragmented due to the extensive variety of available models and options. This high level
of fragmentation, in conjunction with the limited availability of large datasets, makes it
challenging to access the requisite information for conducting comprehensive empirical
studies [9]. As a result, researchers and industry practitioners alike face significant hurdles
in gaining a clear understanding of the European used combine market and the factors
that affect its performance. Therefore, it is imperative that future studies adopt rigorous
research methodologies and utilize a broad range of data sources to obtain more accurate
and detailed insights into this market.

Several studies have been conducted to develop models that accurately predict the
residual value of agricultural equipment, such as combines. The models proposed by
ASAE in 1979 and Weersink and Sauber in 1983 [9] were both based on age, with the latter
also taking into account engine type and power, brand, usage, and technological level.
These models were exponential in nature. In 1981, Leatham and Baker [10] developed a
Cobb–Douglas model based on age, header size, and manufacturer.

Cross and Perry conducted several studies in the 1990s [11,12] that explored different
variables, such as usage, condition, auction typology, geographical location, and economic
indicators. They developed models using Box–Cox and double square root transformations.
In 1996, Unterschultz and Mumey [13] used a Cobb–Douglas model based on age and
manufacturer.

More recently, in 2004, Wu and Perry [14] developed a Box–Cox model based on age,
production year, and manufacturer. In 2020, Kay, Edwards, and Duffy [15] developed a
model based on ASABE [16], which, in turn, was based on Cross and Perry’s double square
root from 1996 [12]. It is clear that there is a necessity to update the grain harvester and
combine the remaining value analysis.

1.2. Current Issues

The manufacturer’s product portfolio has evolved in complexity to the extent that
it includes similar engine power, threshing, separating, cleaning, grain and residue man-
agement systems, as well as traction systems (wheels and tracks) that exert a significant
influence on the selling price (Table 1).

Table 1. A 300 kW combine list price (List Price relative to B|Ca|005 most cost-sensitive proposition
as 1).

Model
Identifier *

Engine Power
(kW) Threshing Separation Grain Tank (L) Cutting Width

(m) List Price

B|Ca|005 300 Tangential 6 walkers 10,500 6.8 1
B|Ca|005 300 Tangential 6 walkers 12,000 6.8 1.03
B|Ca|005 300 Tangential 6 walkers 11,000 6.2 1.12
B|Cb|005 300 Tangential 6 walkers 12,000 6.8 1.21
B|Cb|001 300 Tangential 1 rotor 11,000 7.7 1.13
B|Cb|001 300 Tangential 1 rotor 11,000 7.7 1.26
B|Cb|001 300 Tangential 1 rotor 12,000 7.7 1.31
B|Ba|007 300 Tangential 5 walkers 10,000 4.3 1.13
B|Ba|005 300 Tangential 6 walkers 10,000 5.4 1.21
B|Bb|005 300 Tangential 6 walkers 10,000 5.4 1.41
B|Aa|003 300 Tangential 5 walkers 10,000 5.4 1.09

* The anonymization of model information is implemented to prevent the potential influence of any partiality
related to these factors.
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Divergent demands from the market for various productivity, efficiency, maintenance,
and repair requirements arise due to the distinct characteristics of the engine power, thresh-
ing, separating, cleaning, and grain and residue management systems, as well as traction
systems (wheels and tracks) in combines, even if they possess the same engine power,
resulting in differing residual values. Consequently, assessing the residual value of these
varied combines solely based on their engine power might pose challenges.

The lifespan of the combine series is considerably influenced by the off-road diesel
engine emission regulations [17–20] established by the European Commission (EC). Mean-
while, the off-road diesel emission regulations have impacted the cost [21,22], and it is
not farfetched to assume that new emission regulations will incur additional associated
costs [23], despite the implementation of the latest European emission regulation. The
implementation cost of the off-road diesel engine emission regulations exhibits a significant
increase due to the allocation of fixed costs to a smaller number of engines, as depicted in
Figure 3.
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Figure 3. Combine list prices in Germany compared to Euro zone inflation (HICP) (1997 HICP and
price increase value reference as 1).

