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Abstract: Ravine and gully formations are both spectacular and also the worst forms of water-
induced soil erosion and have in situ and ex situ impact on geomorphology, hydrology, productivity
and environmental security, and they are the root causes of degradation of marginal and adjacent
land along with reduced production potential. A long-term (2011–2019) study was conducted
on marginal land of the Chambal ravine to assess the impact of six land uses, i.e., Agriculture
(T1—Rainfed Soybean), Agri-horticulture (T2—Soybean + Manilkara achras), Horti-Pastoral (T3—
Emblica officinalis + Cenchurus ciliaris), Pasture (T4—C. ciliaris), Silviculture (T5—Acacia nilotica) and
Silvi-pasture (T6—A. nilotica + C. Ciliaris) on soil properties, runoff interception, sediment trapping
and soil loss reduction. The lowest average annual soil loss (4.83 ton ha−1 year−1) and runoff
(109.52 mm) were recorded under T4, while the highest sediment loss (8.09 ton ha−1 year−1) and
runoff (136.07 mm), respectively, were under T5. The runoff coefficient of land uses was in the
order of T3 (20.30%) < T4 (20.56%) < T1 (21.95%) < T2 (22.26%) < T6 (22.83%) < T5 (25.54%). The
C. ciliaris improved bulk density and recorded lowest in horti-pasture (1.63 ± 0.04 g cm−3) followed
by pasture (1.66 ± 0.03 g cm−3) land use system. The active SOC content in pasture, horti-pasture
and silvi-pasture was 0.95, 0.87 and 0.64 times higher, respectively, than agriculture land use. Under
pure C. ciliaris cover, resistance to penetration varied from 0.68 to 1.97 MPa, while in silviculture
land use, it ranges from 1.19 to 2.90 Mpa. Grass cover had substantial impact on soil loss and runoff
reduction, SOC content, soil aggregation and resistance to penetration. In degraded ecosystems,
Cenchrus ciliaris can be used alone and in combination with plants for protection of natural resources
from water-induced soil erosion, runoff conservation, soil quality improvement and maximization of
precipitation water use.

Keywords: aggregates; Cenchurus ciliaris; Chambal river; runoff coefficient; ravine; sediment

1. Introduction

Natural resources are being degraded rapidly worldwide. Land is facing expeditious
pressure for various demands along with worldwide land degradation problems [1,2].
Land degradation refers to loss in soil productivity including its present and potential
capabilities through deterioration of physical, chemical, biological and socio-economic
features. The highest continental percentage of land degradation is in Asia (37%), while
the lowest in Central America (3%), the world total being 15% [3]. Oldeman [4] classified
that approximately 2 percent of the degraded lands are irreversible degraded, 7 percent
are moderately degraded, and 6 percent are lightly degraded. In India, 53% of total
geographical area is degraded due to one or more kinds of land degradation. Water-
induced soil erosion is the foremost cause of land degradation, affecting about 2 billion ha
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(22.5 percent of agricultural land, pasture, forest and woodland) all over the world [3,5–7]
comprising 70 percent of all dry lands (about 3.6 billion ha).

The worst forms of land degradation are gullied and ravine land formations. Ravine
land is a system of gullies running more or less parallel to each other and then converge into
a major river system or its tributary with the formation of riverine terraces (locally known
as Bihad/Kachhars). Land degradation due to gully erosion is one of the severe threats to
the vast tracts of world’s agricultural land [8]. The severe form of gully erosion leads to the
formation of ravine and, in the most serious cases, the process of ravine formation is almost
irreversible. The formation of these severe forms of land degradation starts from river
banks, and if not protected, then a network of gullies progressively encroaches the adjoining
catchment area [9,10]. The formations of ravine zones of India have no obvious relation to
climate. Extreme climatic events, human activities and continued deforestation exposes soil
which may exacerbate ravine expansion. Ravine expansion also supported by polycyclic
character of river, morphology of the region and neo-tectonics activity in the region [11,12].
The gullied land can be characterized by highly degraded undulating landscapes along
with steep multidirectional slops, unscientific land use or land management, scoring the
action of rainfall drainage density and activeness [2,13]. The gully formation process and
many other factors in ravine as well as in catchment area play a key role in the formation
and extension of riparian zones along the major river system all over the world, including
India. The National Commission on Agriculture [14] reported 3.67 million ha (1.12% of
total geographical area) of ravine land in India (first legitimate estimation). Recently, the
Indian Council of Agricultural Research, New Delhi, reported 1.037 million ha ravine land
in four major ravine infested states, i.e., Rajasthan, Uttar Pradesh, Madhya Pradesh and
Gujarat of India [15].

Many land management technological packages and practices have been developed
and recommended by many organizations/institutes/scientists for conservation and uti-
lization of degraded land [16–18]. Appropriate soil and water conservation measures must
be adopted to prevent further degradation of marginal land. The mechanical and physical
structures, for example, peripheral/or marginal bunds, land leveling and slope smoothing,
graded bunding, bench terracing and gully head and gully bed stabilizing by different kind
of spill ways (drop spill way, chute and pipe spill way), gully plugs, check dams and bori
bunds [19–21] are well-proven means to control soil erosion, but they are cost and energy
intensive, and may not be suitable to highly undulating and fragile ravine-like topography.
Biological means, particularly grass-based methods, have been reported to be very cost
effective and suitable for undulating, unstable and sloppy lands [7]. Land use and land
cover are promising factors affecting the runoff and soil loss [22–25]. Perennial grasses
such as Cenchrus ciliaris, Pennisetum purpureum, Saccharum munja, Dichanthium annulatum,
Thysanolaena maxima, etc., provide ground cover throughout the year and seem to possess
the most desirable attributes as an effective grass barrier for controlling surface runoff and
soil loss [26,27]. One of the major components of our study was the inclusion of C. ciliaris
alone and in combination with selected land use systems for the study.

