
Citation: Teixeira, A.C.; Ribeiro, J.;

Morais, R.; Sousa, J.J.; Cunha, A. A

Systematic Review on Automatic

Insect Detection Using Deep

Learning. Agriculture 2023, 13, 713.

https://doi.org/10.3390/

agriculture13030713

Academic Editor: Yanbo Huang

Received: 2 February 2023

Revised: 23 February 2023

Accepted: 17 March 2023

Published: 19 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Review

A Systematic Review on Automatic Insect Detection Using
Deep Learning
Ana Cláudia Teixeira 1,2,* , José Ribeiro 1, Raul Morais 1,3 , Joaquim J. Sousa 1,2 and António Cunha 1,2

1 Engineering Department, School of Science and Technology, UTAD—University of Trás-os-Montes e Alto
Douro, 5000-801 Vila Real, Portugal

2 Institute for Systems and Computer Engineering, Technology and Science (INESC-TEC),
4200-465 Porto, Portugal

3 Centre for the Research and Technology of Agro-Environmental and Biological Sciences,
University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal

* Correspondence: ana.c.teixeira@inesctec.pt

Abstract: Globally, insect pests are the primary reason for reduced crop yield and quality. Although
pesticides are commonly used to control and eliminate these pests, they can have adverse effects on the
environment, human health, and natural resources. As an alternative, integrated pest management
has been devised to enhance insect pest control, decrease the excessive use of pesticides, and enhance
the output and quality of crops. With the improvements in artificial intelligence technologies, several
applications have emerged in the agricultural context, including automatic detection, monitoring,
and identification of insects. The purpose of this article is to outline the leading techniques for the
automated detection of insects, highlighting the most successful approaches and methodologies
while also drawing attention to the remaining challenges and gaps in this area. The aim is to
furnish the reader with an overview of the major developments in this field. This study analysed
92 studies published between 2016 and 2022 on the automatic detection of insects in traps using
deep learning techniques. The search was conducted on six electronic databases, and 36 articles
met the inclusion criteria. The inclusion criteria were studies that applied deep learning techniques
for insect classification, counting, and detection, written in English. The selection process involved
analysing the title, keywords, and abstract of each study, resulting in the exclusion of 33 articles. The
remaining 36 articles included 12 for the classification task and 24 for the detection task. Two main
approaches—standard and adaptable—for insect detection were identified, with various architectures
and detectors. The accuracy of the classification was found to be most influenced by dataset size,
while detection was significantly affected by the number of classes and dataset size. The study also
highlights two challenges and recommendations, namely, dataset characteristics (such as unbalanced
classes and incomplete annotation) and methodologies (such as the limitations of algorithms for
small objects and the lack of information about small insects). To overcome these challenges, further
research is recommended to improve insect pest management practices. This research should focus
on addressing the limitations and challenges identified in this article to ensure more effective insect
pest management.

Keywords: insect detection; insect classification; smart pest monitoring; deep learning; insects traps

1. Introduction

Insect pests cause between 20% and 40% of the world’s agricultural production losses
every year [1], making agricultural practices dependent on pesticides. Applying these
chemical components has become the most profitable solution for crop protection with the
appearance of intensive agriculture [2]. There has been an increase in resistant pests, the poi-
soning of organisms, air pollution, water pollution, poisoning, and other health problems
due to the chemical properties of pesticides and their continued use over decades [3].
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Insect monitoring is necessary for the early detection of pests to avoid the excessive
use of pesticides [4]. Integrated pest management (IPM) systems that can reduce the
overuse of pesticides started to be developed in recent decades by the research community,
monitoring plagues and applying precise amounts when needed [5,6]. The main objective
of insect monitoring is to provide farmers with a decision-making tool, contributing to
the optimisation of their crops, increasing environmental sustainability, and improving
the quality and yield of production [7]. One form of monitoring is detecting and counting
insects that are attracted to traps distributed along the agricultural fields where the insects
will be captured. A typical monitoring approach is made by specialists, who recognise and
manually count insects caught in traps [4,8]. However, this task is very time consuming,
susceptible to errors, and sometimes subjective—each trap may contain dozens of insects
of different species [9].

Smart pest monitoring (SPM) has emerged with rapid advances in fields such as artifi-
cial intelligence (AI) and the Internet of things (IoT), allowing automatic data acquisition,
remote transmission, data processing, and decision making [5,10]. AI algorithms improve
data processing and propose hypotheses for increasingly accurate decision-making. AI is a
general field that encompasses machine learning (ML) and deep learning (DL) [11]. ML
is a type of AI that uses algorithms and statistical models to allow a system to improve
its performance of a specific task over time. In other words, ML allows a system to learn
from data without being explicitly programmed [11]. DL is a specific type of ML that
involves the use of neural networks, which are algorithms inspired by the brain’s structure.
These algorithms are made up of many layers of interconnected nodes and can learn com-
plex patterns in data. DL has been particularly successful for computational vision tasks
suited for image classification, segmentation, detection, and other tasks related to image
recognition [12]. Several AI techniques for insect automatic detection and counting have
been developed and published with data-driven methods; e.g., DL. However, automatic
detection and counting is still an open problem, and several challenges remain [4].

This study aimed to perform a literature review of DL methods for insect classification
and detection. The review includes papers submitted until 5 February 2022. For this review,
36 studies were chosen according to predefined criteria. These studies were carefully
examined, and their methodologies, results, and database sources were thoroughly anal-
ysed. Through this analysis, the most successful methods were identified, and the study
also highlighted open challenges and potential solutions. The focus of this research is to
address the challenges identified and propose solutions to improve insect pest management
practices, with the ultimate goal of achieving better and more effective results.

Regarding the novelty of this article, the following can be listed:

• The integration of deep learning techniques for automatic insect detection in traps;
• A systematic review and analysis of recent research on deep learning methods for

insect detection;
• An investigation of the effectiveness of deep learning in addressing the challenges of

traditional insect detection methods;
• A comparison of deep learning methods for insect classification and detection;
• The identification of key research gaps and opportunities for future work in this area.

The previous novelties highlight the following needs that this work can help overcome:

• Insect infestations can cause significant crop losses and economic damage in agricul-
tural production;

• Traditional methods of insect detection and control can be time-consuming, labour-
intensive, and potentially harmful to the environment and human health;

• Deep learning techniques have the potential to improve the efficiency and effectiveness
of insect detection, leading to more sustainable and profitable farming practices;

• A systematic review of recent research on deep learning methods for insect detection
can provide valuable insights and guidance for future research and development in
this field;
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• The results of this study can help inform and improve the use of deep learning
techniques for insect detection in practical applications.

This paper is structured as follows: Section 2 provides a background for the theme
of automatic image acquisition and insect detection and classification evolution. Section 3
describes the research questions, the inclusion criteria, the research strategy, and the study
characteristics. Section 4 presents the main findings in terms of methodologies developed
for this specific purpose. DL-based applications for insect detection, classification, and
detection are summarised, and the main detected challenges and gaps are provided. In
Section 5, we discuss and summarise the results found. Finally, in Section 6, the conclusion
and recommendations for the future are presented.

