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Abstract: As tomatoes are the most consumed vegetable in the world, production should be increased
to fulfill the vast demand for this vegetable. Global warming, climate changes, and other significant
factors, including pests, badly affect tomato plants and cause various diseases that ultimately affect
the production of this vegetable. Several strategies and techniques have been adopted for detecting
and averting such diseases to ensure the survival of tomato plants. Recently, the application of
artificial intelligence (AI) has significantly contributed to agronomy in the detection of tomato plant
diseases through leaf images. Deep learning (DL)-based techniques have been largely utilized for
detecting tomato leaf diseases. This paper proposes a hybrid DL-based approach for detecting tomato
plant diseases through leaf images. To accomplish the task, this study presents the fusion of two
pretrained models, namely, EfficientNetB3 and MobileNet (referred to as the EffiMob-Net model)
to detect tomato leaf diseases accurately. In addition, model overfitting was handled using various
techniques, such as regularization, dropout, and batch normalization (BN). Hyperparameter tuning
was performed to choose the optimal parameters for building the best-fitting model. The proposed
hybrid EffiMob-Net model was tested on a plant village dataset containing tomato leaf disease
and healthy images. This hybrid model was evaluated based on the best classifier with respect to
accuracy metrics selected for detecting the diseases. The success rate of the proposed hybrid model
for accurately detecting tomato leaf diseases reached 99.92%, demonstrating the model’s ability to
extract features accurately. This finding shows the reliability of the proposed hybrid model as an
automatic detector for tomato plant diseases that can significantly contribute to providing better
solutions for detecting other crop diseases in the field of agriculture.

Keywords: tomato leaf; disease; hybrid model; detection; deep learning

1. Introduction

Tomatoes are a fast-growing crop that matures in 90 to 150 days [1]. This worldwide
ever-present product has rich nutritional values [2] and can be cultivated in nearly any
reasonably parched soil [3]. In recent decades, the agricultural estate has increased tomato
production by above 160% [4]. Tomatoes are the most consumed vegetable, accounting
for about 15% of total vegetable consumption [5], and ranking as the sixth most abundant
vegetable worldwide according to the Food and Agriculture Organization (FAO) annual
production statistics [6]. The key production areas of tomatoes occur in India, the USA,
Iran, China, Italy, Egypt, Mexico, and Turkey [7]. However, the plant is usually infected
by diseases, which could be viral or fungal, resulting in a significant reduction in both the
quality and quantity of crop production [3].
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Due to the large demand for tomatoes globally, there is a need to develop techniques
for enhancing crop yields while allowing for the early detection of plant diseases, including
viral, bacterial, and fungal diseases [8], to increase the quality and production of tomatoes to
meet economic goals [9]. Accurate and timely treatment is required to prevent diseases from
spreading and causing in crop losses, and ensure ideal production. In a manual scenario,
human expert-based detection is required to cope with these problems [10]. Moreover,
screening symptoms manually is time consuming and costly due to insufficient human
infrastructure capacity [11]. An automatic detecting system can assist in identifying the
symptoms of a disease through the plant leaf in a cost-efficient manner. The application of
artificial intelligence (AI), particularly machine learning (ML) and deep learning (DL), has
significantly contributed to efforts to detect plant diseases.

Recently, the application of DL approaches has demonstrated outstanding performance
and provided solutions to real problems in a wide range of computer vision and ML jobs,
including image classification, detection, recognition, and medical imaging [12]. In the
literature, several techniques have been developed based on the DL approach to enhance the
persistence rate of field crops through the early detection of various diseases and succeeding
disease management [5]. Currently, for plant diseases, the detection and classification rate
have reached 100% in laboratory-based machine vision technology [13]. DL is broadly
used in agriculture for plant disease detection and classification. Moreover, a DL-based
convolutional neural network (CNN) is the most commonly used method for detecting,
classifying, and recognizing tomato leaf diseases because of its significant success compared
with other traditional methods [14]. CNN has the capability of extracting features from
objects automatically. Therefore, CNN has been extensively utilized for tomato leaf disease
identification, recognition, and classification.

