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Abstract: Rice is a widely cultivated food crop worldwide, and threshing is one of the most important
operations of combine harvesters in grain production. It is a complex, nonlinear, multi-parameter
physical process. The flexible threshing device has unique advantages in reducing the grain damage
rate and has already been one of the major concerns in engineering design. Using the measured
test database of the flexible threshing test bench, the rotation speed of the threshing cylinder (RS),
threshing clearance of the concave sieve (TC), separation clearance of the concave sieve (SC), and
feeding quantity (FQ) are used as the input layer. In contrast, the crushing rate (YP), impurity rate
of the threshed material (YZ), and loss rate (YS) are used in the output layer. A 4-5-3-3 artificial
neural network (ANN) model, with a backpropagation learning algorithm, was developed to predict
the threshing performance of the flexible threshing device. Next, we explored the degree to which
the inputs affect the outputs. The results showed that the R of the threshing performance model
validation set in the hidden layer reached 0.980, and the root mean square error (RMSE) and the
average absolute error (MAE) were less than 0.139 and 0.153, respectively. The built neural network
model predicted the performance of the flexible threshing device, and the regression determination
coefficient R2 between the prediction data and the experimental data was 0.953. The results showed
revealed that the data combined with the ANN method is an effective approach for predicting the
threshing performance of the flexible threshing device in rice. Moreover, the sensitivity analysis
showed that RS, TC, and SC were crucial factors influencing the performance of the flexible threshing
device, with an average relative importance of 15.00%, 14.89%, and 14.32%, respectively. FQ had the
least effect on threshing performance, with an average threshing relative importance of 11.65%. Our
findings can be leveraged to optimize the threshing performance of future flexible threshing devices.

Keywords: rice; flexible threshing cylinder; artificial neural network; threshing clearance of concave
sieve; separating clearance of concave sieve; feeding quantity; threshing performance

1. Introduction

Rice is one of the four main staple food crops in China, with a perennial planting
area of 30 million hectares [1]. Mechanized rice production relies heavily on the harvest
process as an essential step. Threshing is a key link in the rice harvesting process; it is a
complex, nonlinear, and uncertain process, with several influencing parameters and large
nonlinearity [2,3]. The impact of threshing on rice determines how much grain is lost
during the harvest and processing stages. Double cropping rice in southern China has a
short harvesting duration. The performance parameters of the threshing and separation
device directly affect the operation quality of the combined rice harvester, i.e., the core
working component. The longitudinal axial threshing device is characterized by long
threshing time, smooth threshing process, good adaptability, and relatively soft threshing
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effect, and it is broadly used in combined harvesters [4]. Researchers in agricultural
mechanization are interested in the flexible threshing tooth due to its lower impact force
and rate of damage to the cracked grains compared to its rigid counterpart [5]. For this
reason, it is suitable for increasing the synthesis benefit in grain production [6]. Several
scholars have studied the application of flexible materials in agricultural engineering. In
1972, Duane L et al. [7] designed a self-made collision test device to analyze the effects
of corn grain velocity, collision surface material, collision angle, and other parameters on
the extent of grain collision damage. One study found that when the impact surface was
polyurethane, the damage degree of the grain was one-fifth of that when the impact surface
was steel, and one-sixth of that when the impact surface was concrete. This is an inaugural
study focusing on the effect of flexible materials on grain, demonstrating the benefit of
flexible materials in reducing grain damage degree. Shi Qingxiang et al. [8] performed a
comparative study on the flexible and rigid threshing elements, demonstrating that flexible
threshing with flexible teeth made of flexible materials can extend the threshing time and
reduce grain breakage with feasible flexible threshing. Xie Fangping et al. [9] utilized
polyurethane plastic cylindrical strips as the teeth of flexible threshing rods to conduct
a dynamic analysis of the threshing of flexible rod teeth. Consequently, they found that
the indexes of flexible threshing, for instance, non-removal rate and impurity rate, were
similar to those of rigid rod teeth threshing, and the crushing rate was significantly lower
than that of rigid rod teeth threshing. Ren Xuguang et al. [10] analyzed the threshing
process of rice using the conservation law of capacity and noted that it is conducive to rice
threshing when the flexible teeth periodically hit the ear of rice, and a resonance response
occurred. Su Yuan et al. [11] modified the conventional Q235 carbon steel teeth into nitrile
rubber composite nail teeth and polyurethane rubber nail teeth. The test found better grain
removal performance of nitrile rubber composite nail teeth than that of polyurethane rubber
nail teeth and traditional carbon steel nail teeth. Geng Duanyang et al. [12] designed a cross-
axial flow flexible corn threshing device. To realize flexible and low-damage threshing
of corn ears, the threshing element combined a structure of flexible nail teeth and an
elastic short grain rod. Li Yibo et al. [13] performed a bench test to explore the effect of
composite nail teeth of different outer materials on the threshing performance and self-wear
resistance of corn ear. The results showed that the rubber composite nail teeth had the best
comprehensive effects in threshing and self-anti-fraying performance, the breakage rate
of maize was lower compared with that of traditional carbon steel nail teeth, and the non-
threshing rate of maize was similar to that of traditional carbon steel nail teeth, thus meeting
the conditions of technical specifications for threshing quality evaluation of maize harvester.
Fu Jun et al. [14] established a rigid–flexible coupled wheat threshing arch tooth. Under
similar operating conditions, the damage rate of the rigid-flexible coupled arch tooth was
significantly reduced, unlike that of the standard arch tooth, with significant loss reduction
and threshing effect. Qian Zhenjie et al. [15] introduced the increase and decrease constraint
strategy to establish a multi-friction dynamic model of flexible threshing teeth on grains.
As a consequence, it was observed that the continuous normal striking force and repeated
minor tangential kneading force of flexible teeth on grains combined to reduce the grain
damage rate. Reports on the longitudinal axial flow threshing cylinder with a hollow core
and flexible rod teeth used in rice threshing are limited. Flexible threshing can reduce the
crushing rate of rice grains and, thus, developing a comprehensive and accurate evaluation
model of flexible threshing has important theoretical value and practical significance.

