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Abstract: Timely and accurate monitoring of fractional vegetation cover (FVC), leaf chlorophyll
content (LCC), and maturity of breeding material are essential for breeding companies. This study
aimed to estimate LCC and FVC on the basis of remote sensing and to monitor maturity on the basis
of LCC and FVC distribution. We collected UAV-RGB images at key growth stages of soybean, namely,
the podding (P1), early bulge (P2), peak bulge (P3), and maturity (P4) stages. Firstly, based on the
above multi-period data, four regression techniques, namely, partial least squares regression (PLSR),
multiple stepwise regression (MSR), random forest regression (RF), and Gaussian process regression
(GPR), were used to estimate the LCC and FVC, respectively, and plot the images in combination with
vegetation index (VI). Secondly, the LCC images of P3 (non-maturity) were used to detect LCC and
FVC anomalies in soybean materials. The method was used to obtain the threshold values for soybean
maturity monitoring. Additionally, the mature and immature regions of soybean were monitored at
P4 (mature stage) by using the thresholds of P3-LCC. The LCC and FVC anomaly detection method
for soybean material presents the image pixels as a histogram and gradually removes the anomalous
values from the tails until the distribution approaches a normal distribution. Finally, the P4 mature
region (obtained from the previous step) is extracted, and soybean harvest monitoring is carried
out in this region using the LCC and FVC anomaly detection method for soybean material based
on the P4-FVC image. Among the four regression models, GPR performed best at estimating LCC
(R2: 0.84, RMSE: 3.99) and FVC (R2: 0.96, RMSE: 0.08). This process provides a reference for the
FVC and LCC estimation of soybean at multiple growth stages; the P3-LCC images in combination
with the LCC and FVC anomaly detection methods for soybean material were able to effectively
monitor soybean maturation regions (overall accuracy of 0.988, mature accuracy of 0.951, immature
accuracy of 0.987). In addition, the LCC thresholds obtained by P3 were also applied to P4 for soybean
maturity monitoring (overall accuracy of 0.984, mature accuracy of 0.995, immature accuracy of 0.955);
the LCC and FVC anomaly detection method for soybean material enabled accurate monitoring of
soybean harvesting areas (overall accuracy of 0.981, mature accuracy of 0.987, harvested accuracy
of 0.972). This study provides a new approach and technique for monitoring soybean maturity in
breeding fields.

Keywords: UAV; chlorophyll; fractional vegetation cover; maturity monitoring; anomaly detection

1. Introduction

Soybean, the world’s most important source of plant protein, plays a vital role in global
food security [1]. Physiological parameters of soybean such as leaf chlorophyll content
(LCC), vegetative cover (FVC), and yield are closely linked [2,3]. In addition, soybean
maturity is a crucial indicator for harvesting, and harvesting too early or too late can also
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impact yield [4]. Therefore, it is essential to quickly and accurately estimate soybean FVC
and LCC information and monitor soybean maturity.

Crop maturity is a significant factor affecting crop seed yield and is an essential
indicator for agricultural decision makers in judging suitable varieties [5]. LCC is a crucial
driver of photosynthesis in green plants. Its content is closely related to the photosynthetic
capacity, growth and development, and nutrient status of vegetation [3,6–9]. FVC is the
percentage of vegetation in the study area, and can visually reflect the growth status of
surface vegetation [10,11]. As the crop matures, crop LCC gradually decreases due to
degradation, and leaves turn yellow and begin to fall off (FVC decline). The change in crop
LCC and FVC can be used to characterize the degree of maturity. Therefore, the crop’s
maturity can be quantified using LCC and FVC.

Traditional manual methods of measuring LCC and FVC are inefficient, costly, destruc-
tive [12,13], and challenging with which to achieve accurate estimation of LCC and FVC
over large areas. On the other hand, traditional manual discrimination of crop maturity
relies on its color and hardness. This process is time consuming and subject to human
bias [14]. Previous studies have shown that crop LCC, FVC, and maturity can be estimated
and monitored using remote sensing technology [15–21]. Remote sensing technology pro-
vides methods for crop monitoring on a large scale, especially satellite remote sensing [22].
However, satellite remote sensing images’ low resolution and long revisit time make them
unsuitable for accurately monitoring crops [23,24]. UAVs have received increasing attention
due to their ability to cover a large area in a short time while simultaneously performing
tasks at high frequency [25,26]. Additionally, UAVs are able to minimize measurement
errors caused by environmental factors [27,28].

