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Abstract: Because of the poor environment inside fattening pig houses due to high humidity, ammo-
nia gas, and fine dust, it is hard to accumulate reliable long-term data using sensors. Therefore, it
is necessary to conduct research for filling in the missing environmental data inside fattening pig
houses. Thus, this research aimed to develop a model for predicting the missing data of the air
temperature inside fattening pig houses using a long short-term memory (LSTM) model, which
is one of the artificial neural networks (ANNs). Firstly, the internal and external environmental
data of the fattening pig house were monitored to develop the LSTM models for data filling of the
missing data and to validate the developed LSTM model. The LSTM model for data filling of the
missing data was developed by learning the measured temperature inside the pig house. The LSTM
model developed in this study was validated by comparing the air temperature data predicted by
the LSTM model with the air temperature data measured in the fattening pig house. The LSTM
model was accurate within a 3.5% error rate for the internal air temperature. Finally, the accuracy and
applicability of the developed LSTM model were evaluated according to the order of learning data
and the length of the missing data. In the future, for information and communication technologies
(ICTs) and the convergence and application of smart farms, the LSTM models developed in this study
may contribute to the accumulation of reliable long-term data at the fattening pig house.

Keywords: environmental monitoring; imputation; machine learning; pig house; recurrent
neural network

1. Introduction

The livestock industry is a major sector of agriculture and has been continuously
growing in South Korea, reaching USD 18 billion in 2020 and constituting 40% of the total
agricultural production. Additionally, the pig industry in South Korea accounts for 35% of
the total livestock industry, ranking it as the largest livestock industry [1].

Traditionally, the internal environments of most livestock housings are controlled
based on the measured data, such as internal air temperature and relative humidity. Here,
air temperature has been generally used as a basis to regulate the exhaust fans and inlet
windows in order to maintain the proper environment inside the livestock houses. Environ-
mental control using only air temperature has a limitation since it cannot consider various
factors such as humidity, ammonia concentration, and odor. In winter, the minimum venti-
lation for the management of the internal air temperature can cause excessive humidity,
ammonia concentration, and odor. Recently, with the development of the smart farm based
on information and communication technology (ICT), the algorithm for the environmental
control of livestock houses has been changed from control based on an environmental
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factor to integrated control based on the big data of various environmental factors. Reliable
long-term data on the internal environment should be accumulated to design a precise
control algorithm for livestock houses.

The expansion and automation of livestock houses have induced active research and
development (R&D) and the establishment of smart farms. The global demand of smart
farms continues to increase from USD 2.81 billion in 2015 to USD 4.92 billion in 2020 [2]. The
monitoring of environmental data, such as temperature, humidity, and gas concentration
inside the livestock houses, is critical for obtaining basic data to design environment control
algorithms for an automatic control system of smart farms. Therefore, the accumulation
of reliable long-term data on the environment is important because it is the basic data for
environmental control and the development of the smart farm.

The long-term accumulation of monitoring data can be hindered by the reduced
durability of the monitoring devices installed at livestock houses for daily measurements
due to the poor internal environment with high levels of humidity, gas, and fine particulate
matter [3]. In addition, the frequent failure of sensors will add repair and replacement costs
for the sensor. Therefore, it is necessary to conduct research for filling in the missing data
on the environments inside the livestock houses.

Several studies across different research fields have employed various techniques to
estimate the missing data, either by using statistical analysis such as linear regression, auto-
regressive integrated moving average (ARIMA), and seasonal auto-regressive integrated
moving average (SARIMA) [4–9]. In the field related to agriculture, several studies have
been conducted focused on the imputation of meteorological data [6,7,9,10]. Xie et al. [11]
used a hybrid deep learning-driven sequential concentration transport emission model
(DL-CTEM) that predicts the emissions of ammonia, carbon dioxide, and hydrogen sulfide,
which are major harmful gases in pig houses, and suggested optimal ventilation control
using this. Additionally, since real-time thermal environment management is important,
a discrete model was used to improve the accuracy of thermal environment prediction
inside the laying hen house [12]. A discrete model was developed that incorporates time-
period groups (TPGs), the group buffered rolling (GBR) mechanism, and TPG factors. In
the case of control based on the internal environment data in livestock house environment
control, it can be said that the continuity of measured data and the interpolation of the
missing data are very important.