In recent years, the artificial neural network (ANN) has achieved desired performance
and high accuracy in predicting laboratory data because of its capacity to describe non-
linear systems. As a result, it is widely applied in the fields of mathematics, engineering,
medicine, economy, environment, and agriculture [16], particularly where some traditional
modeling methods have failed [17]. Artificial neural network technology has been utilized
in harvester systems by some researchers [18,19]. Nonetheless, few studies have been con-
ducted on the threshing performance of a flexible threshing device using artificial neural
networks. Due to the uncertainty of the threshing condition and the complexity of the
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factors affecting the threshing device, the threshing performance prediction is a nonlinear
problem affected by multiple factors. Nevertheless, the BP neural network is a nonlinear
dynamic system [20,21] with powerful nonlinear [22] and generalization capacity and can
identify complex relationships among the data [23]. Herein, parameters [24] affecting the
performance of the threshing device and threshing performance indicators [25,26] were
based on the parameters reported by several studies.

In the laboratory-based flexible threshing bench test, the rotated speed of the threshing
cylinder, threshing clearance of the concave sieve, and separating clearance of the concave,
as well as feeding quantity, were selected as the inputs of the model based on the BP neural
network. The neural network model was established between inputs and their threshing
characteristic of the crushing rate, impurity rate of threshed material, and entrainment loss
rate. Further, the threshing performance index was predicted under different parameters.
The objectives of this study included: (1) Determining the feasibility of artificial neural
network technology in predicting the threshing performance of the flexible threshing device
and providing executable procedures for an artificial neural network model for practical
application; (2) Investigating the effect of artificial neural network geometry and some
internal parameters on model performance; (3) Exploring the relative significance of factors
influencing threshing performance through sensitivity analysis.

2. Materials and Methods
2.1. Test Materials and Equipment

The plots with basically similar crop growth rates were selected as the experimental
sampling area. The rice variety tested was Xiangzaoxian 24. Table 1 shows the main material
characteristics of the rice. The rice flexible threshing test was conducted in the Agricultural
Machinery Engineering Training Center of Hunan Agricultural University from July 11 to
18, 2022. Figure 1 shows the test equipment, and Table 2 shows the equipment parameters.

Table 1. Main physical characteristic parameters of harvesting rice.