Based on the widespread success of DL-based CNN architectures in agriculture, par-
ticularly, the detection of plant diseases, this study proposed a hybrid DL-based model
that combines two pretrained models, namely, EfficientNet and MobileNet (referred to as
EffiMob-Net) for detecting tomato leaf diseases. Taking advantage of the pretrained models’
architectures, the weights of both pretrained models were loaded to utilize them for feature
extraction and then the outputs of both models were concatenated for the detection and
classification of leaf images. The key contributions of this study are as follows:

• A deep hybrid model was proposed that combines the architectures of two pretrained
models, EfficientNet and MobileNet, for extracting the significant features of tomato
leaves. Their outputs were then concatenated for the detection and classification of
tomato leaf diseases.

• In the proposed method, the softmax layers of both pretrained models were removed,
and the output achieved from the dense layers of both models was combined. In
addition, three FC layers of size 512, 256, and 128 channels were added after the
concatenation process. The classification was performed using the softmax layer
which was added at the end of the proposed model.

• The dataset was preprocessed and prepared for training the proposed hybrid model
using various preprocessing steps.

• The proposed model was trained using the extracted features.
• The study ensured the prevention of the proposed model’s overfitting by using various

techniques, such as regularization, dropout, and BN.
• The proposed hybrid model was evaluated, and the classification report with descrip-

tions is presented.

2. Related Work

This section discusses the existing work related to the application of DL approaches to
the detection and classification of tomato leaf diseases. The search criteria for investigating
previous work in the same domain include keywords such as tomato leaf disease detection
using DL and DL approaches for detecting and classifying tomato leaf. Several well-known
search engines/databases such as Google Scholar, ScienceDirect, ResearchGate, and IEEE
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Explorer were explored to collect and discuss state-of-the-art methodologies used in this
domain of research. The literature survey indicated that most previous related research is
based on the pretrained DL models.

A study conducted by [15] utilized a plant village dataset to detect and classify tomato
leaf diseases using the DL approach. For this task, several pretrained approaches such as
AlexNet, GoogLeNet, SqueezeNet, Vgg16, and MobileNetv2 were applied. Vgg16 achieved
higher results than the others, with an accuracy rate of 99.17%. An attempt was made
by [16] to detect tomato leaf diseases using the DL method. In this regard, fuzzy-SVM,
CNN, and region-based CNN (R-CNN) were applied to a dataset containing a total of
6 classes. The achieved results showed a higher performance of R-CNN, with an accuracy
rate of 96.735%. Similarly, Ref. [17] utilized the mask R-CNN approach for the segmentation
and identification of tomato leaf disease. The results showed a higher accuracy rate of
98%. A pretrained model and feature concatenation approach were used by [4] for tomato
leaf disease classification. In this method, the features were extracted using pretrained
models and concatenated, while the classification was performed using traditional ML
methods. The study concluded that multinomial logistic regression (MLR) achieved the
highest results, with 97% accuracy.

A multimodal hybrid DL-based approach using attention-based dilated CNN logistic
regression (ADCLR) was proposed by [18] to identify tomato leaf diseases. In this approach,
feature extraction was performed using attention-based dilated CNN. The processed fea-
tures were combined and classified using logistic regression (LR). The classification results
show a higher accuracy rate of 96.6%. A hybrid model CNN-SVM was developed by [19]
to predict seven predominant diseases related to tomato leaves. The highest results were
achieved with a 92.6% accuracy. Another hybrid SVM-LR model was proposed by [20] for
detecting powdery mildew disease of tomato leaves. The results demonstrated that the
proposed model reached 92.37% accuracy.