In recent decades, many studies have been performed to estimate soybean LCC and
FVC on the basis of remote sensing techniques such as UAVs. The methods for estimating
LCC and FVC are as follows: (1) Physical modeling. This is based on the physical principles
of radiative transfer to establish a physical model such as PROSAIL [29,30]. However, the
various parameters in the physical model are usually not easily accessible, which limits the
practical application of the estimated crop parameters [31]. (2) Empirical methods. These
use parameters based on spectral reflectance, and the vegetation index (VI) acts on the
regression model. The emergence of machine learning (ML) provides superior regression
models such as GPR [32], RF [33], and ANN [34] to perform fast and accurate estimation of
crop parameters. (3) Hybrid methods. Hybrid models combine the first two techniques.
For example, Xu et al. [35] coupled the PROSAIL model and the Bayesian network model
to infer rice LCC. Although the hybrid method is able to improve the estimation accuracy,
the instability of the hybrid method is a critical problem, which requires the balance of
the interface between the inversion algorithm and the physical model to be addressed.
However, this can substantially increase the complexity of the work. Research work on
crop maturity monitoring and identification has also continued. These methods include
colorimetric methods [36], fluorescence labeling methods [37], nuclear magnetic resonance
imaging [38], electronic nose [39], and spectral device imaging [40]. Early spectral imaging
is widely used for crop maturity identification. For example, Khodabakhshian et al. [41]
created a maturity monitoring model for pears based on a hyperspectral imaging system in
the chamber. However, early spectral imaging devices are similar to colorimetry, among
other things, and are limited in their use, mainly being restricted to the laboratory. The
subsequent advent of UAVs has made it possible to accurately monitor crop maturity at
the regional scale in the field. The methods of crop maturity monitoring by UAV include
(1) those based on spectral indices and machine learning models, (2) those based on image
processing with deep learning (DL), and (3) those based on transfer learning. The former
mainly select the spectral indices related to maturity combined with machine learning
models to achieve maturity monitoring. Volpato et al. [42] input the greenness index (GLI)
into a nonparametric local polynomial model (LOESS) and a segmented linear model (SEG)
to monitor soybean maturity on the basis of RGB images acquired by UAV. In addition,
Makanza et al. [43] found a senescence index for maturity identification. Other machine
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learning models used in this context include the partial least squares regression model
(PLSR) [4] and the generalized summation model (GAM) [44]. Although these spectral
indices and machine learning models are simple and fast, they are unstable, and each crop’s
characteristic spectral indices differ. With respect to deep learning, Zhou et al. [45] used
YOLOv3 for strawberry maturity recognition, achieving a maximum classification average
accuracy of 0.93 for fully mature strawberries. In addition, deep learning for maturity
monitoring also includes BPNN [14] and VGG16 [46]. Compared with machine learning,
deep-learning-based monitoring of crop maturity can obtain higher accuracy. However, its
superior performance requires a large amount of sample image data to support it, which
increases the challenge of field data collection. Migration learning makes it possible to use
the original pre-trained model in other related studies. For example, Mahmood et al. [47]
performed migration learning using two deep learning pre-training processes, which was
eventually able to classify dates into three maturity levels (immature, mature, and overripe).
However, the migration of the pre-trained model is based on the premise that the target
domain needs to be highly relevant to it, which places a higher demand on the generality of
the data used to train the model. Although deep learning and transfer learning bring a new
aspect to crop maturity monitoring. However, their features originate from the original
images and ignore the potential of images of crop physiological parameters (e.g., LCC,
FVC). During crop maturation, LCC and FVC change accordingly. Especially in breeding
fields, early maturing lines lead to significant variations in overall FVC and LCC. These
early maturing lines are out of the population distribution and become outliers. Therefore,
crop maturity can be monitored based on the changes in the pixel distribution of crop FVC
and LCC images.