C. ciliaris has high economic and nutritional value and is one among the pastoral
species preferred as good quality feed for animals, especially in tropical and subtropical
regions [28–31]. Recently, several researchers have reported the effective role of C. ciliaris for
the rehabilitation of mine spoil areas, ravine areas, degraded land and erosion control [32–34].
C. ciliaris was tested for this purpose because it has enough tolerance to moisture deficit
conditions, the capacity to withstand heavy grazing, a vast and deep root system and the
ability to keep a responsive nature to precipitation [28]. The apomictic [35] nature (capacity
to produce clones from seeds) of the C. ciliaris grass is the most suitable trait for use in
the rehabilitation of degraded lands such as ravine land, mine spoil area, etc. Due to the
apomictic, invasive and spreading nature of C. ciliaris grass, it can spread in monotype
stand, small clumps and clusters throughout the landscape. The strong, wide and deep root
system along with clumpy nature of C. ciliaris grass intuits an erosion-controlling quality
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in it. The root system of a single club can create a hold on a 1.50-to-2.0 m-wide and up to
1.0 m-deep soil system.

Recently, in most of the cases, the studies on the impact of grasses/grass strips on
erosion control were carried out in simulated or normal field experiments [36–39]. Very
few explained the conservative nature of C. ciliaris grass under natural rainfall chronic
conditions, especially in ravine lands. To assess the impact of C. ciliaris alone and in
combination on natural resources conservation, six land use and land covers were tested
under semi-arid climatic condition in the fringe zone of the Chambal riparian ecosystem
of India. The aim of our experiment was to assess the efficacy of selected land uses to
reduce the sediment and runoff losses from selected land uses over the period of nine years
(2011–2019) in marginal lands of the Chambal ravines. The experiment was conducted on
the piping-prone, swelling and shrinking and erosion-sensitive nature of silty clay loam
soils. The long-term period of experiment allowed us to study the temporal variability
in rainfall, efficacy of selected land use systems to control erosion and runoff, vegetation
development and soil properties state under the natural environment. Initially, we assumed
that upon completion of a long-term study, selected land use and land covers will have a
definite and strong impact on erosion-controlling soil properties (BD, aggregation, SOC
content, resistance to penetration, etc.), sediment and runoff generation. The results of our
study are presented and discussed in the forthcoming sections. The results of the study
represent the effect of land use and covers on selected soil parameters, runoff and soil loss
after completion of a continuous nine year period.

2. Material and Methods
2.1. Study Area

The study was conducted in semi-arid climatic condition on marginal lands (fringe
zone) of Chambal ravine region, located in Kota, Rajasthan state of Western India, having
latitude 25◦13′51.30′′ N, longitude 75◦52′22.51′′ E, and about 254 m a.s.l.) (Figure 1). Mean
annual rainfall and temperature were 741 mm and 25.8 ◦C, respectively. The mean winter
season temperature (MWST) and mean summer season temperature (MSST) are greater
than 5 ◦C. The area qualifies for ustic soil moisture regime and hyperthermic temperature
regime. More than 90% rainfall is received during July to September months from south-
western monsoon. Remaining part of the year remains in water deficit with mean annual
potential evapotranspiration demand of 1036.60 mm/year. Soil texture varied from sandy
clay loam to clay through sandy loam and sandy clay with slow-to-moderate drainage
capability. Geologically, these soils originated from sandstone, shale and limestone [40].
Presence of calcium carbonate concretions throughout profile is a common phenomenon
in the region. The soils have a swelling and shrinking nature which encourages a high
amount of surface flow. The organic carbon content of soil varies between low and medium
class, i.e., 0.20 to 0.45% [41,42].

2.2. Experimental Setup

To assess the impact and efficacy of predominant land use systems of semi-arid
climatic conditions of south-eastern Rajasthan on sediment loss and runoff under natural
environmental conditions, a long-term study (2011–2019) was conducted at ICAR-Indian
Institute of Soil and Water Conservation, Research Center, Kota, Rajasthan, Western India.
The study was conducted on Typic Haplusterts (medium and deep black) soils [43] highly
susceptible to swelling, shrinking, cracking and hardening. A total of six land use systems
were tested for their suitability in terms of permissible runoff and sediment yields in Chambal
ravine region soils of south-eastern Rajasthan. To overcome the impact of aspect and elevation
gradient on precipitation regime, vegetation cover and spatially distributed radiation [44],
experimental site was selected with similar aspect (north-east facing) and straight slope
to implement selected land use system. The selected land use systems (Figure 2) were:
Agriculture (Rainfed Soybean)—T1; Agri-horticulture (Soybean+ Manilkara achras)—T2;
Horti-pastoral (Emblica officinalis + Cenchrus ciliaris)—T3; Pasture (Cenchrus ciliaris)—T4;



