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Abstract: Representative elementary volume (REV) is required for representative measurements
of soil physical properties. However, questions may arise whether REV depends on how the soil
structure is modified or whether processes in the soil affect REV. Here, we explore REV dependence
for contrasting land uses (conventional tillage, no-tillage, and minimum tillage) and applying wetting
and drying (W-D) cycles. The effect of different subvolume selection schemes (cube and core) on REV
was also investigated. For this study, high-resolution three-dimensional images obtained using the
X-ray Computed Tomography (XCT) technique were analyzed. The micromorphological properties
measured were porosity (P), fractal dimension (FD), degree of anisotropy (DA), and pore connectivity
(C). The results show that REV depends mainly on the land uses for P and C (both selection schemes).
The core method showed lower REV due to the larger volume analyzed than that in the cube method.
It was not possible to define a REV for DA. The REV obtained using the cube method was more
sensitive to changes in the scale of analysis, showing an increasing trend with applied W-D cycles for
P and FD. Our results indicate that REV cannot be considered static since land uses and processes
influence it.

Keywords: anisotropy; fractal dimension; pore connectivity; pore network; soil structure; X-ray
Computed Tomography

1. Introduction

Any measurement of soil physical properties requires representative samples. When
samples are not representative, they will exhibit fluctuations in the evaluation of their
physical parameters due to the microscopic domain region [1]. Therefore, increasing
the sample size will cause the analyzed volume movement toward the porous system
domain [2,3]. The minimum volume required for the sample to become representative
is called the representative elementary volume (REV). This elementary volume indicates
that the measured physical property becomes independent of the sample size [4]. Soil is
expected to be submitted to different land uses in agricultural areas. These uses can cause
significant changes in the soil structure, as occurs in conventional tillage (CT), or minor
changes, as in more conservationist systems (e.g., minimum tillage (MT) and no-tillage
(NT)) [5]. In CT, the topsoil is revolved by the passage of plows and harrows [6]. In
no-tillage, on the other hand, plant residues are kept on the topsoil thus preserving its
structure [7,8]. Minimum tillage presents some NT and some CT characteristics since the
soil is subjected to disaggregation from time to time [9].

When soil structure is analyzed at the micrometer scale, each land use can cause
different changes in its pore architecture [10,11]. Properties related to the pore system,
such as porosity, pore size and shape distribution, and pore number, can be significantly
modified according to the type of soil management [12–15]. Other properties of interest
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related to pore system complexity, such as pore connectivity, tortuosity, degree of anisotropy,
and fractal dimension are also sensitive to natural soil structure modification [16–19]. When
these properties are not measured using representative samples, the results will show
fluctuations due to the microscopic characteristics of the samples [1,2,20,21]. Thus, for the
measured physical properties to be closer to the soil characteristics found in the agricultural
area, the use of representative samples is required.

However, as the soil is subjected to different land uses that modify its structure mainly
in the topsoil, it is reasonable to question how different types of management will affect
REV. The answer to this question is fundamental because, for the same soil, contrasting
land uses may require different sample volumes to determine the same physical property.
On the other hand, soils usually undergo different processes, such as wetting and drying
(W-D) cycles. These cycles can cause modifications in the soil pore system due to swelling
and shrinking, aggregate coalescence, changes in the aggregates’ mechanical and structural
stability, modifications in the soil effective stress, etc. [22–26]. As the soil is constantly being
subjected to dynamic processes, which may affect its structure, it becomes pivotal to ask
whether REV can be modified when the soil is submitted to W-D cycles.

The advent of techniques that enable three-dimensional (3D) soil analysis, such as
X-ray Computed Tomography (XCT), allowed the study of numerous soil geometrical and
morphological properties at the micrometer scale [15,24,27,28]. Computed tomography is
considered a non-destructive method applied to the investigation of the internal structure
of porous materials such as soils [14]. Non-destructive methods enable the assessment and
verification of the soil morphological parameters without affecting its original properties or
causing damage to the soil structure [29]. The XCT technique is based on the interaction of
X-rays with matter. Material density differences generate images with distinct gray shades
after X-ray interaction. The image acquisition involves scanning the sample on a rotating
table to obtain a series of two-dimensional (2D) images (radiographs). The combination
of the 2D slices allows the acquisition of 3D images of the object of interest. Variations in
the size of the sample scanned, detector size and resolution, and position of the sample
between the X-ray source and detector also influence the image resolution and accuracy.

It is worth mentioning that the determination of any soil physical property by XCT
requires representative samples. Therefore, this technique becomes ideal for defining
REV, as it allows analyses inside the samples at different volumes [13,29,30]. Furthermore,
computed tomography enables the choice of different subvolumes inside the samples and
different subvolume selection schemes without the need for sample destruction [31,32].
Thus, we can analyze possible fluctuations in morphological properties obtained by XCT,
such as porosity, pore connectivity, anisotropy, and fractal dimension, as a function of scale
changes. This kind of analysis is fundamental since it defines the best sample sizes to
be analyzed through XCT. Moreover, appropriate sample sizes enable image resolution
optimization allowing the evaluation of different soil functions based on the size and shape
of pores.

