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Abstract: With increasing tension between humans and land, and arising pressure on food security in
China, the improvement of total factor productivity is important to realize agricultural modernization
and promote rural revitalization strategy. In this study, we applied the DEA-Malmquist index method
to measure the growth of China’s agricultural total factor productivity and its decomposition indexes
at the prefecture-level city scale from 2011 to 2020. We found the average annual growth rate of
agricultural total factor productivity was 4.5% during this period, with technical change being the
driving factor and technical efficiency change being the suppressing factor. There is an initial decrease
and then an increase in the Dagum Gini coefficient. The cold and hot spot areas of agricultural Tfpch
were clearly formed. During the decade, the gravity center of agricultural Tfpch has migrated from
the northeast to the southwest in general. Based on the characteristics of agricultural Tfpch, China
is classified into four zones. In the future, the Chinese government should balance the government
and the market mechanism, improve the agricultural science and technology innovation system and
technology adoption promotion system, and implement classified policies to improve agriculture
production efficiency.

Keywords: prefecture-level city scale; agricultural total factor productivity; spatial-temporal patterns;
agricultural sustainable development

1. Introduction

The improvement of overall agricultural productivity is important not only for pro-
moting sustainable agricultural development but also ensuring the supply of agricultural
products and food security [1]. Since the 21st century, the increasing population is placing
unprecedented pressure on resources and the environment worldwide and adverse climate
change is leading to low agricultural production efficiency [2]. Countries and regions
around the globe are committed to improving agricultural productivity and promoting
sustainable agricultural development [3]. If a country relies on international trade to ensure
food security, the shock of the international food market will lead to the reduction in food
supply, leading to soaring prices and food security risks [4].

Developing countries face greater pressure in this regard [5]. In China, since the reform
and opening up, the nation has attached great importance to agricultural production; it has
increased the input of agricultural production factors, resulting in remarkable achievements
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in agricultural development. Between 1978 and 2020, the total agricultural output value in-
creased from 111.8 billion yuan to 717.48 billion yuan, and grain production increased from
304.77 million tons to 669.49 million tons. However, at the same time, China’s agriculture is
also facing problems such as a relatively extensive agricultural development model [6], a
decrease in high-quality cultivated land resources [7], intensified constraints on resources
and the environment, the loss of young and middle-aged labor [8], outstanding short-
comings in agricultural infrastructure [9], and insufficient support in agricultural science
and technology [10]. These problems have led to weak growth of agricultural production
efficiency, which has become a key bottleneck restricting high-quality agricultural develop-
ment and even the advancement of the rural revitalization strategy [11,12]. Scientifically
improving the input factor level, rationally optimizing the structure of the input factor, and
improving agricultural total factor productivity have become major propositions.

The issue of agricultural total factor productivity has been highly considered by the
government, and it is also a focus and hot spot in academic circles. There is a general
consensus in the connotation of agricultural total factor productivity. It refers to the amount
of production that can be increased when all the inputs of production factors are unchanged,
and its purpose is to measure productivity excluding all the tangible factors of produc-
tion. Related studies have explored agricultural total factor productivity using the growth
accounting method [13], the DEA-Malmquist index method [14–16], and the stochastic
frontier approach (SFA) method [16–19]. The DEA method and SFA method are commonly
applied. The SFA method considers the impact of environmental changes and random
factors on production behavior and can be carried out with statistical tests. The DEA
method does not require defining the specific form of the production function in advance,
so as to avoid the structural deviation caused by the wrong setting of production functions
in traditional accounting methods such as the SFA method. The DEA method also does
not require making a pre-determined assumption about the inefficiency distribution of the
research sample. Therefore, the two methods both have advantages and disadvantages.
The two methods will reach a relatively consistent conclusion in terms of numerical re-
sults [20–22]. However, most relevant studies about China apply the DEA method [23–25].
It shows that total factor productivity growth in China’s agriculture has been driven by
technical change and hindered by technical efficiency change [26,27], and the growth in
eastern China is faster than that in central China and western China [27]. However, due
to the difficulty in obtaining data, most of the studies were conducted on the provincial
scale [28–30]. There is a lack of analysis of the spatial characteristics and temporal evolution
patterns of agricultural total factor productivity on smaller scales [23]. In terms of the time
period, most studies focus on before 2010 [28,31]. However, since 2010, especially since
the 18th CPC National Congress, China has implemented a series of major strategies such
as poverty alleviation and rural revitalization. Significant changes have taken place in
the strategic objectives, policy system, and technical support of agricultural development.
China’s agriculture also has undergone deep changes. Agricultural development is chang-
ing from relying on resource input to being innovation-driven. Green ecological agriculture
is developing rapidly. The reform of the agricultural land system is being implemented.
There is a lack of long-term series follow-up studies on this issue.