Agriculture 2023, 13, 773 4 of 21

Silviculture (Acacia nilotica)—T5; and Silvi-pasture (Acacia nilotica + Cenchrus ciliaris)—T6.
At the outset (in 2010), experimental site was prepared by clearing and removing the sparse
vegetation dominated by Prosopis juliflora and Leucenia leucocephala. Plot homogeneity and
design of experiments was ensured before implementation of selected LUSs. Six plots of 30 m
length × 45 m width (each plot is subdivided in three part of 30 m length × 15 m width
for sediment loss and runoff estimation) were established at experiment site. A drainage
channel of 3.0 m top width, 1.0 m bottom width and 1.0 m depths had been excavated for
removing excess water from the experimental area and safe disposal of collected water
from runoff collection tank (1.4 × 0.70 × 0.70 m dimension).
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2.3. Runoff and Soil Loss Estimation

Eighteen multi-slot divisor (having nine slots) were fixed at lower sides of experimental
plots and used for monitoring runoff and soil loss. Out of the total experimental area of
15 × 30 m in each plot, 5× 30 m plot was gauged by multi-slot divisor. Recording-type rain
gauge was used to gauge precipitation in the experimental area. The year 2010–2011 was
kept for calibration and runoff and sediment loss from all experimental plots. Calibration
of the instrument (multi slot divisor) was performed by adopting standard process [45,46].
The experimental plots were also calibrated to ensure consistent quantitative estimate of
the variations in runoff behavior of the plots. The runoff was measured after each rainfall
event by measuring the depth of collected runoff in runoff collection tank. After runoff
estimation, the collected water in tank was well harmonized to thorough mix the lost
sediment and then 0.50 L water sample was collected to measure soil loss in each event.
Collected runoff samples were later transferred into beaker and evaporated at 105 ◦C to
assess the event wise soil loss. The runoff coefficient (%) was determined as the ratio of
runoff (mm) to the seasonal precipitation (mm).

2.4. Plantation, Sodding of Grass and Crop Cultivation

All the land use treatments were imposed after calibration of multi-slot divisors and
runoff plots. Pits of size 1 × 1 × 1 cm were dug out at desired spacing during the month of
April to May. The dugout soil was left for desiccation during May–June. Seedlings (at least
one year old) of the trees were planted after onset of first monsoon rains. Plant-to-plant
distance was kept at 5 × 5 m for plantation of horticulture plants (Manilkara achras and
Emblica officinalis) and silvicultural plant (Acacia nilotica). The interspaces were planted with
C. ciliaris grass at 30 × 30 cm spacing by making a furrow or pit of 15 cm depth across the
straight land slope (with nearly level gradient of 0.5–1.0%). For a single pit, four to five
tillers are sufficient enough to be sodded to reduce soil erosion hazards. In T2 treatment,
soybean (Glycin max) was taken along with Manilkara achras to observe the effect of crop
cultivation and tillage on soil loss and runoff. Sowing was performed across the slope of
the field to promote in situ moisture conservation and reduce soil erosion. In treatments
T1 and T2, soybean crop was grown annually, and standard package of practices were
followed. The grass production increases from the 2nd season to 5th season of harvest and
declined gradually. Hence, about 1/3rd area was re-sodded at the end of every fifth year
for sustained grass production from the area.

2.5. Physicochemical Properties of Soil

The important soil properties such as texture, bulk density, resistance to penetration,
organic matter, soil aggregates, etc., and land use/cover are considered important in
erosional and hydrological processes. To assess the influence and role of these parameters,
soil sampling was performed from four depths (0–15, 15–30, 30–45 and 45–60 cm) in each
land use. Three soil samples for each soil depth from three different locations for every
land use system were collected. Thus, 12 soil samples for every land use system and
72 soil samples from whole experimental site were collected and moved to the laboratory.
The samples were air dried and gently crushed with a wooden mortar pastel and passed
through 2 mm sieve. A part of soil samples (sub-sample) was grounded to pass through
0.5 mm sieve. Samples were treated with 35% H2O2 to destroy organic matter and with
calgon (sodium hexametaphosphate) to disperse them for particle size analysis by the
international pipette method [47]. The pH and EC of soil were determined by using 1:2 soil
and water suspension and 1:2 soil and water extract using pH and EC meter (by Systronics),
respectively [48]. Organic carbon (OC) was determined by titration method [49]. Bulk
density was measured thorough core sampler of known volume. Soil resistance was
assessed using penetrologger of Eijlkelkamp. The available micronutrients N, P, and K
were estimated by alkaline permanganate [50], SnCl2 reduced phosphomolybdate [51],
flame photometer, respectively. The cationic micronutrients Fe2+, Mn2+, Zn2+ and Cu2+

were determined through DTPA extraction [52] methods.
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2.6. Estimation of Active Soil Organic Carbon (Active SOC)

The labile fraction of soil C pool, often termed as the active SOC pool, serves as
sensitive indicator of changes in management-induced soil quality [53]. Land degradation
or improvement in response to land uses and/or management practices can easily be
presumed by slight variation in active SOC. The active SOC was determined by oxidation
of labile SOC by KmnO4 (0.01 M strength). The pH of KmnO4 solution was adjusted to 7.2
with 0.1 M NaOH. To estimate the amount of C oxidized, it is reported that 1 mol MnO4

−

is consumed (reduced from Mn7+ to Mn4+) in the oxidation of 0.75 mol (9000 mg) of C [54].
The bleaching of the purple KmnO4 color is proportional to the amount of oxidizable
carbon in soil.