1.3. Goal

The primary objective of this research is to devise a residual value computation ap-
proach and framework that adequately fulfills three fundamental requisites. Firstly, the
model must rely solely on publicly available information to ensure accessibility for all stake-
holders, including owners, users, marketers, financiers, and insurers. Secondly, the model
should offer robust forecasting capabilities to support informed decision making regarding
usage strategies. Finally, to facilitate ease of use, the model must have low cognitive re-
quirements, enabling all stakeholders to make fact-based decisions on optimizing the input
and output relationship of grain harvester combines from the leading Original Equipment
Manufacturers (OEMs), including Claas, John Deere, and New Holland, in the primary
markets of Western Europe [8]. Through developing such a model, this study aims to
provide a valuable tool to support decision making in the grain harvester combine market,
thereby enhancing the productivity and profitability of stakeholders in this industry.
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2. Materials and Methods
2.1. Dataset

In order to conduct a thorough analysis, it is essential to have access to accurate and
comprehensive data. Unfortunately, there is currently a lack of transactional European
information on combines, making it challenging to perform a proper analysis [8].

Therefore, this study relies on data from professional retailers who advertise their
grain combine harvesters on online platforms, such as https://www.agriaffaires.com/,
https://www.mascus.com/, and https://www.tractorpool.com/ (retrieved 15 July 2022).
The data is limited to machines manufactured by Claas, John Deere, and New Holland
and advertised in Austria, Belgium, Denmark, Finland, France, Germany, Italy, Lithuania,
Netherlands, Norway, Poland, Spain, Sweden, and the United Kingdom.

To ensure data accuracy, the grain combine harvester models was aligned with the
original equipment manufacturer’s official nomenclature, and redundant advertisements
were removed.

To estimate the transactional values of agricultural used equipment in a specific set of
countries, interviews were conducted with subject matter experts familiar with the local
markets. These experts confirmed that the average surrendered negotiating gap in these
markets was approximately 10%, depending on various factors, such as sales terms and
conditions, trade-in value, machine appeal, and proximity to the end of the sales window.
This negotiating gap value was subsequently used to transform the advertised prices of
the agricultural used equipment gathered from the relevant web portals into estimated
transactional values.

To validate the accuracy of the estimated transactional values, further enquiries and
appraisals were conducted, which confirmed the results of the advertised to transactional
price conversion. The consulted subject matter experts also provided valuable insights into
the local market dynamics and the factors influencing the negotiation process.

The use of subject matter experts to estimate transactional values in the agricultural
used equipment market proved to be a reliable and effective approach. By leveraging their
expertise and insights into the local market conditions and negotiation practices, it has been
possible to estimate transactional values with a high degree of accuracy, even in markets
where comprehensive data is not readily available.

The resulting dataset consists of 1197 unique combine observations, with particular
attention paid to data standardization, parsing, and deduplication (data enrichment was not
necessary as only advertisements including age, hours and (“&”/”ˆ”) price were collected).

2.2. Data Systematization and Preprocessing

Calculating the residual value (RV), as described by Herranz-Matey and Ruiz-Garcia [24],
gives the following equation:

RV =
Used tractor retail price (EUR)
Equivalent new tractor (EUR)

(1)

2.2.1. New Equivalent Combine

In the context of combine models, a series refers to a group of combines that share
fundamental features, such as wheelbase and mass, separating, threshing, and grain and
residue management systems, and are primarily distinguished by their engine power.
With technological advancements, newer series is introduced with enhancements aimed
at improving efficacy and/or efficiency. However, the new series may not always have a
direct replacement model with similar features to the older series, which may have been
discontinued due to changes in technology. The retail price of a new model in a series
includes inflation changes, regulatory compliance costs, and additional features deemed
necessary by the market (see Table 2).

https://www.agriaffaires.com/
www.mascus.com/
https://www.tractorpool.com/
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Table 2. Model genealogy sample.