Rice
Varieties

Plant
Height/mm

Panicle
Length/mm

Middle
Stem Diam-

eter/mm

Middle
Stem Wall

Thick-
ness/mm

Number of
Shoots per

Ear

Number of
Grains per

Ear

Thousand-
Grain

Mass/g

Stem
Moisture

Content/%

Grain
Moisture

Content /%

Yield per
Unit Area
/kg·hm−2

Ratio of
Grass to

Grain

Xiangzaoxian
No. 24 833 ± 64 182 ± 12 32.18 ± 0.3 0.4 ± 0.1 12 ± 1.6 110 ± 22.9 30.02 ± 1.0 55.68 ± 4.8 22.42 ± 0.8 6230 1:(0.83± 0.1)
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Table 2. Parameter table of flexible threshing device.

Parameters Values

The total length of the cylinder/mm 1935
Threshing cylinder diameter/mm 620

Cylinder speed/(r·min−1) 400–1500
Threshing clearance of concave

sieve/mm 0–60

Separating clearance of concave
Sieve/mm 0–60

Feeding rate/(kg·s−1) 0.5–5

2.2. Test Method

The test was conducted following GB/T 5262—2008 and GB/T 5982—2005.
The thousand-grain quality was determined using the national standard method to

explore grain and stem water content and according to the GB 5519-85 “grain, oil test
thousand grain weight determination method”.

The plots with similar crop growth were selected as the sample areas. Rice plants
were artificially fed uniformly into the longitudinal axial flow threshing drum. In the
multi-factor experiment, the material of each group weighed 10 kg. Three parallel tests
were performed using similar parameter combinations, and the average value was taken.
The performance evaluation indexes of the system were categorized into the crushing rate,
impurity rate of threshed material (impurity rate for short), and entrainment loss rate.
The mix that was threshed was collected in the receiving box located under the adaptable
threshing mechanism. The mix released from the end of the cylinder was accumulated
with the help of a tarpaulin attached to it. After each parallel test, the crushing rate and
impurity rate of the threshing system were calculated using the mix, which was discharged
into the receiving box. The mixture discharged onto the tarpaulin attached to the end of
the cylinder was analyzed to determine the entrainment loss rate. The calculation formulas
of the crushing, impurity, and entrainment loss rates are, respectively:

YP =
WP
WX
× 100% (1)

YZ =
WXZ
WXh

× 100% (2)

YS =
WW
W
× 100% (3)

where YP is the crushing rate, %; WP is the mass of crushed grains in the sample, g; WX
represents the total grain weight in the sample, g; YZ is the impurity rate of threshed
material, %; WXZ is the impurity mass in the extruded sample, g; WXh is the total mass of
extruded samples, g; YS is the entrainment loss rate, %; WW is the grain mass discharged
from the tail of the drum, g; W is the grain weight of each group of test extracts, g.

2.3. Building the ANN Model
2.3.1. Development of Neural Network Model

One of the most commonly used neural network models is the BP neural network,
which utilizes the BP algorithm. Even the most complex nonlinear relationship completely
approximates it. The information is dispersed and stored in the neurons of the network.
The computation is extremely fast due to parallel processing. Since neural networks
are self-learning and adaptive, they can deal with uncertain or unknown systems. This
system is excellent when simultaneously processing both quantitative and qualitative
information. It can coordinate a wide range of input information relations and is, thus,
ideal for fusion and multimedia applications. A well-trained artificial neural network
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can function as a predictive model for a specific application, which is a data processing
system inspired by biological neural systems. The predictive power of an ANN is derived
from training on experimental data, which is then validated using independent data.
Artificial neural networks can relearn and adapt to improve their performance by updating
data availability [27]. The structure and operation of ANNs have been described by
numerous authors [28]. The modeling used in feedforward neural networks for prediction
was designed to capture the correlation between the historical model inputs and their
corresponding outputs. This is accomplished by repeatedly feeding the model examples of
input/output relationships and adjusting the model coefficients (i.e., connection weights) to
minimize the error function between the historical output and the model-predicted outputs.

This article follows the procedure of the artificial neural network model as described by
Maier and Dandy [29]. They include determining model inputs and outputs, dividing and
preprocessing available data, selecting an appropriate network architecture, optimizing
connection weights (training), setting stopping criteria, and validating the model. A
typical algorithm flow diagram is shown in Figure 2. In this work, all calculations and
programming were executed in MATLAB (R2016a, 9.0.0.341360). The data used to calibrate
and validate the neural network model were obtained from the bench field measurements
of the flexible threshing experiment device and the corresponding information on the
feeding amount and material characteristics. The data cover a wide range of variation in
different operating parameters types and threshing properties. The database comprises a
total of 25 individual cases. The statistics of the input and output parameters used for the
artificial neural networks are shown in Table 3. Figure 3 is a database of all the threshing
performance metrics for the ANN.
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Table 3. Statistical criteria of the input parameters and performance attributes (output parameters)
used in the ANN model.