The objective of this study was to perform soybean maturity monitoring using FVC
and LCC. FVC and LCC were quickly estimated using spectral indices combined with
regression models. Soybean field data were obtained from RGB images of four periods
taken by UAV. The following objectives were identified, to be achieved using these data:
(1) to estimate FVC and LCC from image data and multiple regression models, and to
map them using the best model, and (2) to propose a new method for soybean maturity
monitoring by detecting soybean LCC and FVC anomalies.

2. Study Area and Data
2.1. Study Area

The study site is located in Jiaxiang County, Jining City, Shandong Province, China
(Figure 1a,b). Jiaxiang County is located at longitude 116◦22′10′′–116◦22′20′′ E and latitude
35◦25′50′′–35◦26′10′′ N. It has a continental climate in the warm-temperate monsoon region,
with an average annual temperature of 13.9 ◦C, an average daily minimum temperature
of −4 ◦C, and an average daily maximum temperature of 32 ◦C. The average elevation is
35–39 m, and the annual rainfall is about 701.8 mm. The trial site is a soybean breeding
field (Figure 1c), planted at a density of 195,000 plants ha−1 with 15 cm row spacing, and
532 soybean lines were grown.

2.2. Ground Data Acquisition

Ground data collection included four stages: pod set on 13 August 2015 (P1), early
bulge on 31 August 2015 (P2), peak bulge on 17 September 2015 (P3), and maturity on
28 September 2015 (P4). Forty-two sets of data were measured for each period. Twenty-
three data points were collected at P4, the harvest period when some of the early maturing
soybeans had already been harvested. During the data processing, we removed four
abnormal data. In addition, to reduce soil background’s influence on LCC and FVC
mapping, we added eight soil points. Finally, a total of 153 sampling points were retained
for this experiment.
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2.2.1. Soybean LCC Data

Soybean canopy chlorophyll content (LCC) was obtained using measurements from
portable Dualex scientific sensors (Dualex 4; Force-A; Orsay, France). The operation was
repeated five times in the center of each soybean plot, and the mean value was taken. The
results of the analysis of the soybean canopy chlorophyll data set are presented in Table 1.

Table 1. Results of soybean LCC field measurements (Dualex units).

Data (2015) Stage n Min Max

8.13 P1 41 20.99 28.92
8.31 P2 42 29.27 42.37
9.17 P3 41 6.52 38.28
9.28 P4 21 8.81 36.05

- P1–P4 149 6.52 42.37
n, min, and max represent the number of soybean plots measured and the minimum and maximum values of
LCC, respectively. Note: In this study, LCC was obtained with Dualex 4 device measurements, and by convention,
we replaced Dualex units.

2.2.2. Soybean FVC Data

In this experiment, soybean LAI was measured with the LAI-2200C Plant Canopy
Analyzer (Li-Cor Biosciences, Lincoln, NE, USA). Finally, the LAI was converted to FVC
using PROSAIL [48,49]. The conversion equation is shown as Equation (1). Table 2 shows
the results of the analysis of the FVC dataset in soybean fields. G is the leaf-projection factor
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for a spherical orientation of the foliage, Ω is the clumping index, LAI is the leaf area index,
and θ is the viewing zenith angle (in this experiment, G = 0.5, θ = 0, Ω = 1).

FVC = 1− e−G×Ω× LAI
cos (θ) (1)

Table 2. Results of soybean FVC field measurements.

Data (2015) Stage n Min Max

8.13 P1 41 0.76 0.99
8.31 P2 42 0.68 0.99
9.17 P3 41 0.41 0.96
9.28 P4 21 0.64 0.96

- P1–P4 145 0.41 0.99

2.2.3. Soybean Maturity Survey

This work used visual interpretation of RGB images from drones to obtain soybean
maturity information, and the specific criteria are shown in Table 3.

Table 3. Criteria for determining the maturity of soybean plots.

Category Description

Harvested The soybean planting area has been harvested (Figure 2b).
Mature More than half of the upper tree crown and leaves are yellow (Figure 2c).

Immature More than half of the upper tree crown and leaves are green (Figure 2d).
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2.3. UAV RGB Image Acquisition and Processing

In this work, the sensor platform used was an eight-rotor aerial photography vehicle,
DJI 000 UAV (Shenzhen DJI Technology Co., Ltd., Guangdong, China), equipped with a
Sony DSC-QX100 [50] high-definition digital camera for RGB image acquisition functions.
In addition, a Trimble GeoXT6000 GPS receiver was used to determine the test field ground
control point (GCP).