Thus, this study is based on three hypotheses: (1) REV is affected by different land
uses, (2) REV is influenced by processes occurring in the soil, such as W-D cycles, and
(3) different selection schemes (cubes or cores) affect REV definition. High-resolution XCT
images were employed to verify these hypotheses. The contrasting land uses studied were
conventional tillage, no-tillage, and minimum tillage. Soil samples were also submitted to
0 and 6 W-D cycles. However, as described before, our study focuses primarily on REV
estimation aiming at measuring geometrical and morphological properties through XCT.

2. Materials and Methods
2.1. Experimental Area and Soil Sampling

This study was carried out with samples collected in the municipality of Ponta Grossa,
Paraná, Brazil. The experiment was conducted in a Rhodic Hapludox soil (Soil Survey
Staff [33]) on the Research Farm of the IDR (25◦06′ S, 50◦09′ W; 875 m asl). The rainfall
recorded in the region is between 1400 and 1600 mm and the average annual temperatures
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range from 17 to 18 ◦C. The climate is classified as humid subtropical (Cfb) according
to the Köppen classification system [34]. The soil in the depth studied has clay texture
with the following granulometric composition: 58% clay (< 2 µm), 28% silt (2–50 µm),
and 14% sand (50–2000 µm). In total, six samples were taken from each of the land
uses (3 × 6 = 18 samples). All samples were collected in the topsoil (0–10 cm) after maize
harvesting (Zea mays L.) [35,36].

The long-term field experiment (over 35 years old) was initiated in 1981 with the
following treatments: (1) conventional tillage (CT), (2) minimum tillage (MT), and (3) no-
tillage (NT). The CT plot was prepared by plowing with a 70 cm disk twice a year up to
a 25 cm depth followed by two 60 cm harrowing. The NT plot was submitted only to
sowing and cleaning operations (no soil disturbance). The MT plot was prepared by one
chisel plowing up to 25 cm depth followed by one 60 cm narrow disking. For MT and NT
plots, the crop residues were kept on the soil surface. Samples under CT were collected
approximately six months after soil preparation.

The undisturbed soil samples were collected following the Kopeck’s ring method using
c. 5 cm diameter and height stainless steel core cylinders. First, a trowel was employed
to prepare a flat surface of topsoil in the sampling area. Plant litter, living plants, and
surface rocks were cleared prior to sampling. Next, the volumetric ring (cylinder) with the
beveled edge down was placed onto the soil surface. A block of wood was placed on the
top of the ring and using the hand sledge (rubber mallet) the ring was carefully driven
down to the desired soil depth. After that, the soil was carefully excavated around the
volumetric ring without exerting pressure on it to take out the cylinder from the topsoil.
The trowel was placed underneath the volumetric ring to carefully lift it and prevent soil
losses. Next, the soil excess outside the steel cylinders was carefully trimmed off with a flat-
bladed knife to ensure that the soil volume was equal to the cylinder internal volume [37].
Following sampling, the samples were wrapped in plastic film and placed in a cylindrical
plastic sample holder to be transported to the laboratory. To minimize damage to the
soil structure due to the force required for the cylinder collection, samples were taken
some days after a high-intensity rainfall with the soil near its field capacity. In addition,
the samples were collected from the crop rows to avoid compaction due to the traffic of
agricultural implements.

2.2. Wetting and Drying (W-D) Cycles

After preparing the samples, a porous cloth was placed on one of their surfaces to
carry out the wetting process. The process used to saturate the samples was capillary rise.
The saturation process was carried out slowly, placing a water amount of approximately
5 to 10 mm at the base of the samples. After approximately two hours, 5 mm of water
was added every hour to approximately 8/10 of the maximum height of the cylinders.
The saturation process was completed after a period of 48 h. Following the saturation
step, the samples were placed on a tension table (EijKelkamp-model 08.01 SandBox) and
partially dried by submitting them to a matrix potential of –6 kPa, equivalent to a c. 50 µm
pore diameter (Young–Laplace equation). The time required for thermodynamic hydraulic
equilibrium was three days when the water output from the tension table exhaust system
ceased. Next, the samples were removed from the tension table and subjected to a new
wetting process (W) and subsequent drying (D). This procedure was repeated six times so
that the samples under the different land uses were submitted to six wetting and drying
cycles (W-D). The cycled samples were then compared to non-cycled samples (0 W-D). The
number of cycles was chosen according to the average maximum number of rainfall events
in the studied experimental site in the driest month (August).