Recently, machine learning techniques have been actively applied for the imputation
of the missing data, and studies for the imputation of time series data using machine
learning techniques had been also conducted in the agricultural field [13–16]. Boomgard-
Zagrodnik and Brown [13] developed the random forest imputation model for missing
Mesonet temperature observation. The model predicted the growing degree days (GDDs)
value within an average error rate of 1.4%. Moon, Lee, and Son [15] developed the two-
dimensional convolutional neural network (CNN) model for imputation of missing tabular
data of several greenhouses. Song, Gao, Zhao, and Zhao [16] used the recurrent neural
network (RNN) and long short-term memory (LSTM) models to fill the missing data of
stem moisture data of plants. However, few studies focused on predicting the missing
data of the livestock houses. In particular, since there is a lot of dust and harmful gases in
livestock houses, missing data may occur frequently. Moreover, the RNN model, which
is one of the ANN models, is being applied more actively because it is very important to
collect time series data in agricultural facilities that manage animals and plants [17–23].
Therefore, it is very likely that the RNN model will be used as a method to solve missing
data in real time in livestock facilities.

Compared to other models dealing with time series data, the LSTM models do not
require the nonlinear functions to be estimated, and it has demonstrated superior perfor-
mance in a wide range of sequence modeling applications [24–27]. Also, if the model uses
the same number of layers, LSTM models can have a more complex structure and more
parameters than gated recurrent units (GRUs) [28], which are commonly used to predict
data with higher accuracy [29]. In addition, LSTM models have already shown higher
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accuracy than GRU in other studies [30,31]. Accordingly, it can be seen that it is appropriate
to use the LSTM model using long-term data of livestock house.

In this study, the RNN model was developed for expecting the missing data of air
temperature inside the fattening pig house using the field-measured data of the internal
air temperature. The internal and external environmental data of the fattening pig house
were monitored during the field experiment. Based on the result of the field experiment,
descriptive statistics were conducted to evaluate the environmental management of the
fattening pig house. Some of the measured air temperature data inside the fattening
pig house were assumed to be the missing data. The RNN model for data filling of the
missing data was developed by learning the measured air temperature. The RNN model
developed in this study was validated by comparing the air temperature data predicted
by the RNN model with the measured data by the field experiment. Finally, the accuracy
and applicability of the developed RNN model were evaluated according to the order of
learning data and the length of the missing data.

2. Materials and Methods

The research flow chart for predicting missing data using the RNN model is as follows
(Figure 1). First, a field experiment was conducted to monitor the internal and external
environments of the fattening pig house. Through the field experiment, the air temperature,
relative humidity, ventilation rate, ammonia concentration inside the fattening pig house,
and the external weather were monitored in the fattening pig house. These monitoring
data were used to develop the RNN models for data filling of the missing data and
to validate the RNN model. Based on the result of the field experiment, descriptive
statistics were conducted to evaluate the environment inside the fattening pig house. In
this study, the air temperature inside the fattening pig house were initially assumed to be
the missing data. The RNN model for data filling of the missing data was developed by
learning the measured data in other period. The RNN model developed was validated by
comparing the air temperature data predicted by the RNN model with the measured air
temperature. The accuracy of the RNN model was further improved by considering the
periodic parameter. Finally, the accuracy and applicability of the developed RNN model
were evaluated according to the order of learning data and the length of the missing data.
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2.1. Experimental Facility (Fattening Pig House)