2. Theoretical Background

Pest control seeks to follow a diversified pest reduction strategy combined with other
forms of control and the use of chemical components. A possible way to deal with some
crop pests is by installing traps to attract insects [13]. Insect traps are essential elements of
SPM. These can be sex pheromone traps, yellow sticky traps, and light traps [13]. The type
of trap is chosen according to the kind of plantation or the pest to be monitored [14]. Traps
are frequently observed by qualified personnel to determine the number of insects that
have been trapped in each trap. There is a need to travel regularly to each location to carry
out this task, making this work expensive [8]. On the other hand, traps can control large
areas and not interfere with crop quality as chemical compounds do. The main advantages
of traps are their practical and reliable response for pest monitoring, the identification of the
right time to intervene with pesticides, the identification and quantification of pests, and
the reduction of costs and harmful effects on human beings, the environment, and natural
resources [15]. Therefore, traps yield information about the timing of the appearance
and activity of certain pests and auxiliaries, allowing treatments to be carried out at the
right time [16]. Monitoring insects through remote sensing is possible with the emergence
of more sophisticated technologies, being an asset for agricultural activity and enabling
real-time monitoring [17]. Image acquisition devices are installed in fields to monitor traps,
and insect detection and classification techniques are used.

Several authors have proposed different SPM systems. The possibility of implementing
these mechanisms and acquiring high-resolution images allows the remote control of pests,
reduces the need for human resources, and allows decision-making at a distance. The
resolution of the acquired images has a great influence on the methods applied in intelligent
image processing [18].

Preti et al. [7] reviewed the evolution of insect pest detection in terms of methodology
and equipment used. They observed that the first equipment used to collect images in traps
were optical sensors directly implemented in traps in 1985. With the integration of IoT,
big data, AI, and other modern information technologies, it has been possible to develop
and adapt various devices for pest monitoring. As shown in Figure 1, several IoT devices
are installed at strategic points on the agricultural plot to collect images from the traps;
the images are captured and stored on a server and later processed through digital image
processing techniques and by DL [4,19].

Ramalingam et al. [10] proposed a real-time remote monitoring system for insect traps
based on IoT and DL. Saranya et al. [20] developed a methodology using image processing
and a passive infrared sensor to detect the presence of insects by the heat radiated by their
bodies. Image processing is used to capture images of the pest to confirm its presence in
the field. Rustia and Lin [21] developed an image monitoring system connected via Wi-Fi,
where each trap was equipped with a sensor and camera placed 80 mm away. Every 10 min,
an image was collected and sent to a remote server for processing. In the processing, several
insect detection and recognition algorithms were used.
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Figure 1. Devices installed in the field to collect images of traps and the respective images collected. 
(a) Pheromone trap in a vineyard to attract grape moths provided by [22]; (b) yellow sticky traps 
installed to detect diamondback moths adapted from [23]; (c) light trap to attract 24 major pest clas-
ses specified by the Chinese Ministry of Agriculture. Images adapted from the dataset Pest24 [24]. 
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ble 1). There are many different approaches to insect detection using ML, and different 
algorithms may be better suited to different tasks [25,26]. 
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the number of whiteflies on sticky traps. Initially, the noise was eliminated with a low 
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ages. The authors used ten different threshold levels to determine the optimal image level. 
The pixels with a value greater than that of the defined threshold were white, and the 
smallest one was black; thus, it was possible to detect the whiteflies. The method proved 

Figure 1. Devices installed in the field to collect images of traps and the respective images collected.
(a) Pheromone trap in a vineyard to attract grape moths provided by [22]; (b) yellow sticky traps
installed to detect diamondback moths adapted from [23]; (c) light trap to attract 24 major pest classes
specified by the Chinese Ministry of Agriculture. Images adapted from the dataset Pest24 [24].

With pest monitoring through sensing, methods began to be developed for detecting
and identifying pests based on image processing and ML techniques (summarised in
Table 1). There are many different approaches to insect detection using ML, and different
algorithms may be better suited to different tasks [25,26].

Table 1. Study analysis based on image processing and ML techniques.

Paper Year Task Method Disadvantages

[27] 2008 Counting whiteflies Low pass filter, binarisation, and other
image processing operations

Methods developed for the
resolution of only the

proposed task. May be
adaptable to

other scenarios

[28] 2015 Detection of whiteflies, aphids,
and thrips

Identification with a watershed
algorithm to segment insects from

the background

[29] 2015 Counting whiteflies A k-means grouping is applied in each
image converted into a colour space

[30] 2016 Classification of 24 insect species Multiple task sparse representation and
multiple kernel learning techniques

[21] 2017 Classification of Thysanoptera Support vector machine and other
image processing operations

[31] 2017 Classification of pests in
pomegranate

Support vector machine and other
image processing operations

Qiao et al. [27] proposed a simple image processing system to automatically estimate
the number of whiteflies on sticky traps. Initially, the noise was eliminated with a low pass
filter; then, the images were converted to grayscale and transformed into binary images.
The authors used ten different threshold levels to determine the optimal image level. The
pixels with a value greater than that of the defined threshold were white, and the smallest
one was black; thus, it was possible to detect the whiteflies. The method proved to be
very effective for adult whiteflies. However, it only worked for whiteflies on sticky traps.
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Xia et al. [28] developed an automatic method for whitefly, aphid, and thrip identification in
greenhouses. The method starts by using the watershed algorithm to segment insects from
the background. With the Mahalanobis distance, the insect’s colouring characteristics were
extracted to identify the species of different insects. Comparing the proposed identification
and the manual identification performed by experts, correlations of 93.4%, 92.5%, and
94.5% were obtained, respectively, for whiteflies, aphids, and thrips.

Rustia and Lin [21] proposed an IoT-based remote monitoring system for pests on
yellow sticky traps and developed image processing and ML algorithms. The images
were divided into four regions and equalised using a histogram based on the brightness
adjustment obtained from reference images. A k-means grouping is applied in each image
converted into a colour space. The insects and the background are black or white in
the image obtained. In the end, the insects can be classified and counted. The method
effectively acquired accurate and automatic pest counts, obtaining an average accuracy
of 98%. Classifying pests in corn, soybean, wheat, and canola is difficult due to the
similarity between insect species; Xie et al. [29] proposed an insect recognition system
using multiple task sparse representation and multiple kernel learning techniques. It
was shown that their method performs well in classifying insect species, outperforming
other methods. Ebrahimi et al. [31] and More and Nighot [30] implemented an approach
based on the support vector machine for classifying and identifying pests. Most of these
techniques showed good performance; however, they are only recommended for particular
situations and are not adaptable to other scenarios because these techniques cannot make
intelligent decisions.

DL can learn and make decisions using algorithms inspired by the human brain,
making it possible to adapt to more complex environments [19,32]. In recent years, DL
has started to be applied in the field of agriculture as well. For example, DL algorithms
could be used to analyse images of crops to identify pests or diseases or to monitor the
growth and health of plants. This information could be used to optimise irrigation or
fertilisation or to take other actions to improve crop yields. DL could also be used in other
areas of agriculture, such as in analysing data from field sensors. In other words, several
DL applications have emerged to solve challenges in the agricultural context. Automatic
recognition of pest images has become one of the leading research points in DL [24].