2.3. X-ray Computed Tomography (XCT)

The soil samples were scanned with X-ray Computed Tomography system Nikon XT
V 130C and reconstructed in 32-bit (to avoid greyscale histogram compression) at a voxel
size of c. 35 µm using the Inspect-X/CT Pro 3D (image acquisition and reconstruction)
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(Figure 1). All the soil samples were scanned at voltage, current, and exposure time of
125 kV, 140 µA, and 250 ms, respectively. Aiming to minimize beam hardening artifacts, a
0.25 mm Cu filter was inserted close to the X-ray source. After reconstruction, the images
were imported into Volumetric Graphics (VG) StudioMAX® 2.0 and into ImageJ 1.42 and
cropped to a cubic shape with c. 30.1× 30.1× 30.1 mm3 (860× 860× 860 pixels). Cropping
was carried out to avoid possible voids or compacted regions close to the core walls. We
employed the region of interest (ROI) tool in ImageJ to crop the imaged samples to the
desired volume of interest.
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Figure 1. Schematic drawing of the image acquisition procedure using the X-ray Computed Tomog-
raphy (XCT) technique.

The original grey-level XCT images were processed using ImageJ 1.42 software [38].
First, the raw images were submitted to the following processes before segmentation:
(1) a 3D median filter was firstly employed to reduce the noise in the images, with a
radius of 2 pixels, and (2) an enhancement contrast (0.5%) tool was utilized to enhance
the edges of the pores and improve the image contrast. The segmentation procedure was
based on the grayscale histograms of the two-dimensional (2D) images. The images were
converted into 8-bit (256 shades of gray) before segmentation. The different materials
that make up the soil produce peaks that are related to the attenuation of X-ray photons.
For the dry samples analyzed in our study, two peaks occur, with the lower and higher
shades of gray in the histograms representing the attenuation by the lower (air) and higher
(solid) density materials. Thus, the existence of two peaks in the histogram is related to
a material composed of two phases. After that, the segmentation process was based on
the nonparametric and unsupervised Otsu method of threshold [39]. Next, we utilized the
zoom tool in ImageJ to visually inspect the segmented images to ensure the performance
of the segmentation procedure selected. Finally, the segmentation process allowed us to
obtain a binary image, in which pores and soil material were represented by black and
white pixels (see Supplementary Materials Figure S1).

2.4. Subvolume Selection

In the next step, aiming at the study of the representative elementary volume (REV),
the images were cropped again using two different approaches: (1) concentric core—A fixed
axis (z = soil depth) was defined and the subvolumes were selected concentric from this
axis (Figure 2a), and (2) concentric cubes—A cubic subvolume was selected at the center of
the ROI and increasingly larger cubes were selected from the smallest selected to the entire
volume of interest (VOI) (Figure 2b). Finally, the crops resulting from all subvolumes were
carried out with the REVaux software, developed especially for this study. With the help of
this program, we determined the number of sections cropped, defined their sizes in 3D,
and used the central section as a reference.
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Figure 2. Schematic drawing of the subvolume selection procedures. The first (a) represent the
concentric core-based selection scheme (z-axis is fixed = soil depth) and the second (b) the centered
cube geometry.

The methods chosen for the selection of the subvolumes were similar to those based
on the paper by Costanza-Robinson et al. [31]. Those authors used two approaches, the
traditional point-centered cube geometry with the cube growing symmetrically from a
central volume, and the core-centered cuboid window geometry. In the latter case, one of
the axes has a fixed height equal to the height of the image. Other REV studies for porous
media using cube- and core-based selection schemes are those by Koestel et al. [40], Baveye
et al. [32], Yio et al. [41], and Wu et al. [42].

Figure 3 shows the subvolume selection obtained for the cubes after the procedure
of 3D image cropping. This choice was made, as already mentioned, based on centralized
cubes and cores selected along a central axis of symmetry. The subvolume cropping
procedure was performed without extrapolating the previously established maximum VOI
(27,271 mm3). Nine small subvolumes were acquired by cropping the VOI. Table 1 shows
the window length-scale (L) and the subvolumes selected for both schemes (concentric
cube and core).
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Table 1. Window length-scale (L) and subvolumes (V) selected for the representative elementary
volume (REV) analysis for the subvolume selection schemes (centralized cube and centralized core)
studied. The subvolume 10 represents the entire volume of interest (VOI).

Subvolumes (V) Window Length (L) Core Cube

(mm) (mm3)

1 3.0 271 27
2 6.0 1084 216
3 9.0 2438 729
4 12.0 4334 1728
5 15.1 6863 3442
6 18.1 9861 5930
7 21.0 13,274 9261
8 24.1 17,482 13,998
9 27.1 22,106 19,903
10 30.1 27,271 27,271

2.5. Soil Physical Properties

The physical parameters selected and analyzed for the determination of REV were
the imaged soil porosity (P), fractal dimension (FD), degree of anisotropy (DA), and pore
connectivity (C). These properties were measured using the ImageJ 1.42 software. We
define porosity as the ratio between the volume of pores (Vpore) and the total volume of
a given sample. We obtained the imaged porosity in this study using the ImageJ voxel
counter function. After counting the voxels referring to the pores (Vvoxel), the volume
occupied by them (Vtotal pore) was divided by the total image volume (Vimage) as presented
in the following set of equations [35]:

Vpore = Vvoxel × (vr)3, (1)

Vtotal pore = ∑ Vpore, (2)

P(%) =

(
∑ Vpore

Vimage

)
× 100, (3)

where vr represents the voxel resolution (mm3) and P(%) the imaged porosity expressed as
a percentage.