In this study, the experiment was conducted at the mechanically ventilated fatten-
ing pig house located at Imcheon-myeon, Buyeo-gun, Chungcheongnam-do Province
(126◦90′ E, 36◦21′ N). The experimental fattening pig house was shown in Figure 2. The
experimental fattening pig house had a width of 42 m, a length of 145.1 m, and consisted
of 24 pig rooms. The pig room where the environmental monitoring was conducted was
strategically selected among the 24 pig rooms. The experimental pig room had a width
of 13.3 m, a length of 18.8 m, a height of 2.6 m, and a pit depth of 1 m. The floor of the
pig room was a concrete slatted floor. A total of 320 fattening pigs (about 70 kg) were
reared within the experimental pig room, and the rearing density was 0.78 m2 animal−1.
In the experimental fattening pig house, there were six sidewall slots (1.0 m × 0.4 m),
twelve ceiling slots (0.6 m × 0.6 m), two 0.5 m diameter exhaust fans, and three 0.95 m
diameter exhaust fans for mechanical ventilation at the sidewall. The exhaust fans were
controlled following the three steps for operating the exhaust fans. The first operating
condition was that two 0.5 m diameter fans were operated depending on the internal air
temperature. When the air temperature inside the pig house increased, the ventilation fans
for temperature control were operated. The 0.95 m diameter fan started to operate when
the operation rate of the first fans was 100%. Then, all the remaining fans started operating
as the third operating condition when the operation rate of the second fans was 100%. In
addition, the inlet ducts installed in the longitudinal direction below the ceiling have not
been used.
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2.2. Recurrent Neural Network

As computer performance develops, machine learning technology is widely used in
various fields. In previous studies, machine learning models have been used to analyze
animal behavior patterns [19,20,23,32,33], behavior before calving [31,34,35], and the voice
of livestock [36] Some studies have also used machine learning to predict dependent vari-
ables according to the various environmental factors [17]. Among several machine learning
technologies, artificial neural networks (ANNs) have been actively used as methods to
accurately predict the dependent variables from independent variables. In this study, the
RNN model, which is one of an ANN, was used to predict the missing data inside the
fattening pig house. Through RNN, it is possible to use iterative learning through the
memory of the ANN. The memory can store information from previous stages of learning
and can provide a feedback function that considers information from previous stages as
input data. The RNN structure is a form in which a path is added to the general ANN
structure to re-insert the output value of the hidden layer at the previous time (t − 1) as
the input value of the hidden layer at the next time (t). This structure repeats the process
where the result at the current time (t) affects the next time (t + 1). A basic structure of the
RNN model is shown in Figure 3a.
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Meanwhile, the LSTM method was developed to solve the vanishing gradient problem
of the general RNN algorithm [27]. A vanishing gradient is a gradient at a time step
far away from time step (t) that has little effect on the learning process when learning
data for a long time. While there are limitations to learning long-term dependencies
using general RNN models, LSTMs can remember long previous sequences of data. The
difference with the LSTM algorithm is a cell with multiple gates. LSTM accepts previous
data with an additional operation, so the vanishing gradient problem does not occur. LSTM
accomplishes this by using a set of gates (input, forget, and output) that control the flow of
information into and out of the memory cell. The input gate can control how much new
information is added to the memory cell, the forget gate controls which information is
discarded from the memory cell, and the output gate controls how much information is
output from the memory cell. A basic structure of the LSTM model is shown in Figure 3b.

2.3. Experimental Procedure
2.3.1. Monitoring the Environmental Factors inside the Fattening Pig House

For the data collection, the environmental factors inside and outside the experimental
fattening pig house was monitored from 10 July 2021 to 31 July 2021. In this study, the
monitoring data in summer was used as the learning data. The cooling system was not
used at the experimental fattening pig house and the exhaust fans were maximally operated
during daytime in summer. Otherwise, the internal air temperature of the fattening pig
house significantly fluctuated with the ventilation, infiltration, heating, and so on. As
shown in Figure 4, the six sensors (HTX 75 series, Dotech Inc., Ansan-si, Gyeonggi-do,
Republic of Korea) for monitoring the air temperature and relative humidity were installed
at the center of each pen at a height of 1.5 m in the fattening pig house. An ammonia
sensor (Multirae-ir, RAEsystem Inc., San Jose, CA, USA) was also installed in front of the
center exhaust fan. An electrometer (DW-6092, Newtech Inc., Seoul, Republic of Korea)
was installed to measure the current flow when the exhaust fans were running. Then, the
ventilation rates of the fattening pig house were calculated using the monitoring data of the
electric current in real-time. The air temperature, relative humidity, ammonia concentration,
and ventilation rate inside the fattening pig house were logged at one-second intervals.
However, the data averaged for five minutes was used when the measured data were used
to analyze the environments, develop the RNN model, and validate the developed RNN
model. A portable weather station (Watchdog weather station 2900ET, Aurora, IL, USA)
was installed on the roof of the management office near the pig house to observe the external
weather conditions. External environmental data such as wind speed, wind direction, solar
radiation, temperature, relative humidity, and rainfall were monitored at 1-second intervals,
and the 5-minute average data was recorded on the equipment. However, the weather data
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were not used as data for developing the RNN model and were used only to analyze the
environment inside the pig house during the model’s development process. Descriptive
statistics of the monitored environments inside and outside the fattening pig house during
the monitoring period were calculated for the environmental analysis of the experimental
fattening pig house. The temperature humidity index (THI) [37,38] was also calculated to
analyze the heat stress on the pigs. Finally, the monitoring data of air temperature inside
the fattening pig house was used to develop the RNN model in this study because the air
temperature is one of the most important factors for the environmental control inside the
fattening pig houses. The average data of internal air temperature measured at six points
was used to develop the RNN model.
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2.3.2. Design of RNN Models for Expecting Missing Data