Parameters
Statistical Criteria

Minimum Maximum Average Standard Deviation Median Variance

Training set inputs 1 800 190.4500 300.8486 25 9.0154 × 104

outputs 0.0490 1.1960 0.4142 0.4074 0.2070 0.1660

Validation set
inputs 2 800 183.3750 291.1664 30 8.4778 × 104

outputs 0.0490 1.1960 0.3984 0.4231 0.1920 0.1790

Testing set inputs 1.5 800 197.7750 311.6720 35 9.7139 × 104

outputs 0.04093 0.9970 0.3995 0.4093 0.1920 0.1675
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2.3.2. Model Inputs and Outputs

A thorough comprehension of the determinants of threshing performance is required
to obtain accurate threshing performance prediction. The rotational speed of the cylinder
is closely associated with the performance of the thresher because high-speed results in
cracking of the grain, and low-speed leads to unthreshed grain. Moreover, the threshing
clearance and separating clearance of the concave sieve significantly influence the threshing
performance. Furthermore, the size of the feeding quantity is closely correlated to the
threshing characteristics [30].

The primary factors affecting threshing performance include the rotational speed of
the cylinder, threshing clearance of the concave sieve, separating clearance of the concave
sieve, and feeding quantity. Other factors include total threshing power consumption and
grain moisture content that contribute to a lesser degree, thus considered secondary. Grain
moisture content was excluded in this work since the tests were conducted under specific
moisture content conditions during the harvest period.

The aforementioned factors, i.e., the rotational speed of cylinder (RS), threshing clear-
ance of concave sieve (TC), separating clearance of concave sieve (SC), and feeding quantity
(FQ), were introduced to the ANN as the model input variables. On the other hand, the
crushing rate (YP), impurity rate of threshed materials (YZ), and entrainment loss rate (YS)
were the output variables. Sensitivity analysis was conducted on the trained network to
identify the input variables with the most significant impact on threshing performance
predictions.

Sensitivity analysis (Figure 4) was based on the validation set, where the input variable
was RS, TC, SC, and FQ. To normalize the input variables, the value of the input variable
was first changed, the trained network was introduced, the maximum and minimum output
values were recorded, the difference between the maximum and the minimum value was
computed, the difference to the maximum value was calculated, before finally taking the
mean of all ratios as the sensitivity of the classification variable. Lastly, the sensitivity size
was compared to establish the sensitivity of each categorical variable to the output variable.
The sensitivity analysis results will be discussed later.



Agriculture 2023, 13, 788 7 of 15Agriculture 2023, 13, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 4. The sensitivity analysis flow. 

2.3.3. Data Division and Preprocessing 
The database was randomly divided into three sets, i.e., training, testing, and vali-

dation. A training set was used to construct the neural network model, whereas an in-
dependent validation set was used to estimate model performance in the deployed en-
vironment [31]. In total, 60% of the data were used for training, 20% for testing, and 20% 
for validation. Table 4 shows the orthogonal test for different levels as well as the data 
ranges used for the ANN model variables. 

Table 4. Orthogonal test factor level table used for Artificial Neural Network Model Variables. 

Factors 
 
 

Levels 

Rotational 
Speed of 
Cylinder, 
RS (r/min) 

Threshing Clearance 
of Concave 

Sieve,  
TC (mm) 

Separating Clearance 
of Concave 

Sieve, 
SC (mm) 

Feeding 
Quantity, 
FQ (kg/s) 

1 600 15 15 1.0 
2 650 20 25 1.5 
3 700 25 35 2.0 
4 750 30 45 2.5 
5 800 35 55 3.0 

Notably, it is critical to preprocess the data into an appropriate format before ap-
plying it to the ANN. Preprocessing the data by scaling is crucial in ensuring that all 
variables receive equal attention during training. The output variables must be scaled to 
commensurate with the limits of the transfer functions used in the output layer. Alt-
hough scaling the input variables is not necessary, it is often recommended [32]. Here, 
the input and output variables were scaled between −1.0 and 1.0, as the purelin sig-
moidal transfer function was used in the output layer. 

2.3.4. Model Architecture 
Determining the network architecture is one of the crucial and challenging tasks in 

the development of ANN models because it requires the selection of several hidden lay-
ers and the number of nodes in each of these. 