Model Year Power (kW) Threshing Separating Grain Tank (L)

Current model 2022–2023 260 Tangential 6 walkers 10,500
Predecessor 1 2018–2021 230 Tangential 6 walkers 10,000
Predecessor 1 2007–2009 191 Tangential 6 walkers 8500
Predecessor 2 2003–2006 180 Tangential 6 walkers 8200
Predecessor 3 2000–2003 180 Tangential 6 walkers 8200
Predecessor 4 1996–1996 176 Tangential 6 walkers 8000
Predecessor 5 1995–1995 176 Tangential 6 walkers 7500

Acquiring the retail price of contemporary models is relatively effortless for the domain
experts who will employ the methodology outlined in this investigation, as it can be accessed
through certain manufacturers’ websites and/or obtained through a dealer’s quotation.

2.2.2. Combine Family

Manufacturers include some price-impacting options, such as land-leveling machines,
flat level, tires, or rubber tracks are included in the names, while others include the several
threshing and or separating systems in the model name, whereas others do not.

In addition, there is variability in the number of sales across different product lines,
which results in distinct discrepancies in online advertisements. This allows for the subdivi-
sion of the product lines into several families that share common features and specifications
(see Table 3).

Table 3. Family model details.

Brand
Identifier

Family
Identifier Threshing Separation Engine

Power (kW)
Grain Tank
Volume (L)

B

B|Aa Tangential 5 walkers 359–581 12,500–15,000
B|Ba Tangential 5 walkers 300–404 10,000–12,500
B|Da Tangential 6 walkers 260–373 10,000–12,500
B|Ca Tangential 5 walkers 230–300 9000–10,000
B|Ea Tangential Rotary 270–320 10,500–12,000
B|Fa Tangential 6 walkers 225–300 9000–12,000
B|Ga Tangential 5 walkers 190–225 8000–9000

D

D|Aa Axial Rotary 470–515 14,800–16,200
D|Ba Axial Rotary 335–460 10,600–14,100
D|Ca Tangential 6 walkers 285–335 9000–11,000
D|Da Tangential 5 walkers 224–285 8000–10,000

F

F|Aa Axial Rotary 305–420 9500–12,500
F|Ba Tangential Rotary 333–333 9300–9300
F|Ca Tangential 6 walkers 275–360 9500–12,500
F|Da Tangential 5 walkers 250–275 9000–10,000
F|Ea Tangential 6 walkers 220–250 9300–9300
F|Fa Tangential 5 walkers 190–220 8300–8300

Integrating the new equivalent combine and combine family has played a crucial role
in consolidating a dataset of 1197 combines for this research.

2.3. Data Analysis

The aim of this study is to achieve the most accurate results possible by utilizing
accessible tools and methodology. However, to ensure that the best results are obtained,
it is essential to evaluate more advanced models and tools. Therefore, various models
and subtypes were assessed, as previously mentioned, by utilizing different variables and
validation methods.
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The models analyzed included ensemble methods (Bagged Trees and Boosted Trees),
Gaussian Process Regression (GPR) (Exponential, Matern 5/2, Rational Quadratic, Squared
Exponential), Kernel (Least Square Regressions and Supported Vector Machines), Linear
Regressions (Linear and Robust Linear), Neural Network (Bilayered, Medium, Narrow,
Trilayered and Wide), Supported Vector Machine (SVM) (Coarse Gaussian, Cubic, Fine
Gaussian, Linear, Median, and Quadratic), and Tree (Fine and Medium).

The fitted models were tested with varying numbers of predictor variables, ranging
from 2 (age and hours by tractor family) to 9 (age, hours, model, current equivalent model,
brand, country, wheelbase, and engine power).

Cross-over validation (3, 5, 7, and 9 folds) and holdout validation (5%, 10%, 15%,
20%, and 25%) were used with 5% test data, and machine learning optimization was
incorporated.