The fractal dimension provides a systematic method to identify irregular patterns of
fractal sizes that contain internal structures repeated at different scales [43]. The measure-
ment of the fractal dimension of any system or porous medium is important because it
reflects its heterogeneity. We employed the fractal dimension plugin in ImageJ to determine
the FD based on the box-counting method. In this method, the FD is determined by the
slope of the straight line of the graph of log(N) (y-axis) against log(r) (x-axis):

FD =
log(N)

log(r)
, (4)

where N represents the number of boxes that cover the object under analysis while r is the
magnification of the inverse of the box size.

The degree of anisotropy provides information on how the given material properties
vary depending on the direction in which they are measured. Generally, this property has
values ranging from 0 to 1. The first case means that the analyzed property is entirely
isotropic; the sample does not have any directionality. In the second case, there is an
extreme orientation of specific structures in the image. In our study, we employed the BoneJ
plugin to calculate the degree of anisotropy of the soil pore system. The DA calculation is
based on a series of vectors of the same length originating from specific positions of the
analyzed volume, divided by the number of times they intercept the pores (mean intercept
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length). Ellipsoids are employed to construct the anisotropy tensors to obtain eigenvalues
related to the lengths of the axes of the ellipsoid and eigenvectors giving the orientations of
these axes. Thus, the following equation is used to obtain DA [14]:

DA =

(
1− SE

LE

)
, (5)

where SE and LE stand for the smallest and largest eigenvalues, respectively.
The connectivity is a geometric feature that provides information about pore space

distribution. Therefore, it measures the number of independent paths between two points
in space, which characterizes the degree of interconnection between pores [44]. The connec-
tivity measurement was performed after the purify filter procedure (connectivity function)
in the BoneJ plugin [45]. Next, the BoneJ connectivity tool was used in the C measurements.
The pore connectivity quantification was performed based on the measurement of the Euler
number (EN) according to the following equation:

EN = N−C + H, (6)

C = 1− EN, (7)

where N represents the number of isolated objects, C indicates the number of redundant
connections, which refers to the connectivity or genus, and H stands for the number of
completely enclosed cavities. According to Vogel et al. [21], when the Euler number is
analyzed, its value will be positive when the number of isolated unconnected pores exceeds
the number of multiple connections between the pores (N > C). For a fully connected
network of pores, the Euler number will be negative (C >> N = 1). In this situation, EN
counts the number of multiple connections and corresponds to the number of meshes in
the pore network. When considering porous systems such as soil, the parameter H can be
neglected since an aggregate completely surrounded by pores will hardly be found.

2.6. Representative Elementary Volume (REV) Estimation

The average values obtained for each subvolume, measured properties, and selection
schemes were used to estimate REV. Additionally, we chose to use a window length-scale
(L) for the two selection schemes, as shown in Figure 2, where L = x. In the cube scheme, L
is equal to V1/3 [32]; however, in the core scheme, L represents an effective length from the
center of the subvolume, always keeping a fixed axis (z = depth) [31] (Figure 2a). Next, we
present the criteria that were employed in the choice of REV: (1) relative variation (Equation
(8)) of the average values of the properties measured (imaged porosity, fractal dimension,
degree of anisotropy, and pore connectivity) between adjacent window lengths not over 5%,
and (2) at least three or more consecutive window lengths did not present different average
values of the properties measured using the variation criterion of the first item. A similar
procedure was utilized by Vandenbygaart and Protz [4]. Finally, it is worth mentioning that
all average values of the measured properties must have values of ∆ less than 5% (existence
of a plateau) to estimate REV. This is because the REV value will be estimated from the first
length having property average values with ∆ < 5%, indicating the existence of a plateau.

∆i−1 =

∣∣∣∣ωi −ωi−1

ωi−1

∣∣∣∣× 100, (8)

where ∆ is the relative variation expressed as a percentage,ω is the average value of the
property measured, and i (1 to 10) indicates each of the window lengths analyzed (Table 1).
The use of Equation (8) to estimate REV was based on the paper by Wu et al. [42]. The value
of ∆ < 5% was selected considering the spatial variability for the properties studied. In
many situations, such as for pore connectivity, the criterion we chose was more restrictive
than those employed by Wu et al. [42] based on the coefficient of variation.
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Figure 4 illustrates the REV definition considering the regions of the microscopic
inhomogeneity domain (left of the dotted line) and the region of the porous medium
domain (right of the dotted line). The dotted line indicates the smallest window length
(REV) over which a representative measurement can be made. Figure 5 shows the flowchart
of the main steps performed during this study.
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3. Results
3.1. Soil Porosity (P)