This study aims to fill the gaps that few studies focus on 2011–2020 with radical
changes and that few studies can be specific to prefecture-level city scale to explore more
detailed spatial patterns.

In view of the large differences in the level and speed of agricultural development
in various provincial administrative regions [23], this study is based on the panel data of
agricultural output and input in prefecture-level cities from 2010 to 2020 and adopts the
DEA-Malmquist index method model with national prefecture-level city scale. We ana-
lyzed the temporal evolution and spatial variation of agricultural total factor productivity
change (Tfpch) in 359 prefecture-level cities across China by integrating the application of
Dagum Gini coefficient, Moran’s I, Getis-Ord Gi*, standard deviation ellipse, gravity center
migration, and cluster analysis. We also proposed targeted regulation strategies aiming to
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provide support for the agricultural modernization development and the implementation
of a rural revitalization strategy in China. Under the background of intensified resource and
environment constraints and the complex and volatile international situation, this study
aims to provide support for ensuring national food security by analyzing the implications
for sustainable agricultural development.

2. Materials and Methods
2.1. Materials

The total agricultural output value (calculated at comparable prices in 1978) was
selected as the output index based on the principles of scientificity, comprehensiveness and
data availability, and considering the spatial-temporal comparative analysis of national
prefecture-level city-scale data. The total sown area of crops was selected as the land input
index. It means the area of actually sown or transplanted crops, which generally include
food crops and cash crops. The number of employees in agriculture, forestry, animal
husbandry and fisheries was selected as the labor input index. It can better reflect the actual
use of an industry in a certain period than the economically active population and unit
employment. The total power of agriculture machinery was selected as the capital input
index. It was defined as the sum of the power of various kinds of power machinery mainly
used in agriculture, forestry, animal husbandry and the fishery industry in that year. The
consumption of chemical fertilizers in agriculture, that is, the actual amount of fertilizer
used in agricultural production in that year was selected as the intermediate input index.

The study data came from the statistical yearbooks and agricultural and rural year-
books of each province, autonomous region and municipality directly under the central
government from 2010 to 2020. The statistical descriptions of relevant output and input
indexes were shown in Table 1.

Table 1. Statistical description of output and input indexes.

Statistics

Total
Agricultural

Output Value
(Million Yuan)

Total Sown Area
of Crops

(Thousand
Hectares)

Consumption of
Chemical

Fertilizers in
Agriculture

(Million Tons)

Total Power of
Agriculture
Machinery

(Million
Kilowatts)

The Number of
Employees in

Agriculture, Forestry,
Animal Husbandry

and Fishery (Persons)

Average 2401.670 611.364 15.596 2623.391 718,304.258
Median 1961.668 354.361 10.641 203.308 610,302

Maximum 23,249.818 471,304.900 97.730 6,249,295 6,261,200
Minimum 5.077 0.289 0.001 0.162 61

Standard deviation 2054.968 7819.627 15.354 106,497.230 620,524.767
Sample numbers 3949 3949 3949 3949 3949

2.2. Methods
2.2.1. DEA-Malmquist Index Method

This study applied the DEA-Malmquist index method to calculate the total factor
productivity. The DEA-Malmquist index method uses a distance function to construct
a production frontier and thus measure the rate of change in production efficiency. The
principle is to first calculate the Malmquist index with technical conditions in period t as
the reference:

Mt(Xt, Yt, Xt+1, Yt+1) =
Dt(Xt+1, Yt+1)

Dt(Xt, Yt)
(1)

In Equation (1), D represents the distance function and (X, Y) represents the input-
output vector in a specific period. Similarly, the Malmquist index for the technical condi-
tions in period t + 1 can be calculated as:

Mt+1(Xt, Yt, Xt+1, Yt+1) =
Dt(Xt+1, Yt+1)

Dt(Xt, Yt)
(2)