The object detection task can be associated with two important concepts: (1) object
classification; and (2) detection, as shown in Figure 2. Classification is the assignment of a
class to the principal object in the image. Object detection consists of the object localisation
and classification of multiple objects in an image [33]. This technique uses rectangular
bounding boxes to locate and classify the categories of the objects [34]. Object detection
is an important area of computer vision. It is crucial in many applications, such as video,
medical images, vehicles, pedestrians, and face detection.

There are two significant groups of detectors: one-stage detectors and two-stage detec-
tors. One-stage detectors solve the detection task by directly predicting object categories
and regression object locations [33], such as You Only Look Once (YOLO) [35] and the
Single Shot Multi-Box Detector (SSD) [36]. This method does not require the region pro-
posal process, so the detection is faster; however, the precision is generally lower than
that of the two-stage object detector architecture. Two-stage detectors initially extract the
regions of interest from the input image and then classify and redefine the location of
the object through the first proposed regions; examples are Region-based Convolutional
Neural Networks (R-CNN) [37], Fast R-CNN [38], Faster R-CNN [39], Mask R-CNN [40]
and Cascade R-CNN [41]. The most significant advantage is the high precision, and the
disadvantage is the high detection time [34].
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Figure 2. Examples of insect classification and detection tasks. The classification example of of small
brown plant hopper and aphids on plant images. The first example of a detection task is the detection
of grape moths on pheromone trap, image provided by [22]; the second example is the detection of
army worm on plants images. Images with small brown plant hopper, aphids and army worm were
adapted from the public dataset IP102 [42].

3. Materials and Methods
3.1. Research Questions

In this study, three essential research questions were considered, which are the following:

• (RQ1) What are the methods that obtain better mean average precision (mAP) for the
task of insect detection?

• (RQ2) What dataset variables have the most significant influence on detection?
• (RQ3) What are the main challenges of and recommendations for automatically detect-

ing insects?

3.2. Inclusion Criteria

The study of methods of automatic detection of insects in traps was carried out con-
sidering the following criteria: (1) studies that apply DL techniques for insect classification;
(2) studies that apply DL methods for automatic insect counting; (3) studies that apply DL
methods for insect detection; (4) studies published between 2016 and 2022; and (5) studies
written in English.

3.3. Search Strategy

This systematic review consisted of studies that met the inclusion criteria in the
following electronic databases: IEEE Xplore, Scopus, MDPI, ScienceDirect, SpringerLink,
and PubMed. The search terms used were “automatic detection of insects”, “insect traps”,
“classification”, and “DL”. The studies were analysed to identify the various DL methods
of automatic insect detection. The search was conducted on 5 February 2022.

3.4. Selection of the Papers and Extraction of Study Characteristics

Ninety-two studies collected in these databases were identified. After analysing all the
studies, the selection was made for inclusion in the research, as shown in Figure 3. Of the
ninety-two articles initially identified, two were duplicates. After screening, considering the
title, keywords, and abstract, thirty-three articles were discarded because they did not cover
insect detection and classification. Then, a complete study was carried out considering the
inclusion criteria; consequently, twenty-one articles were excluded. Thus, the remaining
thirty-six articles were analysed and included in this survey. Of the selected searches,
twelve were for the classification task and twenty-four were for the detection task.
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4. Results

The articles selected were divided into three topics: (1) the classification of insects
with DL; (2) the detection of insects with DL; and (3) the challenges and recommendations
found. For the first topic, the studies that described pest classification were briefly analysed,
allowing the identification of the methodologies and architectures, the size of the dataset,
and the results obtained. For the second topic, we analysed the papers that solved the
detection task. Then, the detailed analysis of eight studies, considered interesting and
promising, was performed. Finally, for the third topic, challenges and recommendations
were presented.

For better organisation, the studies were separated into three tables. Table 2 sum-
marises the studies focusing on the classification task, and Tables 3 and 4 focus on detection
tasks. The tables show the data collected from each selected article: image scenario, the
number of classes, dataset size, methods, architectures, and results. Through the detection
tables, it is also possible to analyse the average inference times per image obtained in
the test dataset of the studies that provided this information. To assess classification and
detection performance, the results relied on accuracy and mAP as the respective metrics.
These metrics were chosen based on their widespread use in evaluating classification and
detection and were consistently employed across all the reviewed studies. This approach
facilitated a more meaningful comparison of results across the studies.

Table 2. Study analysis of classification with image scenario on plants.

Paper Year Number of Classes Dataset Size Methods Results (Accuracy)

[43] 2017 10 550 ResNet101 98.7%

[44] 2019
40 4263

CNN proposed by authors
96.8%

24 1397 97.5%
40 4500 95.9%

[45] 2020 10 5629 GoogLeNet—fine-tuning 94.6%

[46] 2020 2 5000 Resnet50—fine-tuning 93.8%
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Table 2. Cont.

Paper Year Number of Classes Dataset Size Methods Results (Accuracy)

[47] 2020 10 859 DenseNet169—transfer learning 88.8%

[48] 2020 8 1426 VGG16—fine-tuning 97.1%

[49] 2020 20 4909 CPAFNet: created by authors 92.6%

[50] 2020 15 100 ResNet34 97.8%

[26] 2021 24 1387 CNN proposed by authors 90.0%

[51] 2021 5 500 Faster R-CNN 99.0%

[52] 2021 10 3549 Resnet50—fine-tuning 95.0%

[53] 2021 1 700 YOLOv3 95.3%

Table 3. Study analysis of detection with standard detectors.

Paper Year Image
Scenario

Number of
Classes Dataset Size Method Results

(mAP)
Inference
Time(s)

[54] 2018 In traps 7 10,000 YOLO 92.5% 0.167

[55] 2018 In traps 3 1350 Faster R-CNN 87.4% n.a.

[56] 2018 In traps 6 2183 RetinaNet 74.6% 0.448

[32] 2019 On plants 12 3022 SSD 77.1% 0.100

[24] 2020 In traps 24 25,378 YOLOv3 58.8% n.a.

[57] 2020 In traps 8 1716 R-FCN 83.4% 0.124

[10] 2020 In traps 14 1000 Faster R-CNN 88.8% 0.032

[58] 2020 On plants 1 687 YOLOv3 90.0% n.a.

[25] 2020 On plants 1 4600 Faster R-CNN 94.6% 0.360

[59] 2021 In traps 1 50 Faster R-CNN 85.6% 0.078

[60] 2021 On plants 14 49,700 Cascade R-CNN 70.8% n.a.

[61] 2022 In traps 1 4134 YOLOv5 94.7% n.a.

[62] 2022 On plants 3 4541 Faster R-CNN 92.7% 0.016

n.a. = information not available.

Table 4. Study analysis of detection with combined/adapted methodologies.

Paper Year Image
Scenario

Number of
Classes Dataset Size Method Results

(mAP)
Inference
Time(s)

[63] 2016 In traps 1 177 CNN with sliding window 93.1% n.a.

[64] 2019 In traps 16 88,670 PestNet: created by authors 75.5% 0.441

[65] 2019 In traps 3 662 Segmentation + CNN 92.4% 0.145

[66] 2019 On plants 4 4400 Multi-scale CNN + RPN 81.4% n.a.