In addition, the following parametric models were evaluated for all the combine
families.

Linear (lin-lin):

RV = Coe f A + Coe fB·Hours + Coe fC·Age (2)

Logarithmic (lin-log):

RV = Coe fA + Coe fB·ln(Hours) + Coe fC·ln(Age) (3)

Power (log-log):
RV = Coe fA·Coe f Hours

B ·Coe f Age
C (4)

Exponential (log-lin):

RV = Coe fA·eCoe fB · Hours ·eCoe fC · Age (5)

Double square root:

RV =
(

Coe fA + Coe fB·
√

Hours + Coe fC·
√

Age
)2

(6)

Polynomial 12:

RV = CA + CB·Hours + CC·Hours2 + CD·Age + CE·Age·Hours (7)

Polynomial 21:

RV = CA + CB·Hours + CC·Age + CD·Age2 + CE·Age·Hours (8)

Polynomial 22:

RV = CA + CB·Hours + CC·Hours2 + CD·Age + CE·Age2 + CF·Age·Hours (9)

In this regression analysis, the performance of different models was evaluated using
the Root Mean Squared Error (RMSE) and Adjusted Coefficient of Determination (RSqAdj)
metrics. RMSE was chosen to standardize the error in the same units as the outcome
variable, facilitating the interpretation of the model’s accuracy. A lower RMSE value
indicates a closer fit of the model to the regression line, thus higher accuracy. When a model
is perfectly accurate, the RMSE value will be zero.

The adjusted coefficient of determination (RSqAdj) metric is a better evaluation mea-
sure than coefficient of determination (RSq), as it accounts for the number of predictor
variables used to predict the dependent variable. RSqAdj is a statistical measure that
indicates the proportion of variance in the dependent variable explained by the regression
model. In contrast, the RSqAdj considers the number of predictor variables used and
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adjusts the RSq value to penalize the inclusion of irrelevant variables that may inflate the
RSq value [25].

3. Results

The performance of various models with different numbers of predictors was assessed
using Root Mean Square Error (RMSE) as the evaluation metric. The results indicated that
models with seven predictors outperformed those with three, five, and other predictors. Ad-
ditionally, hold-out validation produced better RMSE values compared to cross-validation.
Among the different types of models tested, Exponential Gaussian Process Regression
(GPR) exhibited the most consistent RMSE results across all variables and validation meth-
ods. Specifically, the best non-parametric model was identified as Exponential Gaussian
Process Regression with 7 predictors and 5% hold-out validation, as it yielded the best
RMSE and RSqAdj results (as indicated by rhomboid dots in Figure 4).

Agriculture 2023, 13, 894 8 of 15 
 

 

In contrast, the RSqAdj considers the number of predictor variables used and adjusts the 
RSq value to penalize the inclusion of irrelevant variables that may inflate the RSq value. 
[25]. 

3. Results 
The performance of various models with different numbers of predictors was as-

sessed using Root Mean Square Error (RMSE) as the evaluation metric. The results indi-
cated that models with seven predictors outperformed those with three, five, and other 
predictors. Additionally, hold-out validation produced better RMSE values compared to 
cross-validation. Among the different types of models tested, Exponential Gaussian Pro-
cess Regression (GPR) exhibited the most consistent RMSE results across all variables and 
validation methods. Specifically, the best non-parametric model was identified as Expo-
nential Gaussian Process Regression with 7 predictors and 5% hold-out validation, as it 
yielded the best RMSE and RSqAdj results (as indicated by rhomboid dots in Figure 4). 

 
Figure 4. Nonparametric tested models, validations, and predictors with best RMSE and RSqAdj 
results. 

Thus, the optimal non-parametric model was determined to be the Exponential 
Gaussian Process Regression with 7 predictors, validated using 5% hold-out, with an 
RMSE of 0.0557 and an RSqAdj of 0.9281. 