An optimized DL-based method was proposed by [21] to detect tomato leaf diseases.
Various pretrained models were applied, and the performance of each model was tested us-
ing different optimizers. The study concluded that MobileNetv3 Large using the Adagrad
optimizer outperformed other models, with an accuracy rate of 99.81%. An image-based
forecast using CNN was proposed by [22], who detected the early blight disease (EBD)
of tomato plants. The study reported a 98.10% accuracy rate for the model. Similarly,
an optimized transfer learning approach was proposed by [23], in which two pretrained
models were applied to the tomato early blight disease (TEBD) dataset. The results con-
cluded that Vgg16 outperformed ResNet50, with an accuracy rate of 99%. A study by [24]
detected nine diseases of tomato leaf using a DL approach. For this purpose, a CRNN
model with GRU was implemented to classify and detect tomato leaf diseases. The model
achieved 99.62% accuracy when detecting tomato leaf diseases. A classification of tomato
leaves using DL methods by utilizing various optimizers and learning rates (LR) was
performed by [25]. Two DL pretrained models were applied to a dataset containing tomato
leaf diseases. The reported results showed that Xception with Adam optimizer and an LR
of 0.0001 outperformed other combinations with Xception and the Resnet50 model. The
highest accuracy achieved was 99%.

A comparative study between ML and DL methods was conducted by [13] to classify
tomato leaf diseases. The results of both approaches were compared, and DL methods
outperformed ML methods. Moreover, among the DL methods, ResNet34 achieved the
highest accuracy rate at 97.7%. Another DL-based approach was proposed by [26] to detect
tomato leaf diseases. The higher classification rates of the proposed model occurred for
5, 7, and 10 classes, which were 99.51%, 98.65%, and 97.11%, respectively. The authors
of [11] proposed an image-based diagnostic system using several DL methods, which were
applied to a dataset collected from a village plant database and privately collected images
containing a total of 24 classes. The reported results showed a higher performance by the
DenseNet121 model, which yielded a classification accuracy of 95.31%. The study by [27]
classified tomato plant diseases using the Vgg16 model. The classification accuracy for
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multi-class classification reached 99% while binary classification (healthy and unhealthy)
reached 100%, with no preprocessing of images.

A robust DL-based detector for tomato leaf and pest recognition was proposed by [28].
In this regard, 3 detectors referred to as DL meta-architecture—were combined into VggNet
and ResNet. The study reported that faster R-CNN in combination with Vgg16 has a higher
recognition capability. Another robust intelligent system for detecting tomato disease using
the DL approach was proposed by [29]. To train the model, a dataset containing 9 diseases
was utilized. The results showed that the proposed model accomplished a higher accuracy
rate of 99.12% on the same dataset, compared to 71.43% on other images from a different
dataset. In the study by [30], two pretrained models were trained for detecting tomato leaf
diseases on a dataset acquired from a plant village database. The results indicated that
AlexNet outperformed Vgg16 and accomplished 97.49% accuracy.

A study by [31] attempted to classify and visualize the symptoms of tomato leaf
diseases using the DL method. The model accomplished higher accuracy, at 99.18%. A
CNN approach was used by [9] to detect tomato leaf disease; several pretrained methods
were trained using an open dataset acquired from plant health. The study reported better
performance of the ResNet model and achieved a higher accuracy rate of 97.28%. Another
CNN model was proposed by [32] to detect tomato leaf diseases. The model was trained
and reported 99.84% accuracy.

3. Deep Learning Architectures

From a broad view, DL belongs to the family of ML techniques utilizing artificial
neural networks (ANN) to solve real-world problems related to images (i.e., segmentation,
detection, and classification of images) that are widely applied in the fields of computer
vision and image processing and have shown the best performance with optimal results.
DL has also recently been used in agriculture to detect plant diseases using image analysis
and significantly contributed to farming with outstanding outcomes. This study presents a
hybrid DL model that combines two different state-of-the-art DL models to detect tomato
leaf diseases. In order to better understand the proposed hybrid model, this section
highlights the core concepts of each individual model and its architectural design, followed
by the proposed hybrid model.