[67] 2019 On plants 1 85 CNN + RPN 88.5% n.a.

[68] 2020 On plants 1 2300 Segmentation + CNN 92.0% n.a.

[69] 2021 In traps 16 88,600 Modified Faster R-CNN 83.6% n.a.

[70] 2021 In traps 21 24,412 S-RPN 78.7% 0.045

[6] 2021 In traps 4 5173 YOLOv3 + CNN 91.0% 2.380

[71] 2021 In traps 2 1400 Modified Faster R-CNN 95.2% n.a.

[72] 2022 In traps 24 28,000 Modified YOLOv4 71.6% 0.013

n.a. = information not available.
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4.1. Classification of Insects with DL

Convolutional Neural Networks (CNN) are neural networks that follow a feed-
forward pattern, where all layers connect, following the path from the input to the output
of the network. CNNs are inspired by biological processes, more specifically by the or-
ganisation of an animal’s visual cortex [73]. This type of neural network is often applied
in image recognition and video processing, thus becoming the “state of the art” in object
classification and detection problems. The disadvantage of CNNs is the need for much
labelled data for feature extraction [74]. There are some CNN architectures available that
are widely used.

Classifying insects is essential in many contexts and for the important premise of
IPM in agriculture [4]. More than 1.02 million insect species have been described [75],
making insect identification difficult and complex. Some of the applications include the
classification of pests, diseases, and invasive species [76]. In Table 2, the data collected in
each article on the classification of insect pests using DL are summarised. The selected
studies were published between 2017 and 2021. It appears that all studies provide a solution
for classification in field images on plants.

To identify the most harmful cotton pests under field conditions, Alves et al. [50]
presented a real dataset containing cotton field images, with 15 classes and 100 images. All
images were resized to 224 × 224; as the dataset was small, they applied data augmentation
and used CNN with ResNet34 to classify major pests automatically; the method was
trained on GPU NVIDIA GTX 1060 and obtained a final accuracy of 97.8%. Cheng et al. [43]
proposed the use of a CNN with ResNet101 to achieve pest identification with the complex
background of agricultural land. The dataset contained different angles and pest poses. All
these images were mirrored before being fed into the system to fully utilise CNN to double
the total amount of data. For 10 classes in 550 images of agricultural pests in the complex
background, an overall accuracy of 98.7% was reached.

Kasinathan et al. [26] used a public dataset with 1387 images (rescaled to the size
of 227 × 227 pixels) and 24 classes in a highly complex background. First, image data
augmentation techniques were applied, such as rotation, flipping, and cropping operators,
and second, they applied CNN with the architecture proposed by them. The CNN model
proposed contains five convolutional layers, three max-pooling layers, a flatten layer, a
fully connected layer, and a softmax output layer. The authors’ methodology was able
to reach 90.0% accuracy. With the purpose of classifying insect species in three publicly
available insect datasets, Thenmozhi and Srinivasulu [44] proposed an efficient deep CNN
model. The CNN architecture was constituted of six convolutional layers, five max-polling
layer, one fully connected layer, and the output layer with softmax. Data augmentation
techniques were also applied to avoid network overfitting. Deep learning models were
implemented using the Matlab2018a framework, utilising NVIDIA Quadro K2200 GPU.
The highest classification accuracies of 96.8%, 97.5%, and 95.9% were achieved in the
proposed CNN model for insect dataset 1 (40 classes), insect dataset 2 (24 classes) and
insect dataset 3 (40 classes), respectively. All images were resized to 227 × 227 pixels.
Wang et al. [49] proposed a new model called CPANet that includes four convolution
layers, six max-pooling layers, three inception modules, one average pooling layer, one
fully convolution layer, and an output layer with softmax. The dataset used contains
20 classes in 4909 images. Before training, the data was enhanced by image processing
methods such as inversion, rotation, scaling, and Gaussian noise addition. The authors
used standard architectures such as VGG, InceptionV3, and ResNet50 and compared them
with the proposed model. All experiments were trained, validated, and tested using GPU
Nvidia GTX 1080Ti. Their approach achieved the best accuracy, reaching 92.6%.

The success of DL depends in part on the amount of data. Sometimes the available
data are scarce and private, or the costs associated with their acquisition or annotation are
very high. In these situations, it is common to use transfer learning [77]. Transfer learning
consists of using the knowledge learned for a task in each domain to improve the learning
of another domain in another task [46]; i.e., a network is pre-trained on a large dataset,
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such as ImageNet [78] or MS COCO [79], and then applied to the dataset that we intend to
train [77]. If the source dataset is large and complete, the learned features can be useful for
the problem we want to solve [11].

There are two ways to use a pre-trained network: (1) fixed feature extraction and
(2) fine-tuning [11]. Fixed feature extraction consists of removing the fully connected
layers; that is, the convolutional layers of the pre-trained network are froze n and a new
classifier is added. Considering the extracted resources, the classifier is trained from
scratch [80]. Fine-tuning consists of replacing and training the classifier that was added
to the pre-trained network, and tuning part of the pre-trained network kernels through
backpropagation [46]. Normally, the initial layers do not change, as they contain more
generic resources, while the later layers become more specific to our dataset, so they are
adjusted by backpropagation [77].

To recognise ten types of pests present in rice plantations, Malathi and Gopinath [52]
used fine-tuning and fixed feature extraction with several standard architectures. The
dataset consists of 3549 images (resized to 227 × 227 pixels) of 10 pests that affect rice plan-
tations. The ResNet50 fine-tuning model reached a better accuracy (of 95.0%) than the other
models. Still, for the classification of diseases and pests in rice plants, Rahman et al. [48]
were able to reach an accuracy of 97.1%. These techniques were used in the dataset with
eight different species of pests and contained 1426 images. All the images were been resized
to the default image size of each architecture before working with that architecture. Everton
Castelão Tetila et al. [46] analysed the performance of InceptionV3, Resnet50, VGG16,
VGG19, and Xception for different fine-tuning and fixed feature extraction strategies on
a dataset composed of 5000 images and 2 classes, captured under field conditions. They
trained all experiments on GPU NVIDIA GTX1070 and showed that architectures trained
with fine-tuning have higher accuracy, reaching an accuracy of 93.8% for Resnet50 fine-
tuning. Li et al. [45] presented a method to classify 10 common pest species; a fine-tuning
GoogLeNet model was proposed to deal with the complex backgrounds presented. The
approach was conducted on four Titan X 12 GB GPUs and made it possible to reach an
accuracy of 94.6%.

Pattnaik et al. [47] applied transfer learning with the different pre-trained models
for pest classification in tomato plants. The dataset was composed of 859 images cate-
gorised into 10 classes. The best performance was obtained using the DenseNet169 model
(88.8% accuracy).