The results of the average imaged porosity showed the subvolume selection scheme
(core or cube) influence in the REV determination (Figure 6). We also observed that REV
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was affected when the soil was submitted to contrasting land use systems and wetting and
drying cycles. No clear trend was observed among REVs when the different methods of
subvolume selection were employed for P. In the core method, samples submitted to 0 and
6 W-D cycles reached the REV for MT and CT for the same window length (L = 3.0 mm)
(Figure 6a,c). For NT (Figure 6e), estimating REV was impossible. In the cube method, we
observed that REV could be calculated for all land uses. The application of W-D cycles
requires larger window length images in the REV estimation. For MT (Figure 6b), REV
was estimated at 12.0 mm (0 W-D) and 18.1 mm (6 W-D). For CT (Figure 6d), REV was
reached at 6.0 mm (0 W-D) and 12.0 mm (6 W-D), whereas for NT (Figure 6f), the values
found were 18.1 mm (0 W-D) and 21.0 mm (6 W-D). Such a result obtained using the cube
method shows that the porosity was sensitive to the chosen land use and the application of
W-D cycles.
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Figure 6. Average imaged porosity (P) as a function of the different window length-scales (L) obtained
based on the microtomographic images. (a) Minimum tillage (MT) and core method, (b) MT and
cube method, (c) Conventional tillage (CT) and core method, (d) CT and cube method, (e) No-tillage
(NT) and core method, and (f) NT and cube method. The soil samples were submitted to 0 (red lines)
and 6 (blue lines) wetting and drying (W-D) cycles. The marker (full) indicates the representative
elementary volume (REV) estimated for each land use and W-D cycle.
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3.2. Fractal Dimension (FD)

The average fractal dimension, calculated through the box-counting method, was
employed to characterize the complexity of the soil pore system. The core method presented
lower REV values among the land use systems and W-D cycles when compared to the
cube method (Figure 7). Similar to P results, the soil land use showed differences in
the REV estimation only in the cube method (except for NT in the porosity case—core
method). Using the core method, MT presented the same REV for 0 and 6 W-D (L = 6.0 mm),
indicating that for this land use system, the wetting and drying cycles did not influence the
REV estimation (Figure 7a). For CT (Figure 7c) and NT (Figure 7e), similar to the results of
MT, REV was not affected by the cycles (L = 6.0 mm—0 and 6 W-D). In the cube method, the
W-D cycles did not affect the REV definition for MT (L = 18.1 mm) (Figure 7b). However, for
CT (Figure 7d) and NT (Figure 7f), the application of the W-D cycles increased the window
length needed for the REV estimation. These results follow the same trend as observed for
P (Figure 6d,f). For CT, REV increased with the application of W-D cycles from 6.0 mm
(0 W-D) to 18.1 mm (6 W-D), while for NT, it moved from 12.0 mm (0 W-D) to 18.1 mm
(6 W-D). Interestingly, applying the cycles caused the REV to be achieved for the same
length window for all land uses in the core method.
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Figure 7. Average fractal dimension (FD) as a function of the different window length-scales (L)
obtained based on the microtomographic images. (a) Minimum tillage (MT) and core method, (b) MT
and cube method, (c) Conventional tillage (CT) and core method, (d) CT and cube method, (e) No-
tillage (NT) and core method, and (f) NT and cube method. The soil samples were submitted to
0 (red lines) and 6 (blue lines) wetting and drying (W-D) cycles. The marker (full) indicates the
representative elementary volume (REV) estimated for each land use and W-D cycle.

3.3. Degree of Anisotropy (DA)

The degree of anisotropy (Figure 8), a tool used to measure how substructures are
oriented in a given analysis volume, showed different results between the subvolume
selection methods, land use systems, and W-D cycles. This property identifies whether
there are differences in pore distribution throughout contrasting portions of the soil samples.
When the core method was used, the average DA values obtained were <0.32, showing
more isotropic structures, regardless of the land use adopted. The DA values also presented
fluctuations for all the window lengths examined without a clear trend to stabilize among
the land use systems studied. For this reason, none of the samples reached the REV for this
selection scheme (Figure 8a,c,e). Regarding the cube method, the largest window lengths
presented DA reductions but still without a clear trend of stabilization of their values.
Similar behavior was observed for all the land uses (Figure 8b,d,f). In this selection scheme,
we found that smaller window lengths had more significant anisotropies, showing the
dependence of this property on the selection scheme. Thus, we verified the soil land use
influence on the DA distribution for the samples analyzed. Finally, as observed in the core
method, REV was not achieved for any of the window lengths analyzed.
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representative elementary volume (REV) estimated for each land use and W-D cycle.