In light of the suggested methodology for power regression models that rely on two 
predicting variables of combine families, it became necessary to examine more sophisti-
cated models. To this end, the combine families that yielded the best power regression 
model Root Mean Square Error (RMSE) results were subjected to the same fitted models, 
with a 5% hold-out validation serving as the data sets. 

The Optimized Gaussian Process Regressions of the combine family grouped two 
predictors (age and hours) for the considered combine families. The results were consist-
ently favorable for each of the combine families. (Figure 5). 

Figure 4. Nonparametric tested models, validations, and predictors with best RMSE and RSqAdj
results.

Thus, the optimal non-parametric model was determined to be the Exponential Gaus-
sian Process Regression with 7 predictors, validated using 5% hold-out, with an RMSE of
0.0557 and an RSqAdj of 0.9281.

In light of the suggested methodology for power regression models that rely on two
predicting variables of combine families, it became necessary to examine more sophisticated
models. To this end, the combine families that yielded the best power regression model
Root Mean Square Error (RMSE) results were subjected to the same fitted models, with a
5% hold-out validation serving as the data sets.

The Optimized Gaussian Process Regressions of the combine family grouped two pre-
dictors (age and hours) for the considered combine families. The results were consistently
favorable for each of the combine families (Figure 5).
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best RMSE and RSqAdj results.

We recommend the power regression model (5), as it offered the best RMSE and
RSqAdj determination results (Table 4 and Figure 6).

Table 4. Combine power regression results.

Brand Identifier Family Identifier RMSE RSqAdj n

B

B|Ba 0.0757 0.9689 202
B|Bb 0.0253 0.9569 88
B|Ca 0.0889 0.9176 195
B|Da 0.0096 0.7753 26
B|Ea 0.1046 0.9557 85
B|Fa 0.0107 0.9505 60
B|Ga 0.1806 0.9574 35

D

D|Ba 0.1696 0.9536 36
D|Ca 0.1002 0.8040 25
D|Da 0.1339 0.9595 65
D|Ea 0.0495 0.9075 49
D|Fa 0.3279 0.9584 75
D|Ga 0.1492 0.9639 51

F

F|Ba 0.0450 0.9610 47
F|Ca 0.0425 0.9698 48
F|Da 0.0153 0.9575 9
F|Fa 0.0161 0.9799 48
F|Ga 0.0415 0.9565 24
F|Ha 0.0297 0.9680 26
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Figure 6. Combine power regression results.

The combine family grouped two predictors (age and hours) of the considered com-
bine families modeled with Gaussian process regressions optimized with machine learning
provided very favorable RMSE and RSqAdj, but even when optimized with machine learn-
ing, its performance is surpassed by the proposed residual value power linear regression
(Table 5).

Table 5. Combine family two predictors’ parametric and nonparametric regression results.

Combine Family
Power Linear

Regression

Machine Learning
Optimized Gaussian

Process Regression (GPR) Observations

RMSE RSqAdj RMSE RSqAdj

B|Bb 0.0253 0.9569 0.0579 0.8970 88
B|Da 0.0096 0.7753 0.1027 0.1594 26
B|Fa 0.0107 0.9505 0.0806 0.7544 60
F|Ba 0.0450 0.9610 0.0806 0.6416 47
F|Ca 0.0425 0.9698 0.0710 0.7374 48
F|Fa 0.0161 0.9799 0.0539 0.9344 48
F|Ga 0.0415 0.9565 0.1231 0.7550 24
F|Ha 0.0297 0.9680 0.0313 0.9811 26

4. Discussion

This present study evaluated the robustness of the posited power regression model
through comparisons with previously referenced regression models that provided sufficient
details for processing the dataset. Additionally, regression models were fitted to the
complete dataset using multiple variables and validations, as well as to combine families
using the same two predictors (age and hours) employed in the proposed power linear
regression. Whenever sufficient details were provided, the previous studies’ regression
models were employed to process the complete dataset. (Table 6).
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Table 6. Previous studies results.