Chen et al. [53] and Karar et al. [51] used YOLOv3 and Faster R-CNN, respectively,
but only for the classification. To classify T. papillosa in the orchard, Chen et al. [53] applied
YOLOv3 only as a classifier on a dataset composed of 700 images of T. papillosa. The
input image resolution was 416 × 416 pixels. Data augmentation and the parameters
were adjusted to improve the model’s learning rates. Their methodology was trained
on GPU NVIDIA RTX 2070 and reached an accuracy of 95.3%. Karar et al. [51] tested
several detectors, such as Faster R-CNN and SSD, in a dataset with 500 images (with size of
224 × 224 pixels), for classifying aphids, cicadellidae, flax budworms, flea beetles, and red
spiders. All detectors were trained, validated, and tested on GPU NVIDIA GTX1080. The
Faster R-CNN with the InceptionV2 architecture presented an overall accuracy of 99.0% for
all pests tested.

Regarding the results obtained, the approach presented by Pattnaik et al. [47] achieved
the lower accuracy, and the one presented by Karar et al. [51] revealed the most performant
(99%) accuracy. However, as the authors used different databases, direct comparisons may
be unfair. Therefore, we analysed the impact of the number of classes and the size of the
dataset on the results obtained. Comparing the best and worst results, the Karar et al. [51]
method was applied to a database with 5 classes and 500 images. The Pattnaik et al. [47]
method was used in a database with 10 classes and 859 images. In other words, the dataset
used by Pattnaik et al. [47] has a greater variability of insect species, with the highest
number of classes, which makes it more difficult to classify. These findings suggest that the
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number of classes is significant, but it can be difficult to determine the correct number of
classes, especially when the classes are not well separated and are unbalanced.

4.2. Detection of Insects with DL

The detection of insect pests is an essential task in SPM and can provide farmers with
a helpful decision-making tool [7]. Effective detection of insect pests improves the accuracy
of applied amounts of pesticide, which can have a significant economic and environmental
impact [5].

Twenty-four studies that solve the issue of detecting insect pests with DL were selected.
The selected studies were published between 2016 and 2022. About 66.7% of the research
covers the detection of insect pests in traps, and 33.3% covers the detection directly in
plants. Several different methodologies were proposed that can be divided into two groups:
(1) standard detectors; and (2) combined/adapted methodologies. Standard detectors refer
to architectures previously proposed by other authors, such as YOLO, Faster R-CNN, SSD,
and others. The combined/adapted methodologies include modified architectures, adapted
architectures, and a combination of several different methods.

4.2.1. Standard Detectors

Table 3 summarises the data collected in studies that used standard detectors.
Chen et al. [21], Wang, Q. et al. [24], Yun et al. [61], and Zhong et al. [54] showed in their ex-
periments that the YOLO, YOLOv3, and YOLOv5 architectures were the ones with the best
performances. Butera et al. [62], He et al. [25], Hong et al. [59], Nieuwenhuizen et al. [55],
and Ramalingam et al. [10] applied the Faster R-CNN architecture to different datasets
and showed that this was the one that showed the best performance. He et al. [32]
and Wang et al. [60] proposed an approach with SSD and Cascade R-CNN, respectively.
Shi et al. [57] and Sun et al. [56] proposed a methodology often used to solve the small
detection task, considering the challenges of the detection of small insects, like R-FCN and
RetinaNet, respectively. Since the focus of this study is the use of DL to detect insects, five
studies using standard detectors were selected. These studies are analysed in detail below.

He et al. [25] proposed a method for detecting the brown rice leafhopper. The algorithm
consists of two layers based on faster R-CNN. The first layer seeks to identify the target of
the image; that is, it aims to identify the plant. The second layer aims to detect the brown
planthopper tested with Faster R-CNN with the VGG16 and ZF networks, showing that
the VGG16 network showed the best results. The dataset contained 4600 images in the rice
plantation in a natural environment. The training, validation, and test were set up with
Nvidia GeForce GTX 1060 GPU. The proposed model obtained an average precision (AP) of
94.6% with an inference time per image of 0.36 s. Compared to the detection results using
only one Faster R-CNN network and the application of the two networks, the detection
with two layers showed better results. YOLOv3 was also tested and compared with their
proposal. The results showed that the overall performance of their model was better than
the YOLOv3 algorithm.

Wang, Q. et al. [24] provide a standardised dataset on traps for multiple agricultural
pest targets. This database, called Pest24, consists of 25,378 high-resolution images with 24
major pest classes specified by the Chinese Ministry of Agriculture. They applied several
state-of-the-art object detection methods, Faster R-CNN, SSD, YOLOv3, and Cascade R-
CNN. For each technique, they initially used the default settings of their hyperparameters,
and all experiments were trained on a Linux server with Nvidia Titan X (Pascal) GPU and
128 GB memory. Then, they tried different hyperparameter values for the YOLOv3 method,
which showed the best results. The k-means clustering algorithm was used to optimise
the parameter’s scaling range. The backbone of this method was Darknet-53. YOLOv3
obtained a mAP of 58.8%, proving to be the model that worked the best in detecting the
twenty-four species of insects. Given the size of the dataset and the high number of classes,
the authors considered adherence to objects, pest similarity, pest density, relative scale, and
colour discrepancy as essential factors in the detection task. The relative scale is the factor
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that exerts the most significant influence on the AP of detection, and the colour discrepancy
has the least significant impact.

Nieuwenhuizen et al. [55] presented a methodology to detect and count whiteflies,
macrolophus bugs, and nesidiocoris bugs in sticky traps. The dataset contained 1350 images
of high resolutions captured under controlled light conditions in two different greenhouses.
The Faster R-CNN method with inception Resnetv2 obtained an 87.4% mAP. The model
was trained in Nvidia 1080Ti GPU. The counting task results obtained were compared with
those obtained by traditional counting; the correlation was greater than 0.95. However,
they state that the quality of the data and annotations present in the images influenced the
classification results.

Hong et al. [59] developed algorithms that detect and count Matsucoccus thunber-
gianae from pheromone trap images. The authors collected 50 images in the laboratory.
The resolution of the images is 6000 × 4000 pixels, and the insect’s average size is only
60 × 60 pixels. The images were cropped, with two different dimensions, 12 × 8 cropping
and 6 × 4 cropping, to solve the problem of dataset dimension and of the scale of the insect
to the image. In the cropped image, the insect had a larger size relative to the image size
than in the uncropped image, so it was also possible to increase the number of images in the
dataset. To compare and verify which architecture had the best performance, they trained
a the Faster R-CNN with Resnet101, EfficientDet D4, Retinanet50, and SSD Mobilenetv2
architectures for the two chopped databases. The dataset with a 12 × 8 crop had better AP
because object size relative to image size increased. Quadro RTX-6000 GPU was used for
the training, validation, and testing. The model that obtained the best results was Faster
R-CNN, with an AP of 85.6% for an IoU of 0.5 and an inference time per image of 0.078 s.
The model that had the shortest inference time was SSD, but the detection results were not
as good as those obtained by Faster R-CNN.