The soybean field UAV RGB images were acquired from 11:00 a.m. to 2:00 p.m. The
UAV required three radiation calibrations and flight parameter settings before takeoff. The
altitude was set to approximately 50 m (calculating a spatial resolution of approximately
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1.17 cm on the ground). The RGB images were obtained and stitched together using AgiSoft
Photoscan (AgiSoft LLC, St. Petersburg, Russia) to produce RGB digital orthophoto maps
(DOMS). ArcGIS and ENVI handled DOMS.

3. Method
3.1. Soy-Based Material LCC and FVC Anomaly Detection

The grayscale histograms of LCC and FVC ground measurements during P2, P3,
and P4 are shown in Figure 3. Because both the LCC and FVC values of soybean crops
are significantly lower at maturity. Additionally, both deviated from the original normal
distribution. Therefore, it is possible to evaluate mature and immature soybean samples by
analyzing the distribution of soybean LCC and FVC gray histogram.
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Figure 3. Histograms of the measured LCC and FVC statistics for P2 and P3: (a) P2-LCC; (b) P3-LCC;
(c) P4-LCC; (d) P2-FVC; (e) P3-FVC; (f) P4-FVC. Note: The P4 partially mature soybeans had been
harvested, so the amount of ground data was different from that in the cases of P2 and P3.

This was undertaken as follows: (1) The soybean LCC image pixels were read and
presented as a frequency histogram (Figure 4a). (2) Groups that deviate from the normal dis-
tribution are distributed in the tails of the histogram. Removing the tail values normalizes
the histogram. Next, the absolute values of the kurtosis and the histogram skewness are
combined. The combination is used as a criterion to assess normality. Repeated iterations
remove the tails. When the combination reaches a minimum value, the histogram is con-
sidered to have reached the most normal distribution (Figure 4b). (3) The expected target
soybean region is obtained by extracting the threshold value corresponding to the most
normal distribution. The region below the threshold value in the P3-LCC mapping is the
mature soybean region (Figure 4c). In practice, since different soybean maturity categories
exist at different times, the soybean category corresponding to the histogram threshold
needs to be determined on a case-by-case basis. The above procedure was implemented in
the Python 3.8 environment.
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3.2. FVC and LCC Remote Sensing Estimation
3.2.1. Color Index

Vegetation indices (VIs) provide a simple and effective measurement of crop growth.
They are widely used to estimate FVC and LCC. On the basis of previous relevant studies,
we selected 20 color-based VIs, the details of which are presented in Table 4.

Table 4. Vegetation index details.

Vegetation Index Formula Reference

DN value of Red Channel (R) R [51]
DN value of Green Channel (G) G [51]
DN value of Blue Channel (B) B [51]

Normalized Redness Intensity (r) R/(R + G + B) [52]
Normalized Greenness Intensity (g) G/(R + G + B) [52]
Normalized Blueness Intensity (b) B/(R + G + B) [52]

Red–Blue Ratio Index (RBRI) R/B [53]
Green–Blue Ratio Index (GBRI) G/B [53]
Green–Red Ratio Index (GRRI) G/R [54]
Blue–Red Ratio Index (BRRI) B/R [54]

Blue–Green Ratio Index (BGRI) B/G [54]
Normalized Red–Blue Difference Index (NRBDI) (R − B)/(R + B) [55]

Normalized Green–Red Difference Index (NGRDI) (G − R)/(G + R) [55]
Normalized Green–Blue Difference Index (NGBDI) (G − B)/(G + B) [55]

Excess Red Index (EXR) 1.4R − G [56]
Excess Green Index minus Excess Red Index (EXG-EXR) 2G − R − B − (1.4R − G) [57]

Visible Atmospherically Resistant Index Normalized blueness (VARI) (G − R)/(G + R − B) [58]
R + G R + G [59]

(G + B − R)/2B (G + B − R)/2B [54]
(R − G)/(R + G + B) (R − G)/(R + G + B) [54]

Note: R, G, and B in the formula in the table represent their corresponding DN values, respectively.