The number of model inputs and outputs restricts the number of nodes in the input 
and output layers . The input layer of the ANN model developed in this work had four 
nodes, one for each of the model inputs (i.e., a rotational speed of cylinder (RS), thresh-
ing clearance of concave sieve (TC), separating clearance of concave sieve (SC), feeding 
quantity (FQ)). On the other hand, the output layer had three nodes (i.e., crushing rate 
(YP), impurity rate of threshed materials (YZ), and entrainment loss rate (YS)) represent-
ing the measured value of threshing performance. 

Figure 4. The sensitivity analysis flow.

2.3.3. Data Division and Preprocessing

The database was randomly divided into three sets, i.e., training, testing, and val-
idation. A training set was used to construct the neural network model, whereas an
independent validation set was used to estimate model performance in the deployed envi-
ronment [31]. In total, 60% of the data were used for training, 20% for testing, and 20% for
validation. Table 4 shows the orthogonal test for different levels as well as the data ranges
used for the ANN model variables.

Table 4. Orthogonal test factor level table used for Artificial Neural Network Model Variables.

Levels

Factors Rotational
Speed of
Cylinder,

RS (r/min)

Threshing
Clearance of

Concave Sieve,
TC (mm)

Separating
Clearance

of Concave Sieve,
SC (mm)

Feeding
Quantity,
FQ (kg/s)

1 600 15 15 1.0
2 650 20 25 1.5
3 700 25 35 2.0
4 750 30 45 2.5
5 800 35 55 3.0

Notably, it is critical to preprocess the data into an appropriate format before applying
it to the ANN. Preprocessing the data by scaling is crucial in ensuring that all variables
receive equal attention during training. The output variables must be scaled to commensu-
rate with the limits of the transfer functions used in the output layer. Although scaling the
input variables is not necessary, it is often recommended [32]. Here, the input and output
variables were scaled between −1.0 and 1.0, as the purelin sigmoidal transfer function was
used in the output layer.

2.3.4. Model Architecture

Determining the network architecture is one of the crucial and challenging tasks in the
development of ANN models because it requires the selection of several hidden layers and
the number of nodes in each of these.

The number of model inputs and outputs restricts the number of nodes in the input
and output layers. The input layer of the ANN model developed in this work had four
nodes, one for each of the model inputs (i.e., a rotational speed of cylinder (RS), threshing
clearance of concave sieve (TC), separating clearance of concave sieve (SC), feeding quantity
(FQ)). On the other hand, the output layer had three nodes (i.e., crushing rate (YP), impurity
rate of threshed materials (YZ), and entrainment loss rate (YS)) representing the measured
value of threshing performance.

Figure 5 shows the basic elements of an artificial neuron. Artificial neurons mainly
comprise weight bias and activation functions. The BP neural network is the most popular
and widely used artificial neural network architecture [33]. It involves an input layer, one
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or more hidden layers, and an output layer. Evidence suggests that a network with a
threshold, at least one S-shaped hidden layer, and a linear input layer can approximate
any rational number [34]. Mathematical expressions and interpretations of artificial neural
networks can be referred to in reference [35].
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Figure 5. Schematic diagram of an artificial neural network.

The activation function introduces nonlinearity into the neural network, making it
more powerful than the linear transformation. The Levenberg–Marquardt algorithm is the
most commonly used multi-layer perception training algorithm. It is a gradient descent
technique [36] used to reduce the error of specific training patterns. The network was
built using the Levenberg–Marquardt backpropagation technique. Tansig is a common
nonlinear activation function for nodes in the hidden layer. Figure 6 depicts the architecture
of the artificial neural network system described in this paper. W is a weight matrix for the
hidden and output layers, and Nij is a node that computes a weighted sum of its inputs
and passes the sum through a soft nonlinearity or activity function.
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2.3.5. Weight Optimization

“Training” or “learning” is the process of optimizing the connection weights. The goal
is to identify a global solution to what is typically a highly nonlinear optimization problem.
The method most commonly used for finding the optimum weight combination for feedfor-
ward neural networks is the backpropagation algorithm [37], which is based on first-order
gradient descent. Feedforward networks trained with the backpropagation algorithm have
been applied successfully to numerous agricultural engineering problems [38,39], hence,
also used in this work.