Author RMSE RSqAdj Observations

Cross and Perry (1995) [11] 0.0988 0.7778 1197
Unterschultz and Mumey (1996) [13] 0.1040 0.5361 232

Cross and Perry (1996) [12] 0.1388 0.5615 1197
Weersink and Stauber (1988) [9] 0.1089 0.7301 1197

Wu and Perry (2004) [14] 0.1025 0.7609 1197
ASABE D497.7 (2011 R2020) [16] 0.1096 0.7264 1197

Kay, Edwards and Duffy (2020) [15] 0.1169 0.5720 924
Herranz and Ruiz (2023) [24] 0.0854 0.8342 1197

The suggested power regression model (with RMSE = 0.0854 and RSqAdj = 0.8342)
exhibits superior predictive robustness. Prior research has incorporated brand and power,
in addition to years of age and hours of usage, to forecast residual value behavior. However,
Table 1 indicates that power alone is insufficient to differentiate residual value behavior
as similar combine families from the same brand with identical power specifications
can exhibit distinct threshing, separating, and grain handling technologies as ground
propulsion systems. The suggested power residual value regression model addresses this
issue by considering all these aspects at the model level and categorizing them into combine
families, which provides a sturdier foundation for the results (Figure 7).
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In comparison to the preceding studies, this research exhibits improved RMSE and
adjusted coefficient of determination (RSqAdj) as it accounts for more than the brand,
power, and specification levels (threshing, separating, and grain handling and ground
propulsion systems) and relates them to an equivalent new model, providing a precise price
reference that encompasses variations in inflation and production costs. This approach
establishes a more solid basis for producing results that are robust and reliable.

Methodology and Model Derived Grain Combine Harvester Remaining Value Forecaster Tool

The primary objectives of this present study are to enhance the ease of use and ro-
bustness of the forecast, thereby enabling all stakeholders to evaluate the residual value of
a grain combine harvester quickly and accurately. To this end, a power remaining value
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regression has been proposed, which can be transformed into a powerful yet straightfor-
ward tool utilizing the same mainstream spreadsheet employed for calculating the power
regressions. The regression coefficients apply to any combined family at any age and hours,
rendering comparisons between families effortless by implementing filters (or slicers) and
creating charts.

High-performance machines (high-performance tangential threshing and walker sep-
aration (F|Ca and F|Da) and rotary threshing and separation (F|Ba) even more show)
suffer quicker residual value loss compared to more conventional combines (F|Fa and
F|Ga) of the same brand (which makes it a fairer comparison, eliminating brand market
perception) (Figure 8).
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The same effect can be seen when concentrating on high-performance machines. High-
performing rotary combines (D|Ba) lose value faster than high-performance tangential
threshing and walker separation (D|Da and D|DEa) of the same brand (Figure 9).
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The same behavior can be observed in mid-size combines, where rotary separation
combines (B|Da) show faster residual value loss compared to walker separation families
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(B|Ea and B|Fa), while all three families from the same brand share the same tangential
separating system (Figure 10).
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year (HPY).

The high-performance combine family B|Ba pioneered the market by offering a rubber-
tracked version, family B|Bb. The rubber-track option implies a bigger initial investment.
The residual value of the former is higher compared to the latter (Figure 11).
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Figure 11. Residual value (value as new =1) comparison of Brand B high performance combine
families B|Ba featuring tires and B|Bb featuring rubber tracks with 150 h per year (HPY).

Not all combines are created equal, and neither are their performance capacities nor
the cost of operation. The proposed power residual value regression clearly states that the
cost of ownership is also not created equal, showing significant differences.

Therefore, it is mandatory to analyze if the costs derived from higher performance-
enhancing features are truly compensated by the actual performance. There might be
harvesting conditions that make a certain feature a must-have “ticket to the game”, there-
fore, unavoidable; meanwhile, in others, it might be a nice-to-have “capricious hype”; only
a thorough analysis will ascertain which one is which.