In this study, the RNN model was developed to predict the missing data of the air
temperature from the measured data inside the fattening pig house. Since it was learned
only with time series data of temperature data, it is expected that the developed model
will be lightweight and highly applicable to the actual field. As previously mentioned, the
measured air temperature from 10 July 2021 to 31 July 2021 was used for the RNN model’s
development, as shown in Figure 5. Detailed data information during the experimental
period for the development and validation of the RNN model is presented in Table 1. The
ratio between the lengths of training data and test data was 5:1 [16]. The data from 10 July
2021 to 19 July 2021 were used for learning in sequential order. The data house from 22 July
2021 to 31 July 2021 was used for learning in reverse order. The data house from 20 July
2021 to 21 July 2021 was used as the test data.
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Table 1. Date information periods during the experimental period.

Data Set Monitoring Period Days Number of Data

Sequential data learning 10 July~19 July 10 days 2880
Validation 20 July~21 July 2 days 576

Reverse data learning 22 July~31 July 10 days 2880

Gradient vanishing problems can occur when using long-term data as training data
for general RNN models. To solve this problem, a single-layer LSTM model suitable for
long-term data learning was used. The learning rate was set to 0.01 and the tanh function
with high accuracy of the RNN model was used as the activation function as the learning
parameter. The commonly used AdamOptimizer was applied in this study, and the loss
was trained to minimize the mean squared error. Since the range of learning variables can
be different, the range of data according to several variables must be unified from 0 to 1. If
the data range is not unified, the model diverges during the training process. Therefore,
for successful learning, all training data were normalized in the range of 0 to 1 using the
min–max scaler in Equation (1).

dscaled =
d− dmin

(dmax − dmin) + 10−7 (1)

where d is learning data, dscaled is scaled learning data, dmax is the maximum value of
the variable, dmin is the minimum value of the variable, and 10−7 is the noise term for
preventing zero division.

2.3.3. Validation of Accuracy of Developed Models

The developed RNN model was validated by comparing the temperature data pre-
dicted with the missing data assumption of the temperature data measured in the pig
house. First, Model 1 was developed by learning only air temperature data inside the
fattening pig house as a basic model. To improve the accuracy of the RNN model, Model
2 was developed by additionally considering a periodic parameter. The periodic parameter
was set from 1 to 288 by dividing a day into five minutes to consider the periodic character
of a day. The accuracies of the RNN models were compared by considering the periodic
parameter (Table 2).
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Table 2. Experimental conditions of learning data for developing the RNN model.

Conditions Conditions Number of
Cases

Validation of RNN
model accuracy

Learning data
(independent variables)

Model 1 Monitored air temperature inside
the fattening pig house

2
Model 2

Monitored air temperature inside
the fattening pig house and

periodic parameter

Dependent variable Missing data of air temperature 1

Total - 2

To compare the predicted data and the measured data, statistical indices, such as the
root-mean-square error (RMSE) and the mean absolute percentage error (MAPE), were
calculated using Equations (2) and (3), respectively. The RMSE is commonly used to mea-
sure the difference between two pieces of data. However, there is no quantitative criterion
for evaluating RMSE, and MAPE is a measure of prediction accuracy as a percentage of
error. Therefore, this index was used to assess the accuracy of predicted data using the
RNN model.