Shi et al. [57] proposed an architecture based on the R-FCN method to detect eight
species of insects that may be present in stored grains. The dataset used is constituted
by dataset1 and dataset2; dataset1 was raised in a laboratory environment (in traps) and
had 1716 images, and dataset 2 has 784 images and was created to simulate the actual
situation (in grains). The authors proposed R-FCN, an architecture like Faster R-CNN.
There is only the replacement of the fully connected layers after RoI pooling, with a set
of position-sensitive score maps to perform average voting. The backbone of this method
was DenseNet. It used training techniques on various scales and applied the soft-NMS
algorithm [81]. Faster R-CNN and YOLO were applied to compare results with their
proposed method to compare results with their proposed approach. All experiments were
done on two NVIDIA TITAN XP GPUs. The model with the bests results was their proposed
one based on R-FCN, with which they obtained an mAP of 83.4% and an inference time of
0.124 s.

4.2.2. Combined/Adapted Methodologies

Table 4 summarises the data collected in each study that used combined or adapted
methodologies. Li, W. et al. [71], Liu et al. [69] and Tang et al. [72] proposed some modifi-
cations to the original architectures, the first and second authors proposing modiciations
to Faster R-CNN and the third author proposing modifications to YOLOv4. Liu et al. [64]
proposed a new approach called PestNet inspired by Faster R-CNN. R. Li et al. [67] and
Li, W. et al. [66] developed an approach with CNN and Region Proposal Network (RPN),
the first author used a multi-scale model, training the images with different resolutions.
Wang et al. [70] applied RPN with balanced sampling, the objective was to extract more
detailed characteristics of the small insects. Rustia et al. [6] used YOLOv3 to spot all
insects present in the image and then applied successive CNN classifiers to filter the insects
detected initially. Ding and Taylor [63] ran through all the images with a sliding window
and classified the insects found in each position. Martins et al. [65] and Tetila et al. [68]
performed the segmentation of all insects in traps, and then in each segmented location,
proceeded to classify the insect with CNN.
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We selected three surveys that used modified architectures, adapted architectures, and
a combination of different methods from the selected studies and made a more detailed
analysis of each.

Liu et al. [64] developed a new method called PestNet. This consists of three main
parts. The first stage consists of a CNN with channel-spatial attention; the objective is to
extract and enhance image resources. The second stage comprises an RPN to provide the
region proposals considering the resources extracted in the first stage. In the third step, the
fully connected layers are replaced by the position-sensitive score map for classification and
bounding-box regression. The dataset used consists of 88,670 images in traps of 16 different
species. The authors experimented with the proposed methodology with different CNN
architectures, such as VGG, ResNet50 and ResNet101. They compared it with other state-of-
the-art methods such as Faster R-CNN and SSD. Their experiments are trained on a GeForce
GTX TITAN X GPU and obtained better results with the ResNet101 backbone with a mAP
of 75.5% and an inference time of 0.441 s, which surpasses the last generation methods.

To detect two species of the fruit fly, Martins et al. [65] proposed a method in which
they initially applied a two-step segmentation method to segment areas with insects, species
under study, or others. Generated bounding boxes for each segmented region; trained
several CNNs to identify the one that obtained the greatest precision and proceeded to
identify and classify each bounding box. The dataset used contained 662 sticky trap images;
it got 22,479 bounding boxes after the initial segmentation. The network that obtained the
best results for the insect classification task was the ResNet18, with a mAP of 92.4% and an
inference time per image of 0.145 s utilizing a Nvidia Tesla T4 GPU.

W. Li et al. [71] developed a method based on Faster R-CNN, called ‘TPest-RCNN’, to
automatically detect whitefly and thrips on the sticky trap in greenhouse conditions. The
dataset contained 1400 images. The algorithm proposed has two significant differences
from Faster R-CNN, the improved anchor size, and the RoIPooling design which was
adjusted to focus on small objects and thus was able to obtain exact locations. The backbone
network used is the VGG16. The anchor size present by the R-CNN is larger than the insect
dimensions, so they adapted the anchor dimensions to the insect dimensions to solve this
problem. RoIPooling has been replaced by a method the authors call RoIAlign, inspired by
the Mask R-CNN architecture. RoIPooling can produce a deviation between the final and
initial position of the bounding box, which may represent the wrong detection. To solve
this, RoIAlign divides the proposed region into 4 × 4 pool sections. Four sampling areas are
defined for each section, the centre point of each sampling area representing the sampling
location. The pixel values of these points were calculated using the bilinear interpolation
method. Finally, max pooling is applied for each compartment. The methodology applied
by the authors was trained on NVIDIA Tesla K80 and obtained a mAP of 95.2%. The
proposed model surpassed the Faster R-CNN architecture.

Regarding the results obtained, ten surveys had above 90.0%, seven had above 80.0%,
and below 90.0%, six had results above 70.0%, and below 80.0%, only one study obtained
results less than 70.0%. Li, W. et al. [71] was the study that had the best result with 95.2%
and the study Wang, Q. et al. [24] was the one that obtained the lowest result with 58.8%.
Analysing the impact of the number of classes and the size of the dataset; First, it is possible
to verify that the increase in the number of classes is proportional to the mAP obtained. The
example is the method of Li, W. et al. [71] that got 95.2% and used a dataset with 2 classes
and the method Wang, Q. et al. [24] got 58.8% with a dataset that contained 24 classes. It’s
worth noting that the dataset used in [24] was unbalanced and had high similarity between
species, posing challenges for DL algorithms to learn from such data.

4.2.3. Challenges and Recommendations in Insect Detection

Despite much research being developed to detect insect pests using DL, some chal-
lenges remain unsolved and affect the results obtained. We can divide the challenges into
two significant groups, (1) datasets; and (2) methods of insect detection.
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1. Datasets

Insects are the most biodiverse group of animals [82]. They can present some chal-
lenges related to your physical characteristics, such as size, the similarity between species,
the different positions that can have in images and the different morphological character-
istics of the same insect. As we know, insects are living beings of reduced dimensions.
An image can have a high resolution, being represented by a large set of pixels, or it can
be represented by a set of smaller pixels, having a lower resolution. Wang, Q. et al. [24]
show that the relative scale, that is, the size of the insects in proportion to the image, is
the factor that exerts the most significant influence on the detection task. As shown in
Figure 4, the trap includes dozens of insects that are represented with little pixels. So,
regular replacement of traps and increase of resolution of the image is encouraged.
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resolution of 6000 × 4000 pixels, and the size of the ground truth bounding box of M. thunbergianae
was 60 × 60 pixels on average. Images adapted from [59].

Given the incredible biodiversity of insects, there are very similar species; and at
the time of image capture, insects of the same species may be in different positions and
throughout different life stages that may have different morphological characteristics.
These characteristics can generate significant challenges in the task of insect detection.
For example, in Figure 5, the similarity between the three species, Armyworm, Bollworm
and Yellow tiger, are three different species with identical morphological characteristics.
Additionally, two examples of different positions of the same insect in the same image can
be observed. Additionally, examples of the same grape moth in different lighting conditions
could be confused with another insect.