3.1. EfficientNetB3

EfficientNetB3 belongs to the EfficientNet family [33], ranges from B0 to B7, and
is regarded as one of the most computationally efficient DL models developed using
ImageNet [34]. EfficientNet is a CNN architecture and scaling technique that uses a
compound coefficient to consistently scale all depth, width, and resolution dimensions [33].
Furthermore, the scaling method evenly scales network width, depth, and resolution using
a set of immovable scaling coefficients, in contrast to standard practice, which scales these
variables arbitrarily [33]. In CNN, the kernel is a filter which is utilized to retrieve attributes
from images [35], while convolution is utilized to construct a feature map. The model
architecture of EfficientNetB3 consists of a convolution layer of kernel size (3 × 3) with BN
and swish activation followed by 26 MBconvolution blocks. The MBconvolution blocks
are varied with kernel sizes of (3 × 3) and (5 × 5), as shown in Figure 1. The last block of
MBconvo is followed by a convolution layer. Global average pooling is utilized at the end
of the convolution layers for dimensionality reduction of the feature maps. Fully connected
(FC) and softmax are used at the end of the model architecture to generate the output.
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Figure 1. Basic architecture of EfficientNetB3.

3.2. MobileNet

MobileNet, a CNN-based model developed by [36], has a simplified architecture
that builds lightweight deep convolutional neural networks using depth-wise separable
convolutions. In the model architecture described by [36], MobileNet factorizes standard
convolutions into a depth-wise convolution and a (1 × 1) pointwise convolution, as shown
in Figure 2. A single convolution on every channel is performed using depth-wise filters,
while the output of a depth-wise convolution is combined with the (1 × 1) pointwise
convolution [37]. Due to factorization, the computation and model sizes significantly
decrease, which eventually enhances the performance of the model. ReLu activation is
used between the layers in order to flatten the nonlinear outputs of the preceding layer and
provide it to the succeeding layer as input [12].
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3.3. Proposed Hybrid Model

A hybrid model can be used to improve predictive performance by running two or
more relevant but distinct models and combining the results into a single score [38]. The
literature review revealed that tomato leaf diseases were mostly detected and classified
using individual DL models such as EfficientNet, MobileNet, and others, or a hybrid of ML
and DL models. This study proposes EffiMob-Net, a hybrid DL model for detecting tomato
leaf diseases that is a combination of two individual pretrained DL models, EfficientNet
and MobileNet (see Table S1 in Supplementary Materials). A total of 10 diseases related
to tomato leaves are recognized and classified using the hybrid EffiMob-Net. According
to [39], accurate classification can be achieved by fusing diverse models with different
hypotheses concerning class labels, which may not be viable with separate models. Using
this approach, we took advantage of the standard architectures of both DL models in which
the formerly trained weights of both DL models were loaded for the feature extraction of
leaf images and combined for detection purposes, as shown in Figure 3.
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The model architecture of the EffiMob-Net is simple in that the softmax layers (output
layer) are removed from both individual models, the output of each model is flattened
and is passed to the fully connected (FC) layer of each model. The outputs of the dense
layers (layers of neurons in which each neuron in the following layer receives information
from each neuron in the preceding layer) of both models are then combined using the con-
catenation function, and three additional FC layers containing 1024, 512, and 128 channels
are added after concatenating the models, as exhibited in Figure 3. Regularization is used
to fine-tune the model in order to decrease the regulated loss function and avoid overfit-
ting and underfitting [40]. The risk of model overfitting is handled using regularization
operations (i.e., kernel regularizer and activity regularizer), which are added to the last
three FC layers. Moreover, in order to avoid the model overfitting issue, BN and dropout
are also used after the last FC layer. The detection of tomato leaf diseases is performed
using the softmax layer, which is added at the end of the hybrid model. ReLu activation is
used throughout the FC layers except for the softmax layer. Figure 3 shows the detailed
architecture of the proposed deep hybrid EffiMob-Net model.