RMSE =

√
∑n

i=1(Ri − Ci)
2

n
(2)

MAPE =
100
n

n

∑
i=1

∣∣∣∣Ri − Ci
Ri

∣∣∣∣ (3)

where RMSE is root-mean-square error (◦C, %), MAPE is mean absolute percentage error
(%), n is the total number of data according to time, Ri is the measured data at a specific
time, and Ci is the predicted data at a specific time.

2.3.4. Comparative Evaluation of the RNN Model according to the Order of Learning Data
and the Length of the Missing Data

A total of 27 cases of experimental conditions for learning data was used to develop the
RNN model, as shown in Table 3. Previous studies have shown that when developing RNN
models, training time-series data in reverse order can generally improve the accuracy of
RNN models [39–41]. Therefore, in this study, the RNN model was developed by learning
time series data in sequential and reverse orders. The bidirectional model was developed
by combining the sequential model and reverse model for improving the accuracy of the
RNN models. In general, the longer the length of the missing data, the lower the accuracy
of the RNN model. Therefore, to identify this trend and analyze the accuracy of the RNN
model, the accuracies of the RNN models were compared according to the length of the
missing data at 1, 2, 3, 6, 9, 12, 24, 36, and 48 h.

The predicted results of the bidirectional model were calculated by adding the pre-
dicted results of the sequential model and reverse model considering the weight values,
as shown in Equation (4). The weight values for the predicted results of the sequential
model and reverse model have gradients, as shown in Figure 6. It was expected that the
sequential model has high accuracy on the front of the missing data. Otherwise, it was
expected that the reverse model has high accuracy on the back of the missing data. Finally,
it was expected that the accuracy of the bidirectional model is improved by comparing it
with the sequential and reverse models. Finally, the accuracies of the RNN models were
developed and compared according to the sequential, reverse, and bidirectional models.

zi = aixi + biyi (4)
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where zi is the predictive value of the bidirectional model, xi is the predictive value of the
sequential model, yi is the predictive value of the reverse model, ai is the weight of xi, bi is
the weight of yi, and i is the sequence number of the missing data.

Table 3. Experimental conditions of learning data for developing the RNN model.

Conditions Conditions Number of
Cases

Case study for enhancing the
accuracy of the RNN model

Learning data
(independent variables)

Monitored air temperature inside the
fattening pig house and periodic parameter 1

Dependent variable Missing data of air temperature 1

Order of learning data Sequential, reverse, and bidirectional order 3

The length of the missing data 1, 2, 3, 6, 9, 12, 24, 36, and 48 h 9

Total - 27
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3. Results and Discussions
3.1. Analysis of the Internal Environment of the Experimental Pig House