Agriculture 2023, 13, 894 14 of 15

5. Conclusions

This study introduces a combine-based and family-grouped methodology that over-
comes the limitations of previous residual value analyses relying on auctions and advertise-
ments to gather data. By focusing on the main drivers of combine value, namely age and
usage, and using more sophisticated regression models (linear, exponential, ordinary least
squares, Box–Cox, and double square root), the proposed power regression curve provides
a robust RMSE of 0.0854 and an RSqAdj of 0.8342, which outperforms all the previous
studies and models tested in this study. This present methodology takes into account
the specifications of each combine model while considering the price increase caused by
emission regulations and specification advancements. This is achieved by comparing the
retail price of used combines to the retail price of equivalent new combines. Furthermore,
to compensate for the limited statistical population, the models are grouped into family
units or subdivided based on significant differences within combine models. The proposed
power regression model is uncomplicated and requires only a simple internet search on
used equipment websites and two enquiries to sellers, making it effortless to obtain infor-
mation that is later processed transparently in a universally known software. Despite its
simplicity, this power regression model has not been surpassed by more advanced models,
including those utilizing machine learning optimization.

This study enables farmers, contractors, sellers, and financial and insurance entities to
make informed decisions on harvesting tasks (e.g., purchasing, renting, leasing, or custom
hiring) by accessing public information and using a user-friendly yet robust model. Future
studies could explore methods of increasing the dataset size by incorporating auction
results as a source of transactional information, given the establishment of a correlation
between retail and wholesale prices. Additionally, it would be advantageous to evaluate
this system with other self-propelled agricultural machines, such as roots, vegetables,
forage harvesters, and sprayers.

Author Contributions: Conceptualization, I.H.-M.; methodology, I.H.-M. and L.R.-G.; validation,
I.H.-M.; formal analysis, I.H.-M. and L.R.-G.; investigation, I.H.-M. and L.R.-G.; resources, I.H.-M.;
data curation, I.H.-M.; writing—original draft preparation, I.H.-M. and L.R.-G.; writing—review and
editing, I.H.-M. and L.R.-G.; supervision, L.R.-G. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: If necessary, we can provide raw data.

Acknowledgments: The authors thank Pilar Linares for her support and “Tractores y Máquinas”
(https://www.tractoresymaquinas.com) for providing the IT infrastructure for this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. FAO. Handbook on Agricultural Cost of Production Statistics; FAO: Rome, Italy, 2016.
2. Strivastava, A.K.; Goering, C.E.; Rohrbach, R.P.; Buckmaster, D.R. Machinery Selection and Management. In Engineering Principles

of Agricultural Machines; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2006; Chapter 15;
pp. 525–552.

3. Strivastava, A.K.; Goering, C.E.; Rohrbach, R.P.; Buckmaster, D.R. Grain Harvesting. In Engineering Principles of Agricultural
Machines; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2006; Chapter 12; pp. 403–436.

4. AXEMA. Economic Report; AXEMA: Paris, France, 2022.
5. CEMA. European Agricultural Machinery Industry Key Figures; CEMA: Brussels, Belgium, 2022.
6. Isaac, N.E.; Quick, G.R.; Birrell, S.J.; Edwards, W.M.; Coers, B.A. Combine Harvester Econometric Model with Forward Speed

Optimization. Appl. Eng. Agric. 2006, 22, 25–31. [CrossRef]
7. ACEA. Economic and Market Report. State of the EU Auto Industry. Full-Year 2021; European Automobile Manufacturers’ Association

(ACEA): Brussels, Belgium, 2022.
8. CEMA. Economic Press Release Tractor Registrations 2021; CEMA Aisbl—European Agricultural Machinery: Brussels, Belgium, 2022.

https://www.tractoresymaquinas.com
https://doi.org/10.13031/2013.20184


Agriculture 2023, 13, 894 15 of 15

9. Weersink, A.; Stauber, S. Optimal Replacement Interval and Depreciation Method for a Grain Combine. West. J. Agric. Econ. 1988,
13, 18–28.