Agriculture 2023, 13, 718 4 of 17

The geometric mean of Equations (1) and (2) is then used as the Malmquist index from
period t to period t + 1:

M(t + 1) =

[
Dt(Xt+1, Yt+1)

Dt(Xt, Yt)
×

Dt(Xt+1, Yt+1)
Dt(Xt, Yt)

] 1
2

(3)

The results of the Malmquist index take into account the non-technical efficiency
change in the production process. Under the premise of constant returns to scale (CRS),
the Malmquist index (Tfpch) can be divided into technical change (Techch) and technical
efficiency change (Effch):

Tfpch = Techch × Effch (4)

Under the premise of variable returns to scale (VRS), technical efficiency change
can be further divided into pure technical efficiency change (Pech) and scale efficiency
change (Sech):

Effch = Pech × Sech (5)

Specifically, in the field of agricultural production, a Malmquist index >1 represents
agricultural production efficiency has increased compared with the previous comparison
period. A Malmquist index < 1 represents agricultural production efficiency that has de-
creased compared with the previous comparison period. A Malmquist index = 1 represents
agricultural production efficiency that is flat compared with the previous comparison
period. Among indexes in Equations (4) and (5), technical change means the outward shift
of the production frontier, that is, technical progress yields more output for the same input.
Technical efficiency change refers to the improvement of resource utilization efficiency
by improving the coordination of various agricultural input resources (e.g., land, capital,
labor, etc.) under the conditions of the existing technology level, which brings agricultural
production closer to the production frontier [14].

2.2.2. Dagum Gini Coefficient

Compared with the traditional Gini coefficient, Thiel’s index, and so on, the Dagum
Gini coefficient G [32] is able to measure the sources of regional differences and the accuracy
of the conclusions is higher, by taking account of the overlapping of sub-samples and their
distribution. In this study, the Dagum Gini coefficient G was applied to measure the spatial
variation and sources of agricultural Tfpch in China.

G =
∑k

j=1 ∑k
h=1 ∑

nj
i=1 ∑nh

r=1

∣∣yji − yhr
∣∣

2n2µ
(6)

G = Gw + Gnb + Gt (7)

According to Equation (6), the overall variation of agricultural Tfpch in China can be
obtained, where yji (yhr) represents the value of agricultural Tfpch of any prefecture-level
city in the j(h) region, n represents the number of all prefecture-level cities in China, µ
represents the mean value of agricultural Tfpch in China, and k = 4 (that is the number of
regions divided in this study). As shown in Equation (7), Dagum Gini coefficient G can be
decomposed into intra-regional differences Gw, inter-regional differences Gnb, and intensity
of transvariation Gt.

2.2.3. Spatial Autocorrelation Analysis

Global spatial autocorrelation analysis was applied to analyze the clustering degree
of the Malmquist index. Moran’s I is one of the commonly used measures, which is
calculated as:

I =
∑n

i=1 ∑n
j=1 Wij(Yi − Y)

∑n
i=1 (Yi − Y)

2 (8)
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In Equation (8), Yi denotes the Malmquist index of a prefecture-level city i, Yj denotes
the Malmquist index of prefecture-level city j, n is the number of prefecture-level cities, Y is
the average value of the Malmquist index, and Wij is the spatial weight matrix. I > 0 means
that the Malmquist index has an overall positive correlation in space, that is, prefecture-
level cities with high or low values are clustered. I = 0 means that the Malmquist index
is randomly distributed in space. I < 0 means that the Malmquist index has an overall
negative correlation in space.

To further determine the exact locations where high- or low-value elements are spa-
tially clustered, Getis-Ord Gi* is applied. It is calculated by the formula:

G∗
i =

∑n
j=1 Wij(Xj −

−
X)

S

√ [
n∑n

j=1 W2
ij−
(

∑n
j=1 Wij

)2
]

n−1

(9)

In Equation (9) Wij is the spatial weight matrix, Xj is the Malmquist index of prefecture-
level city n, X is the mean value of all prefecture-level cities’ Malmquist indexes, and n is
the number of prefecture-level cities. Gi* > 0 means that the area is a hot spot area. Gi* < 0
means that the area is a cold spot area. Gi* = 0 means that the result is randomly generated.
Significance tests were performed on the Gi* values to obtain the cold and hot spot areas
with confidence intervals.