Environmental data inside and outside the experimental fattening pig house were
monitored to analyze the environmental problems of the fattening pig house, to accumulate
the learning data for the development of the RNN models, and to validate the developed
RNN model. Descriptive statistical analysis was conducted to analyze the temperature
and relative humidity characteristics inside the pig house. The box plots shown in Figure 7
describe the distributions of the air temperature and relative humidity inside the experi-
mental fattening pig house. Figure 8 shows the measured environments inside and outside
the fattening pig house during the experimental period. The average air temperature inside
the fattening pig house was higher than the outside temperature due to solar radiation,
insulation of the wall, heat generation of the pigs, etc. The internal air temperature was
higher than 34 ◦C during daytime and the external air temperature was higher than 36 ◦C.
It was expected that pigs had high-temperature stress because of the high air temperature
inside the fattening pig house during the experimental period. The relative humidity
inside the fattening pig house fluctuated from 50 to 90% due to the temperature difference
between day and night. According to the measurement points, the analysis showed that
relatively low air temperatures (28.7 ◦C and 29.0 ◦C) were measured near the slot opening
at the sidewall (P-1 and P-2), whereas relatively high air temperatures (30.6 ◦C and 30.0 ◦C)
were measured at P-5 and P-6, which were located near the exhaust fans. The airflow from
the slot opening at the sidewall (inlets) to the exhaust fans (outlets) caused the distribution
of the internal airflow.
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Based on the results, it was expected that the pigs had high-temperature stress. The
THI was additionally calculated by simultaneously considering the air temperature and
relative humidity, as shown in Figure 9a. The ammonia concentration and ventilation
rate inside the fattening pig house were also presented in Figure 9b,c. Accordingly, the
measured THI ranged from 78 to 86 during the experimental period. This means that the
internal environments were under the alert and danger sections for high-temperature stress
on pigs. Although the ventilation rates were maximum in the daytime, the internal air
temperature of the fattening pig house was higher than 34 ◦C. Therefore, it is recommended
to install additional cooling systems to relieve the high-temperature stress in summer.
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In the case of ammonia concentration inside the fattening pig house, a relatively high
range of 5 to 20 ppm was measured. The ammonia concentration fluctuated with the change
in ventilation rates during the day and night. The ammonia concentration increased as the
ventilation rate decreased at night. On the other hand, the concentration of ammonia gas
was lowered due to the high ventilation rate in the daytime. As a result of the monitoring
in the fattening pig house, it was identified that internal environments were poor with
a high air temperature, relative humidity, and ammonia concentration. Due to the poor
environment inside fattening pig houses, it is hard to accumulate reliable long-term data on
the fattening pig house due to sensor failure. Therefore, it is necessary to conduct research
for filling in the missing data on the environments inside livestock houses. In this study, the
research for the data filling of the missing data as the basic research was conducted using
air temperature data, which is one of the most important factors for the environmental
control inside fattening pig houses.

3.2. Validation of the Accuracy of the Developed Models

The developed RNN model in this study was validated by comparing air temperature
data predicted by the RNN model with the assumed missing data. The air temperature pre-
dicted by the RNN model was presented in Figure 10, according to the periodic parameter.
The RMSE and MAPE as statistical indices were calculated for the quantitative comparison,
as shown in Table 4. When the RNN model was developed by learning only internal air tem-
perature, the value of the RMSE and MAPE were 1.92 ◦C and 4.70%, respectively. As shown
in Figure 10a, the RNN model could not accurately predict the internal air temperature
when only air temperature data was considered as the learning data. Therefore, additional
processes, such as considering a multi-layer model and adding other parameters, were
necessary to improve the accuracy of the RNN model for predicting the missing data of the
air temperature inside the fattening pig house. However, the computing loads and learning
time could increase for the development of the multi-layer RNN model. Therefore, the
RNN model additionally considers the periodic parameter as the learning data. When the
RNN model was developed by considering the periodic parameter, the value of the RMSE
and MAPE were 1.41 ◦C and 3.55%, respectively. The accuracy of the RNN model was
improved with a 1.15% decrease in the error rate. The tendency of air temperature predicted
by the RNN model considering the periodic parameter was fitted with the tendency of air
temperature measured in the field experiment. It was suitable to use the developed RNN
model for predicting the air temperature inside the fattening pig house within a 3.5% error
rate. The developed RNN model in this study could be applied to predict the internal air
temperature when the monitoring sensors are not working. Furthermore, the RNN models
were expected to be highly applicable because they could be continuously improved the
RNN model through learning from the monitoring data.
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Table 4. Validation of the RNN model for predicting the missing data, according to learning parameters.

Statistical Indices Learning without the
Periodic Parameter

Learning with the
Periodic Parameter

RMSE (◦C) 1.92 1.41
MAPE (%) 4.70 3.55

3.3. A Comparative Evaluation of the RNN Models according to the Order of Learning Data

The RNN model was developed by learning time series data in sequential and reverse
orders. The bidirectional model was additionally developed by combining the sequential
model and reverse model to improve the accuracy of the RNN models. The air temperature
predicted by the sequential, reverse, and bidirectional models were presented in Figure 11.
A comparative analysis was also conducted using the statistical indices of the RMSE and
MAPE, according to the order of learning data and the length of the missing data. The
increase in the RNN model’s accuracy was presented in Table 5, according to the order of
learning data.
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Table 5. An increase in the RNN model’s accuracy according to the order of learning data.