3.2.2. Regression Model

Partial least squares (PLS) is able to provide a more stable estimate than least squares,
and the standard deviation of the regression coefficients is smaller than that estimated
by least squares [60]. For example, suppose there are two matrices, X (VIs) and Y (LCC
or FVC). Usually, X and Y are normalized to find the projection of VI on the principal
components and maximize the covariance of p1 and q1, see Equations (2) and (3), and
solve the objective function to establish the regression equation. p1 is the first principal
component of X, and q1 is the first principal component of Y.

u1 = Xp1, v1 = Xp2 (2)

Cov(u1, v1) =
√

Var(u1)Var(v1)Corr(u1, v1)→ Max (3)
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Soybean FVC and LCC are often associated with multiple VIs. This also means
that a dependent variable Y, corresponding to multiple independent variables X, often
accompanies such studies. The principle of stepwise multivariate analysis is to analyze,
in a stepwise manner, the contribution of all independent variables X to the dependent
variable [61]. If the contribution is significant, this variable is considered essential and is
retained, or, conversely, it is removed if the contribution is insignificant. Finally, a regression
model is built based on the analysis. Equation (4) is the regression equation of MSR, e is the
error term, and βn is the constant term regression coefficient corresponding to the nth VI.

Y = β0 + β1X1 + β2X2 + . . . + βnXn + e (4)

Random Forest is an extended variant of bagging. It builds bagging integration with
decision trees as learners and further introduces “random attribute selection” into the
training process to give it better generalization performance [62,63]. The final prediction
result of the random forest is the mean of the prediction results of all CART regression
trees. In addition, RF is able to calculate the out-of-bag (OOB) data prediction error rate
and replace other VIs in order to calculate the variable importance (VIM) during training
to build decision trees. The specific results are shown in Section 3.1. VI importance is
calculated using Equation (5), where j is some VI, and i is the ith tree.

VIM(OOB)
j =

∑n
i=1 VIM(OOB)

ij

n
(5)

GPR is usually used for regression problems with low and small samples, and is better
able to handle nonlinear problems [64]. GPR assumes that the learning data are sampled
using a Gaussian process (GP), and that the prediction results are closely related to the
kernel function (covariance function) [65]. The standard Gaussian kernel functions are the
radial basis function kernel, the rational quadratic kernel, the sine square kernel, and the
dot product kernel. In GPR, the kernel function can find a corresponding mapping, making
the data linearly separable in high-dimensional space. The probability density function of
GPR is given in Equation (6).

p(x1, x2 . . . , xn) =
1

2π
n
2 σ1σ2 . . . σn

exp

(
−1

2

[
(x1 − µ1)

2

σ2
1

+
(x2 − µ2)

2

σ2
2

. . . +
(xn − µn)

2

σ2
n

])
(6)

3.3. Technical Route and Accuracy Evaluation
3.3.1. Technical Route

This study focuses on estimating soybean LCC and FVC and producing a mapping of
two physiological parameters using four machine-learning techniques. Finally, soybeans
were monitored for early maturity and harvesting. The technical route is shown in Figure 5,
and the details of the study are as follows.

(1) Soybean FVC and LCC estimation and mapping. The FVC and LCC of soybean were
estimated using PLSR, MSR, RF, and GPR, and the best regression model was found
and used for FVC and LCC mapping.

(2) Soybean maturation monitoring. The soybean material LCC and FVC anomaly detec-
tion method was used to determine the LCC of P3. A threshold value was obtained
for the mature region for the monitoring of the LCC of the mature region. This
threshold was also used for soybean maturation monitoring at P4 (i.e., during the
maturity stage).

(3) Soybean harvesting monitoring. LCC and FVC anomaly detection of soybean material
was carried out for P4 mature plots. Complete the identification of the soybean
harvesting area where the mature plots of P4 were obtained from (2).
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3.3.2. Precision Evaluation

To ensure that the final model has a high generalization capability, the 153 data points
generated in this work were randomly divided into two groups (in a ratio of 7:3). We
evaluated the ability of PLSR, MSR, RF, and GPR to predict LCC and FVC by means of the
coefficient of determination (R2), and root mean square error (RMSE), with R2 values in
the range [0–1], whereby higher R2 values correspond to smaller RMSE. Smaller values of
RMSE represent higher accuracy in the values of LCC and FVC predicted by the models.
The calculation procedure is shown in Equations (7) and (8):

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (7)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(8)

where n is the number of samples input into the model, yi represents the measured values
of LCC and FVC in the soybean field, y is the mean value of measured values, and ŷi the
predicted value.