2.3. Theoretical Framework

The theoretical framework of this study is shown in Figure 1. This study selected the
input and output indexes mentioned above for DEA. Tfpch and its decomposition indexes
can be obtained by applying the DEA method. Then, this study used Dagum Gini, Moran’s
I, Getis-Ord Gi*, standard deviation ellipse and mean center to analyze spatial-temporal
patterns for promoting agricultural sustainable development.
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3. Results
3.1. Temporal Variation Patterns of Total Factor Productivity in Agriculture

As shown in Table 2, the total agricultural factor productivity of China has continued
to rise in general. From 2011 to 2020, the average national agricultural Tfpch is 1.045, with
an average annual growth of 4.5%. Except for 2017, the agricultural Tfpch is greater than
1 in other years. This increase in agricultural output not brought about by the increase
in input factors is closely related to China’s high emphasis on agricultural production
and a series of agricultural protective and incentive policies implemented under the WTO
framework, which are represented in the market price protection for agricultural products
and income support for agricultural workers. At the same time, the improvement of
farmers’ education level and technical training levels has effectively driven the increase
in agricultural total factor productivity [33]. In addition, the continuous improvement of
China’s opening-up, on the one hand, enables China to import agricultural production
factors at lower prices. On the other hand, China can introduce and transform a number of
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foreign advanced agricultural production methods and production technologies, so as to
promote the improvement of agricultural Tfpch [34]. The increasing investment in scientific
research, especially in agriculture scientific research, also plays an important role in the
improvement of agricultural total factor productivity [35].

Table 2. Agricultural Tfpch and its decomposition indexes in China, 2011–2020.

Year Tfpch Techch Effch Pech Sech

2011 1.050 0.995 1.055 0.973 1.084
2012 1.064 1.067 0.997 1.084 0.919
2013 1.047 1.094 0.957 0.97 0.987
2014 1.039 1.059 0.981 0.982 0.999
2015 1.033 1.051 0.983 0.962 1.021
2016 1.043 1.009 1.034 1.026 1.008
2017 0.976 0.962 1.014 0.931 1.090
2018 1.062 1.221 0.870 0.962 0.905
2019 1.078 1.021 1.056 1.045 1.010
2020 1.059 1.116 0.949 1.036 0.916

Average 1.045 1.057 0.988 0.996 0.992

In terms of the decomposition indexes of agricultural Tfpch, this study finds a trend
of enhanced technical change and weakened technical efficiency change, which is worthy
of attention. The increase in agricultural total factor productivity is mainly driven by
technical change. The growth of technical change outweighs the decline of technical
efficiency change. The growth of total factor productivity in agriculture mainly comes
from the movement of the agricultural production frontier rather than the approach to the
agricultural production frontier, which reflects that the utilization efficiency of input factors
in China’s agricultural production needs to be improved, and agricultural technology
adoption needs to be promoted in the near future.

In terms of scale efficiency change, the scale efficiency change of agricultural produc-
tion in China is less than 1 in general. There is a phenomenon of weakening scale efficiency
during the decade. It has resulted from China investing heavily in agricultural production
with the goal of ensuring national food security, but it is difficult to expand the area of
agricultural land [36], especially cultivated land, and the scale of agricultural production
grows slowly (Table 2). The weakened scale efficiency of agricultural production also
confirms from the opposite side the necessity of continuously deepening the reform of the
rural land system and promoting moderate large-scale management of land in China [37].

3.2. Spatial Variation Patterns of Total Factor Productivity in Agriculture
3.2.1. Spatial Variation in Total Factor Productivity

The agricultural Tfpch shows significant spatial variation characteristics, affected
by differences in agricultural resources, agricultural policies, industrial structure, and
economic development conditions in prefecture-level cities (Figure 2).
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Figure 2. Agricultural Tfpch of prefecture-level cities in 2011 (a), 2012 (b), 2013 (c), 2014 (d), 2015 (e),
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The agricultural Tfpch in four major regions (Table 3) shows the spatial characteristics
of western China > eastern China > central China > northeast China. Specifically, it is the
highest in western China. First, the natural endowment of resources and the environment
in this region is relatively poor, and its agricultural development foundation is also weak.
In recent years, advanced agricultural technologies and typical models have been intro-
duced, resulting in a significant “latecomer advantage” in this region [38]. Second, under
the background of comprehensively promoting a targeted poverty alleviation strategy,
compared with eastern, central, and northeast China, western China has generally received
a series of more favorable poverty alleviation programs, such as the East-West poverty alle-
viation collaboration twinning relationship and poverty alleviation collaboration through
enterprise cooperation [39]. Furthermore, natural disasters, especially geological disasters,
are frequent in the western region. Natural disasters restrain the upgrading of agricul-
tural production technology, but their consequences often lead to an increase rather than
a decrease in agricultural infrastructure such as water conservancy facilities and rural
roads, thereby promoting the agricultural total factor productivity by improving technical
efficiency change [28].