3.4. Pore Connectivity (C)

Pore connectivity is a physical property often obtained through 3D imaging, providing
an idea of pore continuity. This property offers results that directly impact water dynamics
in porous systems. Our findings showed the influence of selection schemes as a function of
window length-scale on the REV estimation among the land use systems studied (Figure 9).
The different land uses affected the connectivity measurement and the REV definition. As
observed for P (Figure 6) and FD (Figure 7), the application of W-D cycles impacted the REV
estimation for C (except for CT—core method). In the core method, applying the W-D cycles
increased the REV of the samples under MT (L = 3.0 mm—0 W-D and L = 6.0 mm—6 W-D)
(Figure 9a). On the other hand, opposite behavior was observed for NT (Figure 9e), with
REVs of 6.0 mm (0 W-D) and 9.0 mm (6 W-D). The soil under CT (Figure 9c) did not present
variations in the REV estimation (L = 3.0 mm) with the application of the W-D cycles.
Concerning the cube method, REVs varied when compared to the core method, indicating
that this property is susceptible to the subvolume selection procedure. The results show
that for MT (Figure 9b), REV was achieved in 15.1 mm (0 W-D) and 21.0 mm (6 W-D). For
CT (Figure 9d), REV was reached only for the samples subjected to 6 W-D (L = 6.0 mm),
whereas NT (Figure 9f) showed the opposite with REV estimation (L = 21.0 mm) only for
the samples not submitted to W-D cycles. These results demonstrate no clear trends in the
REV estimation based on the cube method selection scheme considering different land uses.
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Figure 9. Average pore connectivity (C) as a function of the different window length-scales (L)
obtained based on the microtomographic images. (a) Minimum tillage (MT) and core method, (b) MT
and cube method, (c) Conventional tillage (CT) and core method, (d) CT and cube method, (e) No-
tillage (NT) and core method, and (f) NT and cube method. The soil samples were submitted to
0 (red lines) and 6 (blue lines) wetting and drying (W-D) cycles. The marker (full) indicates the
representative elementary volume (REV) estimated for each land use and W-D cycle.

4. Discussion

This paper focuses on three main assumptions: (1) REV estimation is affected by
land uses, (2) REV cannot be considered static, and (3) REV estimation is influenced by
the subvolume selection scheme for complex systems such as soils. To analyze these
three statements, we selected four soil pore morphological properties, i.e., porosity, fractal
dimension, degree of anisotropy, and pore connectivity. We noticed that REV varies as a
function of the soil physical property analyzed, as demonstrated by other papers in the
scientific literature [2,13,20,21]. The characteristics of each property measured directly
impact the REV estimation, mainly those related to the distribution of pores inside the
sample volume. This finding reinforces the need for representative samples mainly when
XCT studies are carried out.
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For the soil porosity assessed using XCT, we observed that except for the sample
submitted to the no-tillage system (Figure 6e), the other systems (MT and CT) showed
the same REV regardless of the application of the W-D cycles for the core method. This
result indicates soil structure similarities for these land uses, which were not significantly
affected by the W-D cycles. However, we know that CT causes profound modifications
in soil structure and that the soil tends to recover its structure after applying continuous
W-D cycles [22]. Conventional tillage is characterized by aggregate breakdown due to the
harrowing and plowing operations [6]. In the case of MT, which represents an intermediate
land use system presenting characteristics of CT and NT, a more complex structure is
expected [9]. However, the smallest subvolume analyzed was already enough for these
two land uses to reach REV, which is a surprising result. As Costanza-Robinson et al. [31]
indicated, the lower REV values estimated using the core method may be associated with
the substantial contribution of the analyzed volume due to the fixed width of one of the
analysis axes (z-axis) (Figure 2a). For example, if we look at the first subvolume analyzed,
the core method presented a volume almost ten times that of the cube method. This larger
volume obtained may explain the stability in the core method’s P values, indicating that the
variability of this property with the increased size of the window lengths was compensated
by this larger volume (fixed z-axis). Similar results showing minor variability between the
measured properties as a function of scale using the core method were also noticed by Wu
et al. [42]. Borges et al. [13], using a method similar to that of the centered cube, found more
significant variability of P values for the smallest subvolumes when compared to our study.
However, the first and second subvolumes analyzed by those authors were approximately
680 and 5.4 times smaller, respectively, than the first subvolume employed in our study.
Thus, the first subvolumes investigated using the core method in our study were already
large enough to mitigate the effects of P variability.

Regarding the cube method, variations in REV were observed as a function of land
uses and W-D cycles. The results show that applying the W-D cycles changed the soil
structure, so larger subvolumes are required for representative P measurements [24]. This
finding indicates changes in the soil pore system heterogeneity with the application of W-D
cycles, as shown by Oliveira et al. [17]. This result may also be associated with the action of
organic material and soil clay content in the topsoil, especially for the more conservationist
systems (MT and NT). As for MT and NT (Figure 6b,f), which are systems that usually
present more complex pore distributions, REV was reached for larger subvolumes than
for CT. This result was already expected, especially for the samples collected from the
topsoil, because the plant remains on the surface in these land uses [46–48]. For CT, the
breakdown of aggregates due to the soil preparation process tends to homogenize the soil
composition [10]. Similar results to our study were also found by Borges et al. [13] working
with CT and NT land uses. Those authors found, in general, higher REVs for the samples
submitted to the NT employing the centered cube method. Our results showed that for
porosity, even slight variations in this property with depth are enough to influence the REV
obtained using the cube method, similar to the findings of Costanza-Robinson et al. [31]
and Baveye et al. [32]. Finally, the most significant P variation for the smallest subvolumes
was mainly related to the microscopic inhomogeneity domain highlighting the importance
of small-scale spatial variability [42,43,49].