MAPE (%)
The Length of the Missing Data

1 hr 2 hr 3 hr 6 hr 9 hr 12 hr 24 hr 36 hr 48 hr

Sequential model (A) 2.15 2.25 2.89 2.94 2.77 2.33 2.14 2.81 3.55
Bidirectional model (B) 0.24 0.77 0.43 0.93 1.06 1.12 1.48 2.60 2.64

Increase in accuracy (A-B) 1.91 1.48 2.46 2.01 1.71 1.21 0.66 0.21 0.91

As shown in Figure 11a, the sequential model was relatively more accurate at the
0–144 time step than at the 144–288 time step. On the contrary, the reverse model was
relatively more accurate at the 144–288 time step than at the 0–144 time step, as shown in
Figure 11b. As a result of the quantitative comparison (Table 6), the reverse model was more
accurate than the sequential model. These results were in agreement with the results of
previous studies [39–41]. The sequential model was able to accurately predict the missing
data of the internal air temperature with an error rate of 2.14–3.55%, according to the length
of the missing data. The reverse model was accurate with an error rate of 0.72–3.11%.

Table 6. The RNN model’s accuracy, according to the order of learning data and the length of the
missing data.

Sequential order
The Length of the Missing Data

1 hr 2 hr 3 hr 6 hr 9 hr 12 hr 24 hr 36 hr 48 hr

RMSE (◦C) 0.63 0.67 0.84 0.85 0.82 0.73 0.86 0.87 1.41
MAPE (%) 2.15 2.25 2.89 2.94 2.77 2.33 2.14 2.81 3.55

Reverse order
Sequence length for the LSTM model

1 hr 2 hr 3 hr 6 hr 9 hr 12 hr 24 hr 36 hr 48 hr

RMSE (◦C) 0.55 0.22 0.65 0.41 0.37 0.72 1.17 1.07 0.83
MAPE (%) 1.88 0.72 2.21 1.27 1.13 1.93 3.11 2.59 1.85

Bidirectional order
Sequence length for the LSTM model

1 hr 2 hr 3 hr 6 hr 9 hr 12 hr 24 hr 36 hr 48 hr

RMSE (◦C) 0.08 0.25 0.14 0.30 0.35 0.36 0.51 0.87 0.99

MAPE (%) 0.24 0.77 0.43 0.93 1.06 1.12 1.48 2.60 2.64

The accuracy of the bidirectional model was improved and there was a decrease in the
error rate of 0.21–2.46% compared with the accuracy of the sequential model. Especially, the
shorter the length of the missing data, the higher the accuracy of the bidirectional model.
When the length of the missing data was an hour, the values of the RMSE and MAPE for
the sequential model were 0.63 ◦C and 2.15%, respectively. When the length of the missing
data was an hour, the values of the RMSE and MAPE for the bidirectional model were
0.08 ◦C and 0.24%, respectively. When the length of the missing data was 12 h, the values
of the RMSE and MAPE for the sequential model were 0.73 ◦C and 2.33%, respectively.
When the length of the missing data was 12 h, the values of the RMSE and MAPE for the
bidirectional model were 0.51 ◦C and 1.48%, respectively. When the length of the missing
data was 24 h, the values of the RMSE and MAPE for the sequential model were 1.41 ◦C
and 3.55%, respectively. When the length of the missing data was 24 h, the values of the
RMSE and MAPE for the bidirectional model were 0.99 ◦C and 2.64%, respectively. The
accuracies of the bidirectional models with the length of the missing data of 1, 12, and 24 h
were improved, as error rates of 1.91, 1.21, and 0.91% were decreased by comparing with
the accuracy of the sequential model, respectively.

The accuracy of the bidirectional model was improved by comparing it with the
accuracy of the sequential model. Therefore, the missing data could be more accurately
predicted using the bidirectional model when the air temperature data are accumulated
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after the missing data. Furthermore, the longer the length of the missing data, the higher
the applicability of the bidirectional model because the accuracy of the RNN model was
lower when the length of the missing data was longer.