2.3.6. Stopping Criteria and ANN Model Validation

The following are conditions for the neural network to stop: 1. Meet the accuracy
requirements; 2. Complete the maximum number of iterations.

Backpropagation works by minimizing a cost function. The mean squared error (MSE)
is the most common cost function.

Validation data were used to validate the performance of the trained model once
the training phase of the model was completed. Additionally, the validation set was
used to determine the optimum number of hidden layer nodes and the optimum internal
parameters (learning rate, momentum, and initial weights). The MSE was used to validate
the performance of the ANN in terms of the different number of hidden layer nodes
according to Equation (4).

MSE =

m
∑

i=1
(yi − ŷi)

2

m
(4)

The evaluation parameters metrics of root mean square error (RMSE) [40], correlation
coefficient (R), and mean absolute error (MAE) were utilized to assess the performance of
the models by comparing the target and output values of networks.

RMSE =

√√√√√ m
∑

i=1
(yi − ŷi)

2

m
(5)

R =

√√√√√√√√
(

m
∑

i=1
(yi − y)

(
ŷi − ŷ

))2

m
∑

i=1
(yi − y)2•

m
∑

i=1

(
ŷi − ŷ

)2
(6)

MAE =
1
m

m

∑
i=1
|yi − ŷi| (7)

The RMSE, R, and MAE values were calculated in all stages: training; validating;
and testing. Where yi, ŷi are the observed value and predicted values, y, ŷ are the average
observed and predicted values, and m is the total number of points in each dataset, respec-
tively. Using this parameter aids in selecting the best structure and network and provides
the possibility of understanding the proximity of the model.

After model construction, the variable parameters of the experimental trials were
entered as the new input model, and the actual results were compared with the model.
Microsoft Excel 2016 software was used to analyze the correlation coefficient between the
actual results and the output of the neural network model.

3. Results
3.1. Evaluation of the Number of Hidden Layer Nodes

The BP network has a varied number of nodes in the hidden layer, and the hidden
nodes affect the error of the output connected neurons [41]. If the number of neurons
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in the hidden layer is too small, the network’s ability to learn is limited, resulting in
the need for more training to decrease its fault tolerance. On the other hand, network
iterations will increase with too many neurons, thereby extending the training time of the
network, and reducing the generalization capacity of the network, resulting in a decrease in
predictive ability. The optimal number of nodes needs to be explored to confirm the effect
of different nodes on network performance. In practical situations, the number of nodes
in the hidden layer is selected by first determining the approximate range of the number
of nodes using the empirical formula before using the step-wise test strategy to establish
the best number of nodes with the smallest error by training and comparing the networks
with different neurons. The best number of hidden layer nodes can be derived from the
following formula [42,43]:

l =
√
(m + n) + a (8)

where l represents the number of neurons in the hidden layer, n denotes the number of
neurons in the input layer, m is the number of neurons in the output layer, a is the constant,
and 1 < a < 10. According to this formula, the value range of the hidden layer nodes of
the network was 4–12, and the performance of the artificial neural network under different
numbers of nodes is shown in Figure 7. When the number of hidden layers was 5, the
minimum MSE was 0.00080796, indicating superior model performance.
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Figure 7. Performance of artificial neural network models with different hidden layer nodes (learning
rate = 0.1 and training goal = 0.001).

Table 5 summarizes the predictive performance of the optimal neural network. The
findings showed a validation set of R = 0.979, RMSE of 0.138, and MAE of 0.153. The
ANN model with a 4-5-3-3 structure performed effectively. Table 5 further shows the results
of the model, which were generally consistent with those obtained during training and
testing, indicating that the model can generalize within the range of data used for training.

Table 5. Artificial Neural Network Results.

Dataset R RMSE MAE

Training set 0.97596 0.079148 0.14100
Validation set 0.97981 0.13823 0.15260

Testing set 0.99041 0.086466 0.13543

Based on the data shown in Figure 8, the error curves of the model training sample,
the corrected sample, and the test sample were well correlated. The curve trend slowly
decreased, indicating that the network was trained on the training data. To avoid overfitting
with the validation data, the MSE between the initial fitting and validation will become
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smaller and smaller, but as the network begins to overfit the training data, the MSE will
become larger. In the default setting, the training ends when the validation error is added
six consecutive times, and the best performance is obtained from the lowest validation
error period (drawing circle). Finally, the obtained best artificial neural network parameters
are shown in Table 6. Figure 9 shows the training state of the model training phase.
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Table 6. Optimum ANN parameters for the design of the model.