Table 3. Agricultural Tfpch and its decomposition factors in four major regions of China.

Region Tfpch Techch Effch Pech Sech

China 1.045 1.057 0.988 0.996 0.992
Northeast China 1.034 1.059 0.977 0.985 0.991

Eastern China 1.040 1.056 0.984 0.992 0.992
Central China 1.040 1.058 0.983 0.991 0.992
Western China 1.057 1.058 1.000 1.007 0.992

Generally speaking, eastern China is endowed with superior resources such as water,
heat, and terrain for agricultural production. Its strong ability to radiate external urbaniza-
tion and industrialization, and the increasingly formed pattern of complementary functions
and urban-rural integration have directly led to the improvement of agricultural production
efficiency. However, at the same time, problems such as insufficient water supply, water
pollution [40], and soil pollution [41] occurred sometimes, which need to be effectively
addressed to ensure the sustainable improvement of agricultural production efficiency.

Central China is an important grain-producing region, and the proportion of agri-
cultural employees to the total number of employees is higher than the national average.
The proportion of rural surplus labor is large, and it is difficult to transfer to other indus-
tries, resulting in the restriction of agricultural land circulation and moderate large-scale
management, which limits the improvement of agricultural total factor productivity [42].

As an important grain-producing region, northeast China has a long history of agricul-
tural production and mature agricultural production technology. However, in recent years,
the population, especially middle-aged labor, has been seriously lost [23] and its potential
for further improvement in agricultural productivity is limited. This results in a high level
of agricultural development, but the development speed lags behind other regions.

From the perspective of China’s four major economic regions, the four regions were all
“technically driven”. Technical change (Techch) drove the improvement of agricultural total
factor productivity, while technical efficiency change (Effch) hindered the improvement
of agricultural total factor productivity. Further decomposition of the technical efficiency
change (Effch) showed that only the pure technical efficiency change (Pech) in western
China has increased, while all the other three regions showed a decline. The change in
scale efficiency change (Sech) of the four regions all showed a downward trend, and the
differences among regions were small.

The Dagum Gini coefficient was applied to measure the Gini coefficient of both China
and four major regions during 2011–2020. The results showed an initial decrease and then
an increase in the Gini coefficient of Tfpch. With the government’s policy support for
underdeveloped regions, regional differences in agricultural development may decrease in
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some years, but there are large differences in natural elements such as sunlight, heat, water
source and soil fertility in different regions [43]. Regional differences have been expanding
since 2014, showing that there is still room for improvement in regional coordination of
agricultural development.

During the study period, the contribution ratio of the intensity of transvariation was
the largest, with an average of 64.53%, followed by the contribution ratio of intra-regional
differences, with an average of 24.80%. The contribution ratio of inter-regional differences
was the smallest, with an average of 10.65%. The contribution ratio of the intensity of
transvariation to the overall differences of agricultural Tfpch in China remains at a high
level. On the one hand, it represented a large number of “ungrouped” prefecture-level
cities that split off from their groups into higher or lower groups. For example, in 2020,
the level of agricultural Tfpch in northeast China was higher than in eastern, central
and western China, but the agricultural Tfpch value in prefecture-level cities such as Jixi,
Tieling, and Anshan was all less than 1, ranking at the bottom. On the other hand, the
intensity of transvariation reflected the contribution of overlap between subsamples to the
overall difference [44], which accounted for a high proportion in this study. This means
there exist significant differences in agricultural development levels within the four major
economic regions, and spatial mismatch between the division of economic regionalization
and agricultural regionalization (Figures 3 and 4).
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3.2.2. Spatial Correlation of Agricultural Tfpch

This study analyzed the spatial correlation degree and the specific locations of spatial
agglomeration of agricultural Tfpch from global and local perspectives by using Moran’s I
and Getis-Ord Gi*.