Five grams of air-dried soil was taken in a 150 mL conical flask. An amount of 20 mL
0.01 M KmnO4 solution was added to it, followed by 0.3 g calcium chloride addition to
enhance settling of soil. The suspension was shaken at 200 rpm for 5 min. After shaking,
the suspension was centrifuged at 3000 rpm for 5 min and filtered through glass fiber filters.
The bleaching of color of KmnO4 was measured by spectrophotometer at 550 nm light
setting. The chemical reaction during the oxidation of carbon is:

3C + 4KmnO4 + 2H2O = 4KOH + 4MnO2 + 3CO2 (1)

Active soil organic carbon was calculated as:

Active C (mg/kg) = [0.01 mol/L − (a + b × absorbance)] × (9000 mg C/mol) × (0.02 L solution/0.005 kg soil) (2)

where 0.01 mol/L is the initial concentration of KmnO4, ‘a’ is the intercept and ‘b’ is the
slope of the standard curve. The 0.005 is the amount of soil in kg on oven dry basis.

2.7. Mean Weight Diameter (MWD)

For expressing the distribution of aggregate sizes, mean weight diameter (MWD) was
used to integrate aggregate size distributions obtained by mechanical sieving. Mean weight
diameter (MWD) was determined by Yoder’s apparatus wet sieving method [55]. For this,
100 g air-dried, 4–8 mm size range aggregate samples were used. The wet sieving of the
air-dried soil sample was carried out using a nest of sieves with mesh openings of 4.75,
2.00, 1.00, 0.50, 0.25, 0.10, 0.05 and <0.005 mm, respectively. The distributed soil aggregates
were collected separately in each sieve and weighed to compute different soil aggregate
classes with respect to the total soil sample weight. The size distribution of aggregates was
characterized by mean weight diameter [56] by using the following formula;

MWD =
n

∑
i=1

Xi Wi (3)

where MWD represents mean weight diameter. Xi is the mean diameter of aggregates
separated by sieving and Wi is the proportion of the total dry sample mass, and the
summation was carried out to overall n size fractions.

2.8. Statistical Analysis

In the present study, the variation in soil properties, means and standard deviations
were computed in MS Excel (Microsoft Office Professional Plus 2010 version). The impact
of different land use systems was assessed through impact on soil loss, runoff, MWD,
mean values and standard errors, analysis of variance (one-way ANOVA), and significant
differences among data were determined at p = 0.05 significance level. The fine particles
(silt + clay) content was selected as the index property and regressed against pH in order to
gauge the impact of fine particles on soil pH.
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3. Results and Discussion
3.1. Physico-Chemical Properties of Soil

The soil texture of the study area varied from sandy clay loam to clay through sandy
loam and sandy clay (Table 1). The finer fraction (silt plus clay) constitutes 50–70% of
whole textural composition of soil. A specific trend of soil textural composition variation
from upper to lower layers was not observed under all land use systems. The bulk density
varied from 1.63 ± 0.04 to 1.78 ± 0.04 g cm−3. The lower bulk density was recorded
in horti-pasture (1.63 ± 0.04 g cm−3) and Pasture (1.66 ± 0.03 g cm−3) land uses, while
higher (1.72 ± 0.02 g cm−3) was in silviculture and silvi-pasture (1.78 ± 0.04 g cm−3) land
uses. Both land use and soil depth had a significant effect on bulk density at p ≤ 0.05.
Overall, as depth proceeds, the bulk density increases from the top to the lower layer
under all selected land uses. The results reveal that under treatment T3 and T4, the soil
bulk density improves more than other land uses over the period. Hence, the notion that
grasses improve the soil properties [57,58] proved true in our study after completion of
nine years of experiment. Before plantation, the study site was occupied by scattered and
busy vegetation. It was observed that under treatment T5 and T6, the values of bulk density
and resistance to penetration were higher than other land uses along with generation of
a higher amount of mean annual runoff and soil loss. Thus, our results coincide with the
findings of Dominy et al. [59], Rasiah et al. [60], Sharrow [61] and Geissen et al. [62], who
reported that lands’ conversion to introduce any new and permanent perennial nature land
use, especially plantation, during initial years leads to severe compaction and negative
impact on soil structure. In our study, the higher amount of runoff from tree land uses also
supports land conversion to plantation, with the converse impact on soil bulk density and
soil resistance to penetration.

Table 1. Physico-chemical soil properties under different land use systems.

Land Use Soil Depth (cm)
Soil Texture

Bulk Density
(g·cm−3)

Organic
Carbon (%)

Texture
ClassSand

(0.05–2.0 mm)
Silt

(0.05–0.002 mm)
Clay

(<0.002 mm)

Soybean Crop

0–15 56.0 12.0 32.0 1.696 0.47 scl *
15–30 58.0 12.0 30.0 1.712 0.40 scl
30–45 56.0 14.0 30.0 1.699 0.30 scl
45–60 46.0 16.0 38.0 1.747 0.27 sc **

Mean ± SE 54.00 ± 2.71 13.50 ± 0.96 32.50 ± 1.89 1.71 ± 0.01 0.36 ± 0.05
SD 5.42 1.91 3.79 0.02 0.09

Agri-Horticulture

0–15 56.0 16.0 28.0 1.610 0.43 scl
15–30 42.0 20.0 38.0 1.612 0.27 CL ***
30–45 64.0 20.0 16.0 1.737 0.27 SL ****
45–60 44.0 16.0 40.0 1.725 0.24 c *****

Mean ± SE 51.50 ± 5.19 18.00 ± 1.15 30.50 ± 5.50 1.67 ± 0.03 0.30 ± 0.04
SD 10.38 2.31 11.00 0.07 0.28