Sr.No. Parameter Description

1 No. of input nodes Varying from 1 to 25 in the
cascaded training procedure

2 No. of output nodes 3
3 No. of hidden layers 2
4 No. of neurons in the hidden layer (Hn) 5–3
5 Training rule Levenberg-Marquardt (LM)
6 Activation function Sigmoid
7 Network type Feed-forward (FF)
8 Training method Backpropagation algorithm

3.2. Evaluation of Prediction Results

The regression curves for assessing the accuracy of the ANN estimation are shown in
Figure 10. Estimates of the threshing performance of the ANN were evaluated by regression
analysis between the predicted and experimental data. To validate the ANN model, we
applied the estimation and regression methods. The regression value for the threshing
characteristics was calculated as 0.9525. Figure 10 displays the optimal curve resulting
from multiple iterations of the R2 curve.
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3.3. Sensitivity Analysis

Sensitivity analysis was performed to examine the sensitivity of the various factors
influencing the threshing characteristics, and Table 7 shows the effects of the various input
factors. As shown, different input variable values, i.e., the size of different sensitivity,
reflected the effect of the input variable on the output variable. RS affected the predicted
threshing performance when the network values had distinct input variables. However,
the relative importance of the remaining input variables varied based on changes in the
input variables. RS was the most important input in all trials followed by TC, SC, and
FQ. Sensitivity analysis revealed that RS, TC, and SC were the most vital factors affect-
ing threshing performance, with an average relative importance of 15.00%, 14.89%, and
14.32%, respectively. The results further showed that FQ had a minimal effect on threshing
performance, with an average relative importance of 11.65%.
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Table 7. Sensitivity Analyses of the Relative Importance of Artificial Neural Network Input Variables.

Trial No.
Relative Importance for Input Variables

RS TC SC FQ

1 0.2417 0.1083 0.1208 0.1013
2 0.1831 0.1575 0.1468 0.086
3 0.1426 0.1278 0.1892 0.0828
4 0.0507 0.2191 0.1274 0.1805

Average 0.1500 0.1489 0.1432 0.1165

4. Discussion

Threshing is one of the most critical operations of combine harvesters during grain
production, which is a complex, nonlinear, multi-parameter physical process. The working
performance index of the threshing device has a significant on the separation, cleaning,
and other parts and the working quality of the whole machine and has always been one of
the main concerns of the engineered design. A flexible threshing device has the advantage
of reducing the crushing rate of rice grain. Therefore, a comprehensive and accurate
design of a flexible threshing performance evaluation model has important theoretical
value and practical significance. In this study, the BP artificial neural network was used
to model the threshing performance factors based on four factors: RS, TC, SC, and FQ.
Determining the optimal network architecture is related to the number of hidden layers
and neurons. The optimum network geometry was found to be 4-5-3-3 by evaluating
different number of hidden layer nodes in this study. The performance of the ANN model
was verified by comparing the predicted dataset with the experimental results (measured
data). The sensitivity analysis performed for the described ANN model indicated that four
working variables of the flexible threshing device had the greatest contribution to threshing
performance attributes compared to FQ. These results can guide the optimal design of a
flexible threshing cylinder to achieve the maximum performance of the device.

5. Conclusions

This study analyzed different numbers of hidden layer nodes and found that when the
number of hidden layer nodes was five, the minimum MSE was 0.00080796, indicating that
the model performed well. The results indicated that backpropagation neural networks
could predict the threshing performance of the flexible threshing device with an acceptable
degree of accuracy (R = 0.980, RMSE = 0.138, MAE = 0.153). The built neural network
model prediction predicted the performance of the flexible threshing device well. The
regression determination coefficient R2 between the predicted and experimental data was
0.953, indicating that the predicted data of the built neural network model was in good
agreement with the experimental data. The ANN method is an effective method for
predicting the threshing performance of flexible threshing devices in rice. The established
artificial neural network model exhibited stable prediction of the threshing performance of
the flexible threshing device during operation. The sensitivity analysis revealed that RS,
TC, and SC are important factors affecting the performance of the flexible threshing device,
with an average relative importance of 15.00%, 14.89%, and 14.32%, respectively. FQ had
the least impact on threshing performance, with an average threshing relative importance
of 11.65%. These results can guide the optimal design of flexible threshing cylinders and
improve the performance of the flexible threshing device.
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