Fractal dimension was utilized to identify the complexity of the pore system through
the analysis of patterns and shapes [50,51]. Pore system distribution and complexity
changes due to soil processes can be quantified through tools such as FD [52]. Our results
demonstrated that FD was the unique property with REV for all the land uses, W-D cycles,
and selection schemes (Figure 7). The FD values between 2 and 3 are characteristics of 3D
structures [53]. The application of W-D cycles did not influence the REV for FD in the core
method (Figure 7a,c,e), indicating similarities in the complexity of the soil pore architecture
under scale variations [17]. As discussed earlier, the FD homogeneity results verified when
using the core method should be associated with the largest analyzed volume, and a higher
complexity of the porous system in depth, which was the axis kept fixed in our study for



Agriculture 2023, 13, 736 15 of 20

this volume selection scheme. Lopes de Silva et al. [54] recently showed the influence
of changes in the region of choice of volumes to estimate REV, especially for properties
related to the complexity of the porous system. The same behavior was observed by Borges
et al. [13], working with properties such as macroporosity, pore number, connectivity, and
tortuosity. We can state that for this selection scheme (core method), it would perhaps be
more interesting to use tools that enable the analysis of the fractal characteristics of portions
of the sample, such as the multifractal aiming to find subtle differences in the soil pore
architecture due to the W-D cycles [50,51].

When using the cube method, as expected, the samples that were not submitted to
the W-D cycles presented higher estimated FD REVs for more conservative pore systems
(MT and NT) (Figure 7b,f). This result follows the same trend as P and is explained by the
greater complexity of the pore networks for these land uses [8,55,56]. The absence (NT) or
minimum disturbance (MT) of the soil structure can help to explain this high complexity in
comparison to CT [57]. The latter is subjected to severe soil disturbance due to harrowing
and plowing, requiring more time for the structure to recover [58]. For MT and NT, the
minimum soil disturbance favors the appearance of biopores resulting in branched pore
networks [59]. Similar to P results, the application of cycles affected the REV estimate for
CT (Figure 7d) and NT, requiring larger subvolumes for these two land uses. This result
demonstrates that the W-D cycles increased the irregularity of the shape of the analyzed
pores [43]. Pires et al. [60] showed that the application of W-D cycles tends to increase the
soil porosity and the pore system complexity, mainly in oxisols such as the one studied in
this work, confirming the results found. It is interesting to note that similar results to those
obtained in our study regarding the relationship between FD and P were also observed
by Wu et al. [61]. Those authors analyzed several possible relations between FD and P,
showing that the most common case for coal samples was when the samples reached REV
for FD while P declined. They also noticed cases where both FD and P reached REV, similar
to our findings.

REV was not reached for the degree of anisotropy (Figure 8). As said before, DA
provides information on how the properties of a given material vary depending on the
direction in which they are measured [62]. The results of our paper demonstrated the
existence of low anisotropic pore structures [14,63]. Based on this, we expected some
stability in the DA results, increasing the subvolumes, which was not observed. Only
the land uses MT and CT showed some stability trends in the DA for the cubic scheme
(Figure 8b,d). Our results indicate that the distribution of the pores is susceptible to
the analysis volume [19]. As different volumes comprise distinct portions of the soil
pore system, changes in the pore size and shape domains can affect the pore orientation,
influencing DA. Thus, the spatial variability of the pore size distribution induces the
appearance of clusters of pores in different portions of the sample, affecting DA [18,64].
Based on that result, we concluded that for DA, the choice of higher volumes is necessary
for the samples to reach REV for the criterion chosen in our study. Even small changes in
the pores configuration (orientation) seem to affect the stability of the DA values when the
analysis volume is varied.

The selection scheme affected pore connectivity (Figure 9). REV was reached for all the
land uses when employing the core method. This result indicates that this selection method
minimizes the pore continuity variation from one volume to the other (more considerable
volume of data) when compared to the cube method. The core method maintains the z-axis
constant while varying the y- and x-axes as described earlier (Figure 2a). For this selection
scheme, samples under MT (Figure 9a) and NT (Figure 9e) land uses required larger
volumes to achieve REV when compared to CT (Figure 9c). This result, as already stated, is
related to the complexity of the soil pore system under more conservationist uses [65,66].
Generally, soils under MT and NT tend to have large and highly connected pores, as shown
by Galdos et al. [8], de Oliveira et al. [10], and Tseng et al. [14] working with Brazilian
soils. As regards CT, the plowing and harrowing process breaks the existing connection
between the soil pores in the topsoil, homogenizing pore size distribution [67,68]. We
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observed that REVs were achieved for the smallest volumes analyzed for C, indicating that
the maintenance of one of the fixed axes in the selection of the volume in the core method
minimized the variability of the pore connectivity values at the scales analyzed similarly
to the findings for the other properties [31]. Recently, Borges et al. [13] published a paper
evaluating the REV for a type of soil similar to the one studied in our paper. Those authors
showed more significant variability in the connectivity values for the different subvolumes
analyzed, especially the smaller ones. However, it is worth noting that the first subvolumes
investigated by those authors were much smaller than the smaller ones selected in our
study, as previously mentioned. Regarding the W-D cycles, they neither showed much
influence on the REV estimation for the different land uses, nor a clear trend between them.
Again, this result can be explained by highly connected pores inside the samples, mainly in
the core method fixed axis direction (sample depth) [12,18,27].