Some images collected in the field associated with SPM systems may present some
challenges related to the background, lighting, and the appearance of shadows [66,83].
This challenge can be solved by carefully choosing the hour when an image is captured,
choosing strategic points for the placement of SPM devices, and avoiding areas with
trees and shadows. The dataset can be based on plants or traps. In plants, detection or
classification can be more difficult because, in traps, the background is uniform, and in
plants, the background contains different aspects that can interfere with the performance of
the model. Another characteristic of these systems is the acquisition of very similar images
since the collection of the image is continuous.
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In order to achieve human-level results, DL methodologies require large datasets for
training models [4]. However, there is a shortage of public databases that are diverse,
labelled, and of sufficient size for insect classification. Furthermore, the class distribution
of insects is often unbalanced [32]. To address this challenge, it is important to encourage
the collection and publication of images, as well as the development of semi-supervised
methodologies [84]. Semi-supervised learning is particularly useful when all data cannot
be labelled, as an effective semi-supervised model can outperform a supervised model [85].

The composition of datasets in certain ecosystems is often unbalanced due to an un-
even distribution of insects, with some classes having a lack of data and others having a
greater amount of data [86]. This can negatively affect the learning of classification and
detection models, as the samples with greater representation may lead to the model being
biased towards the majority class within the ecosystem, resulting in poor generalisation [87].
This issue of unbalanced datasets, which is commonly encountered in real-world applica-
tions, can have a significant impact on the performance of deep learning algorithms for
classification and detection [87]. The conventional methods typically used for learning
these models are not well-suited to imbalanced datasets, and as a result, existing classifiers
tend to exhibit bias towards the majority class due to the unequal class distribution [86].
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The use of synthetic data in the classes with the smallest number of images or the imple-
mentation of focal loss in the models can be very useful in solving this challenge but the
effectiveness of these methods has not yet been thoroughly studied [88,89].

2. Methods of insect detection

Insect detection is a challenging task in computer vision and raises many challenges.
Small objects occupy areas less than or equal to 32 × 32 pixels. While many methods used
for detection give good results for medium and large objects, their performance is not so
good when used to detect small objects [90].

High-resolution images are often resized so that objects of smaller pixel representations
end up losing useful information to reduce the computational cost. Most of the algorithms
used in the object detection task are based on CNNs. After the convolutional layers,
clustering layers are applied to reduce the sampling of feature maps, thus reducing the
dimensions of the image and the feature map. Due to this feature of CNN, and as small
objects are represented by a few pixels, their features extracted in the initial layers are
eliminated [90].

Li et al. [71] proposed the replacement of RoIPooling with RoIAlign. Part of the pixels
can be removed through pooling, causing incorrect detections or even the non-detection
of insects. This method showed promising results, with an mAP of 95.2%. The study in
this research obtained the best results in the detection task. The Faster R-CNN architecture
proposed by Ren et al. [40] has a predefined anchor that becomes too large for insect
detection, affecting detection results. Thus, several authors proposed anchor optimisation;
that is, they adjusted the dimensions of the anchor to the size of the insect to be detected.
To solve the problem of insect size, Hong et al. [59] cut the images into two different
sizes, 12 × 8 and 6 × 4, and this methodology achieved an mAP of 85.63% with Faster
R-CNN. This methodology proved to be significantly better than Faster R-CNN without
image cropping. A more extensive set of pixels represents the insect in the cropped image,
facilitating the detection task.

There is an increased need to deal with scale problems in the task of detecting small
objects. One way to address this challenge is to scale input images to many different scales
and use multiple detectors for each different scale. Tong et al. [90] have identified seven
methodologies that address this challenge: image pyramids in resources, a single resource
map, a pyramidal resource hierarchy, integrated resources, a resource pyramid network,
resource merging and resource pyramid generation, and a multi-scale merging module.
As is known, DL methodologies perform better on large datasets. The same applies to
small objects, which can also be improved by increasing the number of samples. Data
augmentation is intended to produce additional data, through transformations, including
inverting, cropping, rotation, scaling, and other techniques. The context in which the
object is detected can play an important role in the performance of the methodologies.
CNNs learn hierarchical representational contextual information; however, in the detection
of smaller objects, there is still the possibility of enhancing the contextual information
based on learning [90]. There are three different context-based methods, the local context,
the global context, and the context interactives, and examples of architecture include
CoupleNet [91], R-FCN++ [92], and Context-SVM [93], respectively. The methodologies
used learn contextual information that can help or impact performance. The Generative
Adversarial Networks (GAN) [94] model is constituted by a generating network and a
discriminator. The generator learns the characteristics of the true data and generates a
new sample. The discriminator compares the generated data with the real one. GANs
can benefit the detection of small objects, as the generator improves the samples of small
objects by increasing resolution, and the discriminator competes with the generator.

Some authors have already proposed methods that can contribute to the detection of
small objects considering these crucial aspects. Shi et al. [57] proposed an architecture based
on R-FCN, a multi-scale feature learning architecture. Tang et al. [72] used various data
augmentation methods to increase the diversity of training samples; the resource extraction
network obtains resource maps of different scales, and the feature fusion network performs
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feature fusion based on multi-scale feature maps. Wang et al. [70] developed an adaptive
approach to learning features from different levels of the feature pyramid.

5. Discussion

Insects pose challenges in classification and detection. As we have seen, these tasks
are essential in the SPM, so there is a great interest on the part of the scientific community
in developing this challenge. This review analysed several methods for detecting and
classifying insects using DL techniques. In general, the researched methods can be divided
into two significant types of approaches: (1) standard and (2) adaptable. We consider
standard approaches that implement methodologies proposed by other authors, such as
the VGG, ResNet, AlexNet, Inception, and GoogLeNet architectures, and such as Faster
R-CNN and YOLO detectors. Several studies have opted for adaptable approaches. It was
possible to verify that there has been a growing trend, since 2019, of the development of
new methodologies adapted to small objects, with a focus on insects.

The methods that present better performance in classification are the Faster R-CNN
detector as a classifier with an accuracy of 99.0%, and the ResNet101 and the ResNet34
architectures with 98.7% and 97.8% accuracy, respectively. However, as the studies use
different databases, it became difficult to determine the method with the best performance,
so we calculated the average number of images per class. We analysed the impact of the
number of classes, the size of the dataset, and the average number of images per class on
the accuracy obtained by all the classification studies. Of the analysed variables, the one
that showed the greatest influence on the results was the size of the dataset, although only
4.3% of the variability in the results was explained by the number of images in the dataset.
The scatter plot indicates a negative relationship between the two variables with a 0.207
correlation value between the variables. Thus, we can verify that, in the analysed studies of
classification, there is no significant relationship between the number of classes, the size of
the dataset, and the average number of images per class in the results obtained.

In the detection, the methodologies are distributed; 54% use standard detectors in
detection, and the remaining 46% apply combined/adapted methodologies. The methods
that show the best detection performance are the modified Faster R-CNN, YOLOv5, and
Faster R-CNN architectures, with mAP values of 95.20%, 94.70%, and 94.64%, respectively.
The authors of the modified Faster R-CNN architecture proposed several modifications
to the Faster R-CNN standard, such as replacing RoIPooling with RoIAlign and applying
anchor optimisation. YOLOv5 is a recent architecture that has shown good results, which
can be explained using a path aggregation network with a pyramid resource network,
which improves the propagation of low-level features in the model and increases the
accuracy of object location, even for small objects. We analysed the impact of the number
of classes, the size of the dataset, and the average number of images per class on the results
obtained by all the detection studies. Analysing all the variables individually, we can
conclude that 63.8% of the variability of the results can be explained by the number of
classes, where the scatterplot indicates a strong negative relationship between the two
variables having a correlation value between variables of 0.799. Another variable that
has a significant effect is the size of the dataset, with an impact of 21.1% of variability in
mAP. The scatterplot indicates a negative relationship between the two variables, with
a correlation value of 0.460. The remaining average number of images per class showed
that it does not influence the result; i.e., the result is independent of them. This is because
we must consider that the classes of the datasets are not balanced and that datasets with
more classes tend to have a lower result since the classes are of very similar species, which
generates confusion in the learning of the models, thus obtaining inferior results.