Agriculture 2023, 13, 692 10 of 19

The experimental method was evaluated on the basis of the confusion matrix. The
Accuracy and the Precision were calculated. The higher of the two values corresponds to
the higher accuracy. Accuracy and Precision were calculated using Equations (9) and (10).

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Precision =
TP

TP + FP
(10)

4. Results
4.1. Vegetation Index Correlation and Importance Analysis

We initially selected 20 VIs. Then, calculate their Pearson coefficient and importance.
The different colors and sizes of the circles in Figure 6 represent different correlation coeffi-
cients. The results show that the correlation performance of VI with LCC and FVC differed
slightly. Among the 20 VI correlation studies with LCC, R had the highest correlation
coefficient with LCC (−0.72), followed by R + G (−0.68), EXR (−0.62), (R − G)/(R + G + B)
(−0.58), NGRDI (0.57), etc. Among the selected VIs correlation studies with FVC, GRRI
had the best performance (r = 0.81) and NGRDI (0.80). NGRDI (0.80), (R − G)/(R + G + B)
(−0.80), VARI (0.77), and EXR (−0.77) also showed high correlation coefficients.
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To determine the feature inputs, we determined the importance of each of the Vis
using random forest (Figure 7). Using RF, it was possible to see that R contributed the
most to LCC, and VARI contributed the most to FVC, followed by (R − G)/(R + G + B).
Finally, in combination with the principal component analysis, it was decided to use
R, R + G, EXG-EXR as the characteristic inputs for estimating LCC and VARI,
(R − G)/(R + G + B), (G + B − R)/2B, EXG-EXR, EXR as the independent variables
for the FVC estimation model.

4.2. Soybean FVC and LCC Estimation and Mapping

The results of the prediction of LCC and FVC using PLSR, MSR, RF, and GPR are shown
in Table 5. The best results for the prediction of LCC (R2: 0.88; RMSE: 3.36 Dualex units)
during the modeling of estimated LCC were obtained using GPR. During the validation
phase of LCC estimation, R2, RMSE varied between 0.54 and 0.84, and 3.15 Dualex units and
6.07 Dualex units, respectively, where GPR still maintains the highest estimation accuracy
(R2: 0.84; RMSE: 3.99 Dualex units). With respect to FVC predictive modeling, GPR showed
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promising results (R2: 0.94; RMSE: 0.08). In the validation phase, R2 varied between 0.83
and 0.96. The GPR and RF techniques predicted the results most accurately.

Agriculture 2023, 13, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 7. Importance ranking of Vis: (a) LCC-VIs; (b) FVC-VIs. Note: Only the top nine VIs in the 
importance ranking are shown here. 

4.2. Soybean FVC and LCC Estimation and Mapping 
The results of the prediction of LCC and FVC using PLSR, MSR, RF, and GPR are 

shown in Table 5. The best results for the prediction of LCC (R2: 0.88; RMSE: 3.36 Dualex 
units) during the modeling of estimated LCC were obtained using GPR. During the vali-
dation phase of LCC estimation, R2, RMSE varied between 0.54 and 0.84, and 3.15 Dualex 
units and 6.07 Dualex units, respectively, where GPR still maintains the highest estimation 
accuracy (R2: 0.84; RMSE: 3.99 Dualex units). With respect to FVC predictive modeling, 
GPR showed promising results (R2: 0.94; RMSE: 0.08). In the validation phase, R2 varied 
between 0.83 and 0.96. The GPR and RF techniques predicted the results most accurately. 

Figure 8 shows the relationship between the predicted values and ground measure-
ments of LCC and FVC for soybean. Most points in Figure 8d are near the 1:1 line, and the 
underestimation is more prominent in the soil point data (LCC minimum near 0.85 Dualex 
units). The results in Figure 8g,h indicate that GPR works best at predicting FVC for soy-
bean and soil data, so GPR was used as the regression model for the estimation of LCC 
and FVC. 