Horti-Pasture

0–15 38.0 18.0 44.0 1.573 0.45 c
15–30 40.0 20.0 40.0 1.543 0.38 c
30–45 36.0 20.0 44.0 1.659 0.27 c
45–60 34.0 18.0 48.0 1.737 0.21 c

Mean ± SE 37.00 ± 1.29 19.00 ± 0.58 44.00 ± 1.63 1.63 ± 0.04 0.33 ± 0.05
SD 2.58 1.15 3.27 0.09 0.11

Pasture

0–15 48.0 18.0 34.0 1.619 0.56 scl
15–30 32.0 22.0 46.0 1.636 0.32 c
30–45 42.0 18.0 40.0 1.756 0.23 c
45–60 34.0 20.0 46.0 1.612 0.17 c

Mean ± SE 39.00 ± 3.70 19.50 ± 0.96 41.50 ± 2.87 1.66 ± 0.03 0.32 ± 0.09
SD 7.39 1.91 5.74 0.07 0.17

Silviculture

0–15 48.0 18.0 34.0 1.759 0.53 scl
15–30 46.0 18.0 36.0 1.720 0.44 sc
30–45 52.0 18.0 30.0 1.773 0.60 scl
45–60 54.0 16.0 30.0 1.695 0.53 scl

Mean ± SE 50.00 ± 1.83 17.50 ± 0.50 32.50 ± 1.50 1.74 ± 0.02 0.52 ± 0.03
SD 3.65 1.00 3.00 0.04 0.07
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Table 1. Cont.

Land Use Soil Depth (cm)
Soil Texture

Bulk Density
(g·cm−3)

Organic
Carbon (%)

Texture
ClassSand

(0.05–2.0 mm)
Silt

(0.05–0.002 mm)
Clay

(<0.002 mm)

Silvi-pasture

0–15 58.0 12.0 30.0 1.801 0.47 scl
15–30 52.0 16.0 32.0 1.854 0.44 scl
30–45 52.0 12.0 36.0 1.658 0.41 sc
45–60 50.0 14.0 36.0 1.789 0.30 sc

Mean ± SE 53.00 ± 1.73 13.50 ± 0.96 33.50 ± 1.50 1.78 ± 0.04 0.40 ± 0.04
SD 3.46 1.91 3.00 0.08 0.20

* Silty clay loam, ** Sandy clay, *** Clay loam, **** Sandy loam, ***** Clay.
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the standard error values of active SOC under different land uses. T1—Agriculture, Glycin max.;
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Accacia nilotica and Cenchrus ciliaris.
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Although the soil organic carbon (Table 1) and oxidizable/active SOC content (Figure 3)
in sub-tropical soil does not significantly vary, it was observed that plantation land use and
its combination with grass had a distinct advantage in maintaining the higher amount of
both fractions of SOC compared to cultivated soil. In the present study, it was found that
the plough layer under all land uses had a higher amount of SOC than the lower layer. The
active SOC content in pasture, horti-pasture and silvi-pasture was 0.95, 0.87 and 0.64 times
higher, respectively, than that of the cultivated field. The silviculture land uses contributed
SOC throughout the whole soil profile. The higher amount of SOC fractions under grasses
and silviculture land uses could be attributed to the continuous addition of leaf litter and
root decay over the period of time. The addition and comparatively high amount of SOC in
the top 15 cm soil layer under all land uses leads to a positive impact on bulk density and
increased porosity [63]. The higher labile SOC in plantation land uses could be attributed to
the fact that when soil compaction and bulk density increases, they ultimately lead to more
root biomass (almost twofold higher) in per unit area as compared un-compacted sites [64].

3.2. Resistance to Penetration

Resistance against penetration, a characteristic of soil compaction, did not cross the
optimal soil resistance limit for healthy and undisturbed root growth, but it showed a
non-significant difference among the selected land use systems up to 0–15 cm soil depth
(Figure 4). The optimal resistance to penetration in tropical soils varies from 1.0 Mpa to
3.0 Mpa [65]. In the present study, minimum resistance to penetration (0.68 to 1.97 Mpa)
was observed under C. ciliaris land use, while under silviculture land uses, it varies from
1.19 to 2.90 Mpa (Figure 3). As depth proceeds, the resistance to penetration also increased
from the upper to lower soil layers. In treatment T6 (silvi-pasture), the growth of C. ciliaris
grass was gradually hampered by the shadow along with the phytogeneric impact of Acacia
nilotica trees, and upon 5–6 years of experiment, C. ciliaris grass went extinct from the
experimental field. As a result, both T5 and T6 treatments behave in a similar way from
the 6th year of experiment onward. Both plantation land uses lead to more compaction
compared to pasture/horti-pasture land uses. The results were also supported by the
increased bulk density under these land uses. The results of the study were in line with
findings by Rasiah et al. [42] and Geissen et al. [44], who reported that permanent land
uses leads to severe soil compaction and increased bulk density. Comparatively increased
values of resistance against penetration in tree sites were observed to be more than three
times higher. This leads to the conclusion that land conversion to introduce permanent
land uses, especially the plantation of trees, initially leads to decreasing soil quality due
to soil compaction. Recently, it has been reported by many researchers [66–68] that soil
properties vary significantly between plantations and natural forests. Some soil properties
such as soil pH, SOC content and plant available nutrients reduce upon land conversion
to plantation, but at the same time, some important soil physical properties such as bulk
density, soil compaction, etc., are higher in plantations than in natural forests [69,70].