There are two main challenges and recommendations in insect detection using DL. First,
dataset characteristics influence the performance of DL methods. Additionally, the attributes
of DL methods can be adapted or improved to solve the task with better performance.

Challenge 1—dataset images:

• Insects are frequently poorly visible in datasets images.
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There are many different insects, so it is necessary to represent them in the images
to differentiate them accurately. A careful setup will improve data acquisition and pre-
processing stages, ensuring adequate image resolution to represent insect characteristics.
Attention should be given to the number of insets in the image; e.g., traps with overlayer
insects will result in complex insect recognition.

• Images captured in the field using SPM systems.

Creating datasets that comprise field-captured images using SPM systems can prove
to be a daunting undertaking due to various factors, such as the presence of shadows,
background interference, and lighting inconsistencies. To overcome these obstacles, a range
of strategies can be implemented, including careful selection of the best time of day for
image capture, the strategic placement of SPM devices, and avoiding shadowy and treed
areas. Several pre-processing techniques can also be employed to tackle these challenges,
including shadow- or glare-free image reconstruction and the creation of an illumination
invariant shadow-free image for shadow edge detection. Alternatively, simpler image
processing algorithms like morphological reconstruction can also be utilised. Additionally,
datasets can be based on plants or traps, each of which poses unique challenges. In
particular, detecting and classifying plants can be more complex due to diverse background
aspects that can impact the model’s effectiveness.

• Insect classes are unbalanced in datasets images.

DL algorithms have issues learning from unbalanced datasets, significantly impacting
the performance of methods of insect classification and detection. Data augmentation,
where synthetic data can be used to make the dataset more balanced, and the implementa-
tion of focal loss in model training, are suggestions to help model performance and can be
very useful to solve this challenge.

• Complete annotated insect datasets.

Annotation costs are frequently unbearable, preventing the annotation of the entire
dataset and limiting the success of supervised DL algorithms. Using semi-supervised and
domain-knowledge algorithms is recommended. Semi-supervised detection can effectively
leverage unlabelled data to improve model performance.

Challenge 2—methodologies:
Small insects are represented by few pixels, so they lack information about their

appearance necessary to distinguish the background or differentiate them from other
classes. Furthermore, the DL algorithms developed for object detection are limited because
most were developed for the detection of medium and large objects.

Recommendations:

• Multi-scale resource learning.

Resizing the input images to different scales and thus enabling learning at different
scales. For this, the use of methodologies with image pyramids in resources, a single
resource map, a pyramidal resource hierarchy, integrated resources, a resource pyramid
network, resource merging and resource pyramid generation, and a multi-scale merging
module is recommended.

• Context-based detection

Object context can play an important role in the performance of methodologies. The
context in which the object is detected can help improve object detection performance,
especially for detecting small objects.

• GAN based detection

The use of GAN can improve the performance of insect detection because, during
training, the discriminator generates the bounding boxes and is made of classification,
which is backpropagated to the generator, thus improving detection precision.
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Over a period of time, insect traps can get excessively crowded with insects, which can
have an adverse effect on the quality of the collected data. To maintain the integrity of the
study and ensure that the data remains relevant and reliable, it is crucial to replace these
traps. Although deep learning detection methods can be used to detect insects, they are
limited when it comes to insect overlay. Therefore, substitution is particularly important
when using traps to monitor insect populations or study insect behaviour. However, the
process of replacing traps can be time-consuming and labour-intensive, which presents
a challenge. To address this issue, a possible solution would be to automatically replace
the trap once it reaches its maximum capacity of insects. This would eliminate the need
for manual labour and ensure that the data collected is of high quality and accuracy. This
approach can be achieved by integrating sensors or image recognition technology into the
trap, which can detect the number of insects in the trap and signal the need for replacement.
The information collected by the sensor or image recognition system can be sent to a central
control unit or a cloud-based system, which can then trigger the replacement of the trap by
deploying a new one. This approach can be especially useful for large-scale monitoring
programs and precision agriculture, where a large number of traps are deployed in multiple
locations. By implementing an automated trap replacement system, the overall efficiency
of the monitoring process can be improved, and the accuracy of the data can be maintained,
resulting in better decision-making and increased productivity. This will undoubtedly be
one of the main challenges from the industry’s point of view, and can be overcome by the
collaboration between research groups and farmers.

6. Conclusions

Several DL applications have emerged for insect classification and detection in re-
cent years, and several methodologies have been developed to improve these tasks’ re-
sults. This article carried out a systematic review on automatic insect detection using
DL, where thirty-six articles were analysed considering the inclusion criteria to answer
three research questions:

• (RQ1) What are the methods that obtain better mAP for the task of insect detection?

The method that obtained the best result for detection was the modified Faster R-CNN
architecture, where the replacement of RoIPooling with RoIAlign was proposed. However,
YOLOv5 also showed high performance, and its use is recommended.

• (RQ2) What dataset variables have the most significant influence on detection?

The number of classes in the dataset is the factor that most strongly influences insect
detection methods. Datasets with many classes tend to negatively influence the result since
there is usually a lot of similarity between classes, and the number of images per class
is unbalanced.

• (RQ3) What are the main challenges of and recommendations for automatically detect-
ing insects?

Two key open challenges were identified that were related to automatic insect detec-
tion using DL: those associated with datasets images and methodologies. For the challenges
associated with dataset images, we recommend improving data acquisition, data augmen-
tation, focal loss, and semi-supervised and domain-knowledge algorithms, while for the
methodologies, we recommend multi-scale resource learning, context-based detection, and
GAN-based detection.

Incorporating advanced insect detection methods is a game-changer in the agriculture
industry, and enables the vast improvement of the efficiency, quality, and sustainability
of production. By leveraging these technologies, farmers can benefit from early insect
detection and swift intervention, significantly reducing crop losses and optimising output.
In addition to boosting productivity, these advancements can also minimise the need for
harmful chemicals, decreasing chemical contamination and promoting a healthier and
more sustainable farming environment.
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The benefits of implementing precise insect detection methods extend beyond crop
health and productivity. As farmers utilise these technologies to target specific areas of
infestation, the use of pesticides and other harmful chemicals that have detrimental impacts
on the environment and human health can be reduced. This, in turn, will lead to a more
sustainable and eco-friendly agricultural industry, ensuring a better future for both the
industry and the planet.

In conclusion, the use of advanced insect detection methods is a vital aspect of modern
agriculture, with the potential to revolutionise the industry. By improving crop health,
productivity, and environmental sustainability, these advancements can ensure a more
profitable, efficient, and eco-friendly future for the agricultural industry.
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