According to the panel data, the Moran’s I index and its determination coefficient
(Table 4) showed that the Moran’s I index in 2015 was statistically significant at the 5%
significance level. The Moran’s I indices for 2011–2014 and 2016–2019 were statistically
significant at the 1% significance level. The index in 2020 did not pass the significance test.
The values of Moran’s I from 2011 to 2020 were all greater than 0. Agricultural Tfpch at
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the prefecture-level city scale presented characteristics of spatial agglomeration in most
years, which was related to the high similarity of agricultural production conditions such
as natural resource endowment in adjacent prefecture-level cities.

Table 4. Spatial autocorrelation test of agricultural Tfpch.

Year Moran’s I Z P

2011 0.146 1 11.149 0.001
2012 0.038 1 3.426 0.001
2013 0.105 1 8.108 0.001
2014 0.176 1 13.304 0.001
2015 0.029 2 2.547 0.010
2016 0.071 1 5.690 0.001
2017 0.068 1 5.373 0.001
2018 0.112 1 9.033 0.001
2019 0.107 1 8.346 0.001
2020 0.015 1.390 0.164

1 and 2 represent significant at the statistical level of 1% and 5%, respectively. Z scores represent standard
deviations. P values represent the probability that the observed spatial pattern is created by a random process.

The analysis of agricultural Tfpch Getis-Ord Gi* (Figure 5) showed that hot spots were
concentrated in southwest areas, such as the Yunnan-Guizhou Plateau, Sichuan Basin, and
Hengduan Mountains, which were directly related to a series of poverty alleviation mea-
sures taken in recent years [39]. The cold spots were mainly distributed in northeast China,
North China Plain and southern Xinjiang. Among them, the agricultural development
foundation in northeast China was better, but the development speed was slower. The
North China Plain was located in the Huang-Huai-Hai Plain, with superior natural and
geographical conditions. However, due to the obvious trend of a non-agricultural labor
force, especially the young and middle-aged labor force, in addition to the shortage of
water resources in recent years [45], the agricultural output increase was curbed.
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3.2.3. Spatial Migration of Agricultural Tfpch

To further reveal the spatial variation characteristics of agricultural Tfpch in 359
prefecture-level cities across China, the standard deviation ellipse and the migration tra-
jectory of its gravity center were visually represented via ArcGIS 10.8 software (Figure 6).
During the study period, the spatial distribution of agricultural Tfpch in China showed an
overall pattern of “northeast-southwest”. The gravity center of agricultural Tfpch migrated
within Nanyang, Henan Province and Xiangyang, Hubei Province, with an offset of about
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52 km from northeast to southwest. The gravity center was far from the geometric center of
China, indicating a disequilibrium in the spatial distribution of agricultural Tfpch. This
migration of the gravity center supports the above-mentioned hot spot area of agricultural
Tfpch in the western region of China from another perspective. It is worth noting that the
agricultural production in eastern and northeast China was not inefficient, but the overall
developing speed was relatively behind western China, forming a relatively cold spot area.
At the same time, this further confirmed the findings that agricultural TFP grew faster in
eastern and northeast China than in western China before 2010 [46] and that agricultural
TFP grew faster in western than in eastern or northeast China since 2010 [30].
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3.3. Agricultural Tfpch Clustering

We took the prefecture-level city as a basic unit, combining it with the values of three
indexes of agricultural total factor productivity change (Tfpch), technical change (Techch),
and technical efficiency change (Effch), and then applied the K-means clustering method in
SPSS 16.0 software for type classification. Here are the resulting four types (Figure 7):

(1) High Tfpch-technical change and technical efficiency change double-wheel-driven
cities (total of 21). This type was of very small number and sporadic distribution
across China. Most of them were in underdeveloped areas, but their agricultural
total factor productivity grew rapidly driven by the double-wheel-drive of technical
change and technical efficiency change.

(2) Low Tfpch-technical efficiency change hindered cities (total of 49). This type was
very few. Most of them were distributed in the interprovincial fringe areas in north-
west, north and northeast China. These cities have poor natural conditions and
low transportation accessibility, which limit the application of advanced agricultural
technologies. In addition to administrative barriers between regions, the flow and
optimal allocation of agricultural production factors were also restrained. It is crucial
to strengthen infrastructure construction (e.g., transportation) and establish a regional
coordination mechanism [47].