The cube method showed different results from those of the core method for the
contrasting land uses studied. Only the soil under MT (Figure 9b) showed REV between
samples submitted to 0 and 6 W-D cycles. This finding indicated that the variability of C
cannot be disregarded when different subvolumes are analyzed, even though there are
dominant and well-connected pores, as shown by other authors [8,10,12,14,18]. Such a
result shows that the pore structure and its heterogeneity influence the REV definition, as
shown by Xue et al. [69]. When CT was investigated (Figure 9d), the REV was estimated
only for the sample subjected to 6 W-D cycles. This result may be associated with the
breakdown of aggregates after soil preparation operations under CT. Applying the cycles
causes the soil to undergo restructuring favoring the connection between the soil pores [24].
In the case of NT (Figure 9f), the opposite occurs, with REV being estimated for samples
not submitted to W-D cycles. For the samples submitted to 6 W-D cycles, we noticed an
abrupt variation of C for the largest subvolumes, which may be associated with variations
in pore distribution (clusters) within the soil sample [17,62,70,71]. Koestel et al. [40] recently
showed that pore connectivity undergoes more significant variations than porosity when
different subvolumes are analyzed using the cube method. Such a result is similar to the
ones observed in our study for C. Those authors also showed that C is sensitive to the size
of the analyzed pores, a situation that was not investigated in our study.

Although our objective in this paper was the REV definition to determine soil proper-
ties based on XCT, some results obtained have important implications for many processes
in the soil. Water movement, for instance, is greatly influenced by soil permeability, which
is closely related to pore connectivity and porosity. Thus, changes in pore connectivity
will affect the soil ability to infiltrate and redistribute water due to permeability modifi-
cations [72,73]. Adequate soil porosity is also essential for the good development of root
systems and to maintain appropriate water levels available to plants. Therefore, reliable
determinations of porosity and pore connectivity have several practical implications for
agriculture. The water flow direction into the soil also influences crop yield due to its impact
on water distribution and retention to plants. Properties such as the degree of anisotropy
and fractal dimension give us an idea of the heterogeneity of the pore system. As the water
flow direction depends mainly on the pore structure, representative measurements of DA
and FD can bring new insights into water distribution inside porous materials. As we can
see, there is a close relationship between the morphological properties measured in our
study and the soil hydraulic properties [16,73]. Therefore, representative measurements of
soil properties through XCT can help to explain many hydraulic processes related to water
retention and movement, the destination of soil nutrients and pollutants, and the amount
of water needed for crop growth [74–76].

Our study demonstrated the importance of selecting representative samples to mea-
sure geometrical and morphological properties using XCT. However, depending on the
selection scheme, some properties might be representative. This finding indicates that
one sample shape type (core or cube) can be sometimes more appropriate than others.
Costanza-Robinson et al. [31] indicates that REV estimation using the cube method is useful
for literature comparisons, while the core method provides values with practical applicabil-
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ity. Land uses also affect the REV definition, which means it might be necessary to select
samples of different sizes for similar soils in the same experimental field [77–80]. However,
our study covered only a few properties measured by XCT. An increase in the number
of properties evaluated might also bring exciting results. Although we selected only two
schemes of subvolume selection, the choice of other types (e.g., from top to bottom, random,
from right to left) might offer essential insights mainly for the properties associated with
pore network complexity. Finally, an analysis of REV for different voxel sizes might give
us some results about the role of the intra- and inter-aggregate pore structures. Koestel
et al. [39] demonstrated that the size of the analyzed pores might influence the REV estima-
tion. Recently Lucas et al. [81] presented results also addressing the issue of scale and image
resolutions in representative measurements of morphological and geometrical properties of
soil pores. Those authors demonstrated that when changing scales, instabilities can occur
in the measured properties as a function of the transition between pore domains and the
definition of representative samples for each scale of analysis [82].

5. Conclusions

Based on the three main assumptions investigated, we observed that the selection
scheme is generally essential to the representative elementary volume definition, which
means that some precaution is necessary before choosing such a scheme. Furthermore,
applying the W-D cycles also influences the REV definition among the properties analyzed,
indicating that REV cannot be considered a static property. This result indicates that the
REV defined for an experimental field in a specific period might change over time. This
finding is essential in areas under human intervention, such as those under contrasting
land uses. Thus, the land use type is also crucial for the REV definition. Different human
activities can change the soil structure differently, so REV might be affected even for the
same soil type. We also noticed the REV dependency on the soil pore system complexity.
The degree of anisotropy does not reach the REV for any selection scheme (cube or core)
studied and land use system, while regarding fractal dimension, the opposite was noticed.
Therefore, the results presented in our study demonstrated that for the same soil under
contrasting land uses, REV needs to be determined for each management. Additionally,
soil processes (e.g., W-D cycles) also affect REV.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agriculture13030736/s1, Figure S1. Schematic drawing showing
the basic procedures performed in the segmentation of tomography images. This image is a 2D
section of soil under conventional tillage.
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