The soils under selected land uses did not significantly vary with respect to pH and
soluble salt concentration in soil solution (Table 2). The lowest pH of soils in treatment T1
was 7.83 ± 0.05, while in treatment T4, the highest pH was 8.55 ± 0.16. The soil pH in most
cases increased with depth in all profiles. The deposition of CaCO3 concretion was noticed
in lower horizons in the experimental area. The downward movement of soluble salts,
deposition of illuviated bases [71–73] increased CaCO3 content in subsurface horizons and
the semi-arid climatic condition of the region could be attributed to the higher range of soil
reaction. The proportion of fine particles (clay and silt) also showed a significant influence
on soil reaction, conjointly governing 49.7% variations in soil reaction (Figure 5). The
average proportion of the fine particles in soil profile (0–60 cm) was used to correlate it with
the soil reaction. The results showed that the neither the slope nor the intercept differed
significantly, respectively, from the unity and zero at probability level, p = 0.0001, for the
pH and fine particles in soil. This validated that derived calibration prediction equations
were useful for analyzing the effects of the fine particles on soil reaction. The electrical
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conductivity (EC) of the soil under all land uses was low and varied from 0.20 ± 0.01
(T2—Agri-horticulture) to 0.33 ± 0.11 (T4—Pasture) dSm−1 indicating no salinity problem
in these soils. Even though higher soluble salt content was observed in the upper layer than
deeper soil horizons under all land uses, which could be attributed to the semi-arid climatic
conditions, high potential evepo-transpiration demand of the region and the movement of
soluble salts to upper layer, which had a bearing of localized conditions on their movement
in the profiles [74,75].
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Figure 4. Resistance to penetration under different land use systems in semiarid arid climatic condition.
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Table 2. Annual, seasonal and runoff generating rainfall (mm) and runoff producing events during
the experimental period (2011–2019).

Years Annual
Rainfall (mm)

Seasonal
Rainfall (mm)

Runoff
Generating

Rainfall (mm)

Monsoon
Season
Rainfall

Events (Nos.)

Runoff
Generating

Events (Nos.)

Deviation
from Normal

Monsoon
Rainfall, i.e.,

675.10 mm (%)

2011 1066.50 1029.40 885.10 36 17 31.11
2012 782.30 731.70 462.00 35 12 −31.57
2013 1038.60 987.80 674.40 57 22 −0.10
2014 703.70 636.20 478.32 32 10 −29.15
2015 803.70 644.20 378.40 30 8 −43.95
2016 1021.00 988.00 846.20 37 24 25.34
2017 495.40 463.00 291.00 27 6 −56.90
2018 798.00 798.00 340.90 42 15 −49.50
2019 1415.20 1368.60 719.60 53 15 6.59

Mean ± SD 902.71 ± 265.21 849.66 ± 272.42 563.99 ± 222.38 38.78 ± 10.20 14.33 ± 6.06 16.46 ± 32.94
Std. Error 88.40 90.81 74.13 3.40 2.02 10.98
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3.3. Mean Weight Diameter

Soil aggregate stability is a key factor for controlling soil losses and runoff. It improves
soil quality, particularly in a degraded ecosystem such as the riparian zone of the Chambal
ravine. Soil aggregation is considered as a reflection of soil structure and texture, because
the combined group of soil particles is always stronger rather than a single grain [76].
Aggregate stability has a prominently multi-parameter effect on the soil properties. The
results of mean weight diameter (MWD) are presented in Figure 6. The significant difference
between the different land use systems was observed. The maximum MWD was observed
under horti-pasture land use (T3) followed by pasture (T4) land use and plantation land
uses, i.e., T5 and T6. The cultivated land use systems (T1 and T2) registered the lowest
MWD among all land use systems. The distribution pattern of MWD in soil under selected
land use systems supports the notion that vegetation cover has a positive and constructive
impact on soil aggregation and soil structure. The lower MWD under crop land uses in our
study coincide with the findings of Six et al. [77], Pinheiro et al. [78], Abid and Lal [79] and
Mohanty et al. [80], which described that disruption of soil aggregates could be affected by
human activity, animals and heavy farm machineries. In the present study, two contrasting
facts were observed. One is that the permanent land use systems, especially Accacia nilotica
plantation (T5 and T6), lead to the compaction and increased bulk density. On the other
hand, grass permanent land uses (T3 and T4) enhances soil aggregates stability as indicated
by MWD (Figure 6). So, as already stated, conclusively, it can be said that land conversion
for plantation may lead to an increase in the stability of aggregates compared to tilled fields,
but it also augments soil compaction. In natural forest, this phenomenon may differ from
our findings. The inclusion of C. ciliaris in land management enhances overall soil quality
and fertility. We postulate that increased soil aggregate stability along with increased
compactness and bulk density under plantation might be due to the formation of a massive
or stratified soil matrix in place of an angular and blocky soil structure. However, this
fact is not covered under our study, and it needs further research to confirm and justify
the impact on soil structure patterns. The high percentage of silt and clay along with the
presence of CaCO3 concretions in the soil matrix may also aggravate the soil resistance.
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Figure 6. Mean weight diameter (MWD) of soil aggregates under different land use systems, which
shows significant impact on soil aggregation at p < 0.05. T1—Agriculture, Glycin max.; T2—Agri-Horti,
Manilkara achras and Glycin max; T3—Horti-Pasture, Emblica officinalis and Cenchrus ciliaris; T4—Pasture,
Cenchrus ciliaris; T5—Silviculture, Accacia nilotica; T6—Silvipasture, Accacia nilotica and Cenchrus ciliaris.