(3) Medium Tfpch-technical change and technical efficiency change double-wheel-driven
cities (total of 124). The number of this type was large, and the decomposition indexes
of agricultural Tfpch were relatively balanced. Most of them are distributed in south
China, especially in southwest China.

(4) Medium Tfpch-technical change single-wheel-driven cities (total of 165). The number
of this type was the largest. These cities are spread over most provinces, most of
which are located in north China, northwest China and the Qinghai-Tibet region.
The improvement of agricultural total factor productivity in such prefecture-level
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cities was mainly driven by technical change, but the promotion of agricultural
technology adoption was limited. To realize the two-wheel-driven technical change
and technical efficiency change and improve agricultural total factor productivity, the
Chinese government should put efforts in the following aspects: the improvement of
the agricultural technology adoption promotion system at the grassroots level, the
enhancement of agricultural technology adoption promotion institutions to provide
precise services with modern technology tools such as the Internet and artificial
intelligence [48], and the promotion of the popularity of agricultural technology
services [29,37].
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4. Discussion
4.1. New Findings from the Study

As mentioned earlier, most relevant studies [28,31] concentrated on the time period
before 2010, and mainly on how the scale efficiency change can promote the growth
of agricultural TFP. In this study, the scale efficiency change hindered the growth of
agricultural TFP in recent years, implying the urgency of implementing moderate large-
scale management of land. This was mainly because after 2010, all the input factors of
China’s agricultural production grew rapidly except the land factor, making it difficult to
promote moderate large-scale management of land.

Most the relevant studies [42,46] before 2010 concluded that the growth of agricultural
TFP in eastern China was faster than in western China. This was because government
agricultural policies before 2010 were more inclined to improve efficiency, and eastern
China, which has better natural conditions for agricultural production, was able to obtain
more favorable policies. While agricultural policies after 2010 were more inclined to
coordinate regional development and equity [27]. The level of agricultural development
in western China was relatively low, thus it was able to obtain more favorable policies.
Western China made full use of policies to stimulate the “latecomer advantage” and has the
fastest agricultural TFP growth, suggesting that besides natural conditions, government
policies played an important role in agricultural production efficiency growth.

4.2. Implications for Sustainable Agricultural Development in China

First, efforts should be made to optimize the flow and allocation of agricultural pro-
duction factors through the balance between the government and the market mechanism.
China should give full play to the administrative power of local governments, explore
the establishment of regional coordination mechanisms, and break down the institutional
barriers that hinder the cross-regional flow of production factors such as agricultural tech-
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nology and labor [49,50]. Especially, low Tfpch-technical efficiency change hindered cities
in the interprovincial fringe areas; in order to narrow regional differences and promote
the coordinated development of urban and rural areas, it is necessary to break down the
established administrative barriers, establish the concept of “one chessboard”, coordinate
and cooperate in the allocation of agricultural production factors to achieve complementary
advantages and development integration. It is essential to deepen the reform of “stream-
lining administration, decentralization, and optimizing government services “, reduce the
institutional costs of agricultural production factor transactions, promote inter-regional
agricultural technology exchange and the flow of agricultural talents, and improve agri-
cultural infrastructure in backward areas. A study [51] in 17 major agriculture-producing
countries mentions that government efficiency and government policy reform are important
for promoting agriculture production efficiency.

Second, it is advised to promote “two-wheel-driven” technical change and technical
efficiency change. China should improve the agricultural science and technology inno-
vation system, increase the investment in agricultural science and technology research
and development, and focus on the research and development of improved varieties and
intelligent agricultural machinery [30]. The organization system and work system of agri-
cultural technology adoption promotion should be also improved. In order to improve the
suitability and conversion rate of new agricultural technology, especially in the medium
Tfpch-technical change single-wheel-driven cities, two transformations should be realized:
the transformation of the agricultural technology adoption promotion mechanism from
“top-bottom” supply-oriented to demand-oriented, and from a government-led unitary
system to an integrated system comprising government, family farms, agricultural cooper-
atives, large farmers, third-party service agencies and so on. A study [52] in the Republic of
Malawi also points out that the number of promotion educators is essential for agricultural
technology adoption promotion.