4. Dataset

The proposed hybrid EffiMob-Net model was trained using an openly available dataset
gathered from multiple sources, mostly from a plant village database [41] containing a total
of 11 classes. Among the 11 classes, one was healthy and the remaining 10 represented
different diseases of tomato leaf. The dataset consisted of a total of 32,535 images acquired
from a plant village dataset and some collected images distributed into two separate folders:
training and validation sets. In this study, the whole validation set is utilized for testing
purposes; therefore, the validation set is changed to the test set shown in Figure 3. Thus
far, this is the largest publicly available dataset of tomato leaf diseases. The training set
contained 25,851 images; 6684 images were part of the test set. The images in both sets
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were distributed to 11 classes as described in Figure 4 Figure 5shows the number of images
per class in the training set. Figure 6 shows sample images in the training set. The dataset
is suitable for building a DL model that can predict a particular disease of a tomato leaf
and classify them accordingly.
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Data Preprocessing

Data preprocessing is an indispensable procedure that converts data into a structure
that can be easily and proficiently processed in ML and other data science tasks [42].
Removing garbage from data augments the quality of the data [43], which directly affects
the performance of the trained models and ensures improved results [44]. In the first step,
the images were resized to the required sizes for training the proposed model. As described
in [45], CNN typically allows fixed-size images, which creates several challenges for data
collection and model building. Such challenges were overcome by resizing the images
to the required size of (224 × 224) when building the proposed model. TensorFlow in
Python programming was used to resize images to the desired size. The images were also
normalized in a pixel value of range 0 to 1 by dividing them by 255 and feeding them
into the network. In the last step, the images in both sets were reshuffled to increase the
predictability power of the proposed model.

5. Experimental Setup

The dataset used in this study was split into two separate sets: training and testing
at a ratio of 80% to 20%, respectively. According to [46], experimental research indicates
that using 20–30% of the data for testing and the remaining 70–80% of the data for training
yields optimal results. In this study, 80:20 achieved optimal results and was thus chosen for
data splitting. The training set was utilized to train the hybrid EffiMob-Net model on a
Google Colab in a GPU environment using Python programming language. The testing
set was used to validate the model performance. The experiment was executed using
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MacBook Pro for 20 iterations in 40 batches. The model was compiled using the Adamax
optimizer with a learning rate of 0.001. The best classifier with respect to accuracy metrics
was selected to show the results for detecting tomato leaf diseases. The 20% testing set
was used to verify the performance of the hybrid EffiMob-Net model using training and
validation accuracies and losses. Categorical cross-entropy was used as a loss function to
measure the losses. The experiment was repeated several times, and the best-fitting model
with respect to accuracy metrics was finalized. The finalized trained hybrid model was
then saved to the local directory for future use. Figure 7 depicts the training and validation
accuracies. Normally, the curve of training accuracy is greater; however, both curves come
closer to each other as the epochs advance. An epoch represents one iteration of training
a model with all training data. The best epoch in which both curves coincide is epoch 20,
which was one of the main reasons for executing the model for 20 epochs. Likewise, the
training and validation loss shown in Figure 8 demonstrates the validity of the proposed
hybrid EffiMob-Net in that both curves come closer to each other, progress simultaneously
as the epochs advance, then coincide at epoch 13 and progress together in the same manner.
This indicates the lack of overfitting of the hybrid EffiMob-Net model, which was avoided
by using regularization, dropout, and BN techniques. The performance of the model was
measured using accuracy, precision, recall, and F1-scores from the following equations.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall or Sensitivity =
TP

TP + FN
(3)

F1 − score =
(2 ∗ Precision ∗ Recall)

Precision + Recall
(4)

Agriculture 2023, 13, x FOR PEER REVIEW 9 of 13 
 

 