10. Leatham, D.J.; Baker, T.G. Empirical Estimates of the Effects of Inflation on Salvage Values, Cost and Optimal Replacement of
Tractors and Combines. North Cent. J. Agric. Econ. 1981, 3, 109–117. [CrossRef]

11. Cross, T.L.; Perry, G.M. Depreciation Patterns for Agricultural Machinery. Am. J. Agric. Econ. 1995, 77, 194–204. [CrossRef]
12. Cross, T.L.; Perry, G.M. Remaining Value Functions for Farm Equipment. Appl. Eng. Agric. 1996, 12, 547–553. [CrossRef]
13. Unterschultz, J.; Mumey, G. Reducing Investment Risk in Tractors and Combines with Improved Terminal Asset Value Forecasts.

Can. J. Agric. Econ. 1996, 44, 295–309. [CrossRef]
14. Wu, J.; Perry, G.M. Estimating Farm Equipment Depreciation: Which Functional Form Is Best? Am. J. Agric. Econ. 2004, 86,

483–491. [CrossRef]
15. Kay, R.D.; Edwards, W.M.; Duffy, P.A. Farm Management, 7th ed.; McGraw-Hill: New York, NY, USA, 2020.
16. ASABE. Agricultural Machinery Management Data ASAE Standard D497.7 Agricultural Machinery Management Data; American

Society of Agricultural and Biological Engineers: Joseph, MI, USA, 2020.
17. EC. Directive 97/68/EC of the European Parliament and of the Council of 16 December 1997; European Commission (EC): Brussels,

Belgium, 1997.
18. EC. Directive 2000/25/EC of the European Parliament; European Commission (EC): Brussels, Belgium, 2000.
19. EC. Directive 2004/26/EC of the European Parliament and of the Council of 21 April 2004 Amending Directive 97/68/EC; European

Commission (EC): Brussels, Belgium, 2004.
20. EC. Directive 2009/30/EC of the European Parliament and of the Council of 23 April 2009 Amending Directive 98/70/EC; European

Commission (EC): Brussels, Belgium, 2009.
21. Posada, F.; Chambliss, S.; Blumberg, K. Cost of Emission Reduction Technologies for Heavy Duty Diesel Vehicles; The International

Council on Clean Transportation (ICCT): Washington, DC, USA, 2016.
22. Lynch, L.A.; Hunter, C.A.; Zigler, B.T.; Thomton, M.J.; Reznicek, E.P. On-Road Heavy-Duty Low-NOx Technology Cost Study;

Technical Report NREL/TP-5400-76571; National Renewable Energy Laboratory (NREL), U.S. Department of Energy: Golden,
CO, USA, 2020.

23. Posada, F.; Isenstadt, A.; Badshah, H. Estimated Cost of a Diesel Emissions-Control Technology to Meet Future California Low NOx
Standards in 2024 and 2027; The International Council of Clean Transportation: Washington, DC, USA, 2020.

24. Herranz-Matey, I.; Ruiz-Garcia, L. A New Method and Model for the Estimation of Residual Value of Agricultural Tractors.
Agriculture 2023, 13, 409. [CrossRef]

25. McCarthy, R.V.; McCarthy, M.M.; Ceccucci, W.; Halawi, L. Applying Predictive Analytics; Springer International Publishing: Cham,
Switzerland, 2019; ISBN 978-3-030-14037-3.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.2307/1349124
https://doi.org/10.2307/1243901
https://doi.org/10.13031/2013.25682
https://doi.org/10.1111/j.1744-7976.1996.tb00152.x
https://doi.org/10.1111/j.0092-5853.2004.00593.x
https://doi.org/10.3390/agriculture13020409

	Introduction 
	Previous Studies 
	Current Issues 
	Goal 

	Materials and Methods 
	Dataset 
	Data Systematization and Preprocessing 
	New Equivalent Combine 
	Combine Family 

	Data Analysis 

	Results 
	Discussion 
	Conclusions 
	References