Third, China should promote efficient agricultural production and coordinated socio-
economic development based on regional function positioning. It is essential to distinguish
different types of areas and implement policies according to local conditions. Areas that
are dominated by agricultural production should develop mechanized production, large-
scale operations, and market-oriented sales. They are expected to actively explore the
path of agricultural modernization and guarantee national food security [53]. Areas that
dominated by urbanization and industrialization development should cultivate modern
high-end agricultural science and technology talents, increase modern agricultural science
and technology innovation, focus on developing capital-intensive and technology-intensive
agriculture, and promote the development of high-quality agriculture and intelligent
agriculture models. In areas dominated by ecological function protection, they should
balance between protection and development, strictly control the use of pesticides and
chemical fertilizers, and actively develop green agriculture and ecological agriculture to
improve the market competitiveness of agricultural products [54]. A study [55] in the
European Union also attaches great importance to classification and implementing policies
according to local conditions.

4.3. Limitations and Prospects of this Study

This study provided a qualitative analysis of the variation in spatial-temporal patterns
of agricultural Tfpch. Influenced by the difficulties in collecting data at the prefecture-level
city scale, no further quantitative analysis has been conducted on the drivers of spatial
and temporal variation. In addition, this study used total agricultural output value as the
output index, which was a compromise made to unify the output of different types of crops.
In fact, the outputs of different types of crops are very complex, and it is extremely difficult
to uniformly quantify their output values. However, considering the small differences in
market prices of major crops across China, it has little impact on the study of the national
spatial-temporal pattern.
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Future studies will focus on Chinese spatial differentiation of agricultural potential and
explore whether it is positively or negatively correlated with natural conditions, economic
factors and so on [56,57]. In addition, combining remote sensing data with statistical
yearbooks and taking international trade into consideration in the future can be more
convincible [52,58].

5. Conclusions

Based on the panel data of agricultural inputs and outputs of 359 prefecture-level cities
across China from 2010 to 2020, this study measured their agricultural Tfpch using the DEA-
Malmquist index method, analyzed the temporal evolution pattern of China’s agricultural
Tfpch and its decomposition indexes during this period. This study applied the Dagum
Gini coefficient, Moran’s I, Getis-Ord Gi*, standard deviation ellipse, migration of gravity
center, etc., to reveal its spatial pattern and driving factors from different perspectives. The
study findings are as follows.

(1) China’s agricultural TFP on the prefecture-level city scale kept growing from 2011
to 2020, with an average annual growth rate of 4.5%. The technical change was an
important driver of China’s agricultural TFP growth, while technical efficiency change
played a hindering role in general. Technical change can help reduce the harm of
risks, especially climate risks [58].

(2) The spatial variation of China’s agricultural Tfpch was significant, with the western,
eastern, central and northeast China in descending order. The higher growth rate
in western China represented a good momentum of rapid agricultural development
there and the improving coordination of regional agricultural production. However,
compared with the long-term accumulated agricultural advantages in eastern and
northeast China, western China needs to maintain this good momentum to continue
to catch up. The Dagum Gini coefficient shows that the intensity of transvariation
contributes most to regional differences. Significant spatial autocorrelation existed in
China’s agricultural Tfpch, and there was a clear division of hot and cold between the
northeast and southwest regions. As the highland of China’s agricultural production,
northeast China needs urgent attention to increase the growth rate of agricultural
production efficiency. Northeast China should make full use of the advantage of global
temperature rise, which is more beneficial for high-latitude regions in agriculture
production [2,59].

(3) The spatial distribution of agricultural Tfpch presented an overall “northeast-to-
southwest” pattern, and the gravity center generally moved from the northeast to
the southwest. The rapid rise of the southwest has a positive significance for the
balanced development of regional agriculture in China. However, under the objective
situation of relatively poor endowment conditions of agricultural land resources such
as cultivated land and a fragile ecological environment, it remains to be seen whether
this rapid growth momentum can be sustained in the southwest region.

The above conclusions will provide a reference for the agricultural policies of the
Chinese government. The government should focus on not only agricultural technology
innovation but also agricultural technology adoption promotion. After the completion of a
targeted poverty alleviation strategy, the government is supposed to reconsider the policy
of regional agriculture coordinated development.
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