MacBook Pro for 20 iterations in 40 batches. The model was compiled using the Adamax 
optimizer with a learning rate of 0.001. The best classifier with respect to accuracy metrics 
was selected to show the results for detecting tomato leaf diseases. The 20% testing set 
was used to verify the performance of the hybrid EffiMob-Net model using training and 
validation accuracies and losses. Categorical cross-entropy was used as a loss function to 
measure the losses. The experiment was repeated several times, and the best-fitting model 
with respect to accuracy metrics was finalized. The finalized trained hybrid model was 
then saved to the local directory for future use. Figure 7 depicts the training and validation 
accuracies. Normally, the curve of training accuracy is greater; however, both curves come 
closer to each other as the epochs advance. An epoch represents one iteration of training 
a model with all training data. The best epoch in which both curves coincide is epoch 20, 
which was one of the main reasons for executing the model for 20 epochs. Likewise, the 
training and validation loss shown in Figure 8 demonstrates the validity of the proposed 
hybrid EffiMob-Net in that both curves come closer to each other, progress simultane-
ously as the epochs advance, then coincide at epoch 13 and progress together in the same 
manner. This indicates the lack of overfitting of the hybrid EffiMob-Net model, which was 
avoided by using regularization, dropout, and BN techniques. The performance of the 
model was measured using accuracy, precision, recall, and F1-scores from the following 
equations. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇
 (1) 

𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
 (2) 

𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝑃𝑃𝐴𝐴 𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝐴𝐴 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
 (3) 

F1 − 𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃 =
(2 ∗ 𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅)
𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅

 (4) 

 
Figure 7. Training and validation accuracy. Figure 7. Training and validation accuracy.



Agriculture 2023, 13, 737 10 of 13Agriculture 2023, 13, x FOR PEER REVIEW 10 of 13 
 

 

 
Figure 8. Training and validation loss. 

6. Results and Discussion 
After implementing and testing the hybrid EffiMob-Net model on the testing set, the 

performance of the model was measured, and the highest accuracy rate achieved was 
99.92%, which is thus far the highest accuracy in the same domain. Moreover, the classifi-
cation report based on Equations (1)–(4) was measured, and the outcomes are reported in 
Table 1. 

Table 1. Classification report of EffiMob-Net model. 

Class Accuracy Precision Recall F1-Score 
Bacterial spot 99.84% 99.29% 99.20% 99.23% 
Early blight 99.84% 98.98% 99.29% 99.14% 
Late blight 99.87% 99.51% 99.36% 99.44% 
Leaf mold 99.84% 99.17% 99.28% 99.23% 

Septoria leaf spots 99.86% 99.31% 99.39% 99.35% 
Two spider mites 99.86% 98.99% 98.86% 98.93% 

Target spot 99.86% 99.04% 98.91% 98.97% 
Tomato yellow leaf curl virus 99.89% 99.27% 99.39% 99.33% 

Tomato mosaic virus 99.87% 99.19% 99.30% 99.25% 
Powdery mildew 99.87% 99.43% 99.43% 99.43% 

Healthy 99.85% 98.25% 97.76% 98.01% 

The results shown in the classification report table for all 11 classes are above 99% for 
all measures with the exception of a few values. For example, the precisions of early blight, 
two spider spots, and healthy are 98.98%, 98.99%, and 98.25%, respectively. Similarly, re-
calls of two spider spots, target spot, and healthy are 98.86%, 98.91%, and 97.76%, respec-
tively. Likewise, F1-scores for two spider spots, target spot, and healthy are 98.93%, 
98.97%, and 98.01%, respectively. The mentioned values with respect to classes surpassed 
98% except for the F1-score of healthy, which was close to 98%, showing the reliability of 
the proposed hybrid EffiMob-Net model when used as a smart detecting system for iden-
tifying tomato leaf diseases. 

The overall accuracy of 99.92% and the classification report in Table 1 demonstrate 
the high performance of the proposed hybrid EffiMob-Net with a classification error of 
only 0.08%, which is negligible. The idea of distinct feature extraction using two separate 

Figure 8. Training and validation loss.

6. Results and Discussion

After implementing and testing the hybrid EffiMob-Net model on the testing set,
the performance of the model was measured, and the highest accuracy rate achieved
was 99.92%, which is thus far the highest accuracy in the same domain. Moreover, the
classification report based on Equations (1)–(4) was measured, and the outcomes are
reported in Table 1.