3.4. A Comparative Evaluation of the RNN Models according to the Length of the Missing Data

In this study, the accuracies of the developed RNN models were evaluated according
to the length of the missing data. Generally, the evaluation of the model should state that
a larger number of missing data will result in a lower accuracy of the RNN model. The
RMSE and MAPE values of the sequential, reverse, and bidirectional models, according to
the length of the missing data, were presented in Figure 12. As the result of the comparative
analysis, the tendencies of the sequential and reverse models were not clear, as shown in
Figure 12a,b. However, the tendency of the bidirectional model was clear, as shown in
Figure 12c. The bidirectional model developed in this study could accurately predict the
missing data of air temperature inside the fattening pig house. When the length of the
missing data was 6 h, the values of the RMSE and MAPE for the bidirectional model were
0.30 ◦C and 0.93%, respectively. When the length of the missing data was 24 h, the values
of the RMSE and MAPE for the bidirectional model were 0.51 ◦C and 1.48%, respectively.
When the length of the missing data was 48 h, the values of the RMSE and MAPE for the
bidirectional model were 0.99 ◦C and 2.64%, respectively. Therefore, when the length of the
missing data was less than 6 h, the bidirectional model could predict the missing data of
the internal air temperature within a 1% error rate. When the length of the missing data
was less than 24 and 48 h, the bidirectional model could predict the missing data of the
internal air temperature within 1.5% and 3% error rates, respectively.
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Finally, the RNN model developed in this study could be usefully applied to monitor
the internal environments of the fattening pig houses, where it is difficult to accumulate
reliable data for the long term due to the poor environments such as high air temperature,
relative humidity, and ammonia concentration. RNN models have the advantage that the
accuracy of RNN models can be continuously improved by learning from monitoring data.
The RNN model could be improved to learn the data of several factors, such as external
weather and ventilation rates, which directly impact the internal environments. Since the
RNN model developed in this study was developed by learning only temperature data, it
is highly applicable to livestock facilities where temperature-based control is used.

4. Conclusions

In this study, the developed RNN models could predict the missing data of air temper-
ature inside the experimental fattening pig house. First, a field experiment was conducted
to identify the environmental problems of the fattening pig house. During the field experi-
ment, air temperature, relative humidity, ventilation rate, ammonia concentration inside the
fattening pig house, and the external weather, were monitored. From these, RNN models
for data filling of the missing data were developed and validated. Based on analyzed moni-
toring data, it was found that the pigs were expected to experience high-temperature stress.
Although the ventilation rates were maximum in the daytime, the air temperature and
THI inside the fattening pig house were higher than 34 ◦C and 85 during the experimental
period, respectively. Therefore, it is necessary to conduct research for filling in the missing
data on the environments inside livestock houses.

In this study, the research for the data filling of the missing data as the basic research
was conducted using air temperature data, which is one of the most important factors for
environmental control inside fattening pig houses.

The RNN model for predicting the missing data by learning air temperature data is one
of the most important factors for environmental control inside fattening pig houses. Some
of the measured air temperature data inside the fattening pig house were assumed to be
the missing data. As a result of validating the accuracy of the RNN model considering the
periodic parameter, the RNN model for predicting the air temperature inside the fattening
pig house was accurate within a 3.5% error rate. Therefore, the RNN model was useful for
predicting data to replace missing data when it occurs.

The accuracies of the RNN models were evaluated according to the order of learning
data. Based on the result, the accuracy of the bidirectional model was improved by
comparing it with the accuracy of the sequential model. Therefore, the missing data could
be more accurately predicted using the bidirectional model when air temperature data are
accumulated after the missing data. Furthermore, the accuracies of the RNN models were
compared and analyzed according to the length of the missing data. The longer the length
of the missing data, the lower the accuracy of the RNN model. When the length of the
missing data was less than 26, 4, and 48 h, the bidirectional model could predict the missing
data of the internal air temperature within 1%, 1.5%, and 3% error rates, respectively.

The main contribution of this study is the development of the RNN model for predict-
ing the time series missing data of the air temperature inside fattening pig houses. The
RNN models also have an advantage because the accuracies of the RNN models could be
continuously improved by learning the measured data. Furthermore, the RNN models
developed in this study have high applicability because the RNN model was developed
by learning only air temperature data. In the future, it is possible to improve the accuracy
of the RNN model by learning the data of several factors, such as external weather and
ventilation rates, which directly impact the internal environments. Research predicting
the data of ammonia concentration data is necessary because the ammonia sensor is more
vulnerable to poor environments inside fattening pig houses.
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