3.4. Runoff, Soil Loss and Available Plant Nutrients

In the present study, the highest average runoff (136.07 mm) was recorded under a
single Accacia nilotica plantation, which consequently leads to comparatively more soil
loss (8.09 ton ha−1 year−1) than under other selected land use systems (Figure 7). On an
average basis, the cultivated land use systems (T1 and T2) and pasture land use systems
(T3 and T4) behave in almost the similar manner to each other throughout the experimental
period (2011–2019). The lowest average sediment loss as well as runoff over the nine years
of experiment was recorded under treatments T4—pasture land use (4.83 ton ha−1 year−1

and 109.52 mm)—and T3—horti-pasture land use (5.07 ton ha−1 year−1 and 108.14 mm)—
respectively. The results of our study during the course of the experiment are supported
by the findings of García-Ruiz et al. [81], Collins et al. [82], Evans [83], Wang et al. [84]
and Nunes et al. [25], who described that the erosion was more serious in arable land and
afforested land than in pasture land and other land uses. As mentioned earlier, the area
receives most of its rainfall from south-western monsoon during June to September, and
the pattern of rainfall distribution over the monsoon period (near about four months) has a
very erratic nature. The data in Figure 8 and Table 2 clearly revealed that, on an average
basis, the annual rainfall in the season can vary from 495.40 mm to 1415.20 mm with
±265.10 mm variation, while the seasonal rainfall can vary from 463.0 mm to 1368.60 mm
with ±272.42 mm variation. The runoff generating rainfall and runoff generating events
also showed a variation of ±222.38 mm and ±6.06 with average value of 563.99 mm and
14.33 numbers, respectively (Table 2). Moreover, sometimes the seasonal rainfall of the
region completed within two months, and sometimes it was well distributed over the whole
four-month monsoon period. This erratic nature of regional rainfall had a direct influence
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on runoff and soil loss under selected land use systems (Figures 7 and 8). The highest
runoff (mm) was recorded in the year 2019 under all land use systems, while the lowest
was recorded in the year 2017 (Figure 8). During 2011–2014, the runoff generated from all
selected land uses showed a smooth pattern. On the other hand, data in Figure 9 showed
that during 2014, the highest sediment was generated from all land uses. Additionally, in
2018 and 2019, it was very low from all treatments. The erratic and unpredicted nature
of the regional rainfall governs the year-to-year variation in runoff and soil loss. The
findings are consistent with the findings of Langbein and Schumm, 1985 [85], who reported
that vegetation and precipitation exert a competing effect on sediment yield. However,
a nonlinear relationship [86] of precipitation–vegetation–erosion could not exactly be
stated from the present study. However, on the basis of our findings, we concluded
that perennial vegetation, especially coupled with grass cover, had a competing impact
with precipitation on erosion and runoff (Figure 7). In our study, to tackle the aspect
and elevation gradient impact on the precipitation regime, vegetation cover and spatially
distributed radiation [44,87] we carefully implemented LUSs on a north-east facing aspect
with a nearly level gradient site. On an average basis, it was found that Cenchrus ciliaris had
a potential impact on soil loss and runoff reduction. It significantly reduces sediment loss
and controls soil erosion. It also reduces runoff generation, which results in more rain water
entering into in the soil profile, as evidenced by the reduced runoff and runoff coefficient
(Figures 7 and 10). Thus, it can be introduced for soil and water conservation, especially in
set-aside ravine-like ecosystems in semi-arid climatic conditions. These findings underline
the significance of scrutinizing the coevolution of landforms and vegetation to expand our
understanding of the land use system impact on soil and water conservation in degraded
ecosystems in natural conditions.
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Figure 7. Average runoff (mm) and soil loss (ton ha−1 year−1) under selected land use systems
over the period of 9 years of experiment (2011–2019). The error bar denotes ±1 SE. T1—Agriculture,
Glycin max.; T2—Agri-Horti, Manilkara achras and Glycin max; T3—Horti-Pasture, Emblica officinalis
and Cenchrus ciliaris; T4—Pasture, Cenchrus ciliaris; T5—Silviculture, Accacia nilotica; T6—Silvipasture,
Accacia nilotica and Cenchrus ciliaris.



Agriculture 2023, 13, 773 14 of 21Agriculture 2023, 13, x FOR PEER REVIEW 15 of 22 
 

 

 
Figure 8. Yearly average annual runoff (mm) of each land use systems during 9 years of experiment 
(2011–2019). T1—Agriculture, Glycin max.; T2—Agri-Horti, Manilkara achras and Glycin max; T3—
Horti-Pasture, Emblica officinalis and Cenchrus ciliaris; T4—Pasture, Cenchrus ciliaris; T5—Silviculture, 
Accacia nilotica; T6—Silvipasture, Accacia nilotica and Cenchrus ciliaris. 

 
Figure 9. Impact of selected land use systems on sediment loss (ton ha−1 year−1) during the study 
period. T1—Agriculture, Glycin max; T2—Agri-Horti, Manilkara achras and Glycin max; T3—Horti-
Pasture, Emblica officinalis and Cenchrus ciliaris; T4—Pasture, Cenchrus ciliaris; T5—Silviculture, Acca-
cia nilotica; T6—Silvipasture, Accacia nilotica and Cenchrus ciliaris. 