Table 1. Classification report of EffiMob-Net model.

Class Accuracy Precision Recall F1-Score

Bacterial spot 99.84% 99.29% 99.20% 99.23%

Early blight 99.84% 98.98% 99.29% 99.14%

Late blight 99.87% 99.51% 99.36% 99.44%

Leaf mold 99.84% 99.17% 99.28% 99.23%

Septoria leaf
spots 99.86% 99.31% 99.39% 99.35%

Two spider mites 99.86% 98.99% 98.86% 98.93%

Target spot 99.86% 99.04% 98.91% 98.97%

Tomato yellow
leaf curl virus 99.89% 99.27% 99.39% 99.33%

Tomato mosaic
virus 99.87% 99.19% 99.30% 99.25%

Powdery
mildew 99.87% 99.43% 99.43% 99.43%

Healthy 99.85% 98.25% 97.76% 98.01%

The results shown in the classification report table for all 11 classes are above 99% for
all measures with the exception of a few values. For example, the precisions of early blight,
two spider spots, and healthy are 98.98%, 98.99%, and 98.25%, respectively. Similarly, recalls
of two spider spots, target spot, and healthy are 98.86%, 98.91%, and 97.76%, respectively.
Likewise, F1-scores for two spider spots, target spot, and healthy are 98.93%, 98.97%, and
98.01%, respectively. The mentioned values with respect to classes surpassed 98% except
for the F1-score of healthy, which was close to 98%, showing the reliability of the proposed
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hybrid EffiMob-Net model when used as a smart detecting system for identifying tomato
leaf diseases.

The overall accuracy of 99.92% and the classification report in Table 1 demonstrate the
high performance of the proposed hybrid EffiMob-Net with a classification error of only
0.08%, which is negligible. The idea of distinct feature extraction using two separate DL
models and the fusion of these features for detecting and classifying tomato leaf diseases is
superior to that achieved when using an individual model, as discussed in the related work
section. The conventional methods in which the feature extraction is handcrafted require
high expertise; otherwise, the model efficacy can be poor. Additionally, such methods
require more effort and time-consuming tasks. Therefore, DL-based methods are more
useful for automatically generating features and have shown a high success rate in the
identification and classification of images. Similarly, the feature extraction using multiple
DL methods and the fusion features resulting from different methods show increased model
accuracy. This discussion and the facts presented in the tables and figures demonstrate
the reliability of the proposed hybrid EffiMob-Net model, which can be used as a reliable
detector for detecting and identifying tomato leaf diseases.

7. Conclusions

The necessary precautionary measures should be taken to prevent tomato plant dis-
eases in order to increase the cultivation of tomato crops. This study proposed a hybrid
DL-based model that accurately detects and classifies 10 different tomato plant diseases
through leaf images. The model architecture was designed by the fusion of two DL models
in order to extract the distinct features from tomato leaf images, which were then com-
bined to achieve the accurate identification of each disease with respect to classes. Several
techniques (e.g., regularization, dropout, and BN) were used to prevent the model from
being overfitted. During implementation, the optimal parameters were set in the model
based on hyperparameter tuning using a random grid search technique. The proposed
hybrid EffiMob-Net model was tested on processed images of tomato leaf diseases with a
split ratio of 80/20 for the training/testing datasets. The results achieved demonstrate the
efficacy of the proposed hybrid EffiMob-Net in accurately extracting the distinct features
from tomato leaf images, with an accuracy rate of 99.92%, and a classification error of only
0.08%. Moreover, the classification report on factors such as precision, recall, and F1-score
demonstrates the high performance of the proposed hybrid model in detecting tomato
leaf diseases. The model is efficient in its performance based on the results achieved and,
thus, can be used as an automatic detector for identifying tomato leaf diseases early in the
growing process in order to increase production. The proposed hybrid model can also be
used to detect other plant diseases in the agriculture field based on leaf images.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/agriculture13030737/s1, Table S1: Comparison of proposed hybrid
EffiMob-Net model with existing models.
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