0
20
40
60
80

100
120
140
160
180
200
220
240

2011 2012 2013 2014 2015 2016 2017 2018 2019

Ru
no

ff 
(m

m
)

Years

Agriculture Agri-Horti Horti-Pasture Pasture Silviculture Silvi-pasture

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

2011 2012 2013 2014 2015 2016 2017 2018 2019

So
il 

lo
ss

 (t
on

/h
a/

ye
ar

)

Treatment Years

Agriculture Agri-Horti Horti-Pasture Pasture Silviculture Silvipasture

Figure 8. Yearly average annual runoff (mm) of each land use systems during 9 years of exper-
iment (2011–2019). T1—Agriculture, Glycin max.; T2—Agri-Horti, Manilkara achras and Glycin max;
T3—Horti-Pasture, Emblica officinalis and Cenchrus ciliaris; T4—Pasture, Cenchrus ciliaris; T5—Silviculture,
Accacia nilotica; T6—Silvipasture, Accacia nilotica and Cenchrus ciliaris.
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Figure 10. Average runoff coefficient (%) of selected land use systems in the marginal lands of Chambal
riparian zone of India over the period of nine years of experiment (2011–2019). T1—Agriculture,
Glycin max.; T2—Agri-Horti, Manilkara achras and Glycin max; T3—Horti-Pasture, Emblica officinalis
and Cenchrus ciliaris; T4—Pasture, Cenchrus ciliaris; T5—Silviculture, Accacia nilotica; T6—Silvipasture,
Accacia nilotica and Cenchrus ciliaris.

The layer-wise distribution of available nitrogen and phosphorus showed significant
difference at p = 0.05, while the available potassium content revealed a non-significant
distribution throughout the soil profile (Figure 11). The higher amount of available nitrogen
and phosphorus in the top 15 cm soil layer under all selected land use systems can be
correlated with the comparatively increased per cent of SOC in the particular soil layer. Our
results coincided with Kanthaliya et al. [88] and Xie et al. [89], who reported comparatively
increased amounts of nitrogen and phosphorus in the top soil layer along with a higher
amount of SOC. The higher amount of and significant variation in available nitrogen and
phosphorus in the top soil layer could also be attributed to the continuous addition of
organic material and mineralization of added SOM supported by climatic conditions. The
available potassium content had a significant bearing on soil depth. The interaction of soil
depth and land use did not have a significant impact on available potassium. However,
different land uses, especially pasture and plantation, had a significant impact on it at
p = 0.05, which resulted in a high amount of available potassium throughout the soil
profile under the T3 to T6 treatments. It could be attributed to the continuous addition and
decomposition of SOM through root biomass, especially fine roots, in those land uses. No
significant variation on micronutrients (Fe, Mn, Zn and Cu) was recorded under selected
land uses. The runoff revealed a strong positive significant correlation with active carbon
and soil loss, and active carbon showed a significant positive correlation with available
nitrogen. Similarly to our observations, Garnier et al. [90] reported a linear relationship
between dissolved organic carbon and runoff and concluded that the amount of runoff has
a direct impact on the lost fraction of active carbon from the total pool of organic carbon in
soil. It is a widely accepted and appreciated phenomenon that both carbon and nitrogen
are strongly associated and stored with/in soil fractions that are preferably eroded with
runoff. Our findings coincide with the findings of Holz and Augustine [91], who reported
a significant and positive correlation between runoff and active carbon and nitrogen.
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4. Conclusions

Ecosystem resilience to perturbations that could lead to irreversible land degradation
in ecosensitive ravine-like zones in arid and semiarid regions can be addressed up to certain
limit by introducing long-term land use systems. Important soil properties (BD, MWD, re-
sistance to penetration and SOC content, etc.) for hydrology and erosional response could
be improved under a permanent land use system as opposed to agriculture-like routine land
use in ravine-like fragile ecosystems. The Horti-pastoral (Emblica officinalis + Cenchrus ciliaris)
and T4—Pasture (Cenchrus ciliaris)—were identified as the most efficient land use systems
for conserving runoff and reducing soil loss. The runoff coefficient under the selected land
use systems varies from 20 to 25%, in the following order: Horti-Pastoral (20.30%) < Pas-
ture (20.56%) < Agriculture (21.95%) < Agri-horticulture (22.26%) < Silvi-pasture (22.83%)
< Silviculture (25.54%), respectively. The finer fractions of the soil matrix had a consider-
able role in soil aggregation and soil pH. The Cenchrus ciliaris alone and in combination
increases the SOC content and MWD, and it decreases bulk density, resistance to pene-
tration, runoff and soil loss in silty clay loam to clay loam soil under semi-arid climatic
conditions. We recommended that Cenchrus ciliaris can be used alone or in combination
with plants for protection of natural resources from water-induced soil erosion, runoff
conservation and maximization of precipitation water use for productive purposes. It was
found that SOC had a definite role in soil aggregation, but to find out its role in aggregate
stability requires further investigation. Land conversion for plantation might lead to stable
aggregate buildup compared to tilled fields, but it also augments soil compaction. We
hypothesize that it might be due to the formation of a massive or stratified soil matrix
in place of an angular and blocky soil structure. However, this fact is not covered under
our study, and it needs further study to confirm and justify the impact of converted land
use on soil structure patterns. The major environmental services which may be generated
by introducing different land use systems in any set-aside degraded ecosystems, such as
ravine, mine spoil areas, etc., are depicted in Figure 12.
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