The spatial distribution of LCC and FVC is plotted in Figure 9. Most of the soybeans 
were at peak growth during P1, and P2, so Figure 9b,e show a balanced distribution of 
LCC. However, the images presented in Figure 9g indicate the beginning of differentiation 
in soybean maturity, a change caused by the maturation of early maturing soybeans, and 
also explain why the P3-P4 LCC mapping (Figure 9h,k) showed significant heterogeneity 
in the same plots. 

Table 5. LCC and FVC estimation results. 

Dataset Methods 
LCC FVC 

R2 RMSE R2 RMSE 

Calibration 

PLSR 0.53 6.91 0.80 0.11 
MSR 0.52 6.99 0.80 0.11 
RF 0.86 3.72 0.92 0.09 

GPR 0.88 3.36 0.94 0.09 

Validation 

PLSR 0.55 6.84 0.83 0.11 
MSR 0.54 6.86 0.83 0.11 
RF 0.82 4.32 0.96 0.08 

GPR 0.84 3.99 0.96 0.08 

Figure 7. Importance ranking of Vis: (a) LCC-VIs; (b) FVC-VIs. Note: Only the top nine VIs in the
importance ranking are shown here.

Table 5. LCC and FVC estimation results.

Dataset Methods
LCC FVC

R2 RMSE R2 RMSE

Calibration

PLSR 0.53 6.91 0.80 0.11
MSR 0.52 6.99 0.80 0.11
RF 0.86 3.72 0.92 0.09

GPR 0.88 3.36 0.94 0.09

Validation

PLSR 0.55 6.84 0.83 0.11
MSR 0.54 6.86 0.83 0.11
RF 0.82 4.32 0.96 0.08

GPR 0.84 3.99 0.96 0.08

Figure 8 shows the relationship between the predicted values and ground measure-
ments of LCC and FVC for soybean. Most points in Figure 8d are near the 1:1 line,
and the underestimation is more prominent in the soil point data (LCC minimum near
0.85 Dualex units). The results in Figure 8g,h indicate that GPR works best at predicting
FVC for soybean and soil data, so GPR was used as the regression model for the estimation
of LCC and FVC.

The spatial distribution of LCC and FVC is plotted in Figure 9. Most of the soybeans
were at peak growth during P1, and P2, so Figure 9b,e show a balanced distribution of LCC.
However, the images presented in Figure 9g indicate the beginning of differentiation in
soybean maturity, a change caused by the maturation of early maturing soybeans, and also
explain why the P3-P4 LCC mapping (Figure 9h,k) showed significant heterogeneity in the
same plots.
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4.3. Soybean Maturity and Harvest Monitoring and Mapping
4.3.1. Soybean Population Canopy LCC Histogram Analysis and Maturity Monitoring

Figure 10a shows the grayscale histogram obtained from the detection of the P3-
LCC distribution using soybean LCC and FVC anomaly detection methods. The results
correspond to the measured data analyzed in Section 3.1 and confirm our hypothesis. The
red area of the histogram is the low threshold region that escaped the normal distribution,
i.e., the region of maturity caused by early maturing soybean strains, with a threshold
value of 18.89 Dualex units. Finally, the actual maturity of the soybean plots was compared
with the monitored maturity using a confusion matrix to calculate the results. The results
of this monitoring (Figure 10b) showed that LCC using P3 (non-maturity) could be used
to accurately monitor soybean, with a total accuracy of 0.988, an accuracy in the mature
area of 0.951, and an accuracy in the common area of 0.987. The results of the P3-LCC
monitoring visualization are shown in Figure 10f.
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Figure 10. P3 soybean early maturity monitoring: (a) Histogram of P3-LCC anomaly distribution;
(b) P3 maturity monitoring accuracy; (c) P4 maturity monitoring accuracy; (d) P3-RGB; (e) P4-RGB;
(f) P3-LCC monitoring visualization results; (g) P4-LCC monitoring visualization results. Note: The
red boxed areas in (d,e) are the areas used for accuracy evaluation.

To further validate the applicability of the LCC threshold (18.89 Dualex units) for the
mature region extracted at P3 (immature stage), we applied this threshold to the LCC at P4
(mature stage) to perform soybean maturity monitoring. The overall monitoring precision
was 0.984, the precision in the mature region was 0.995, and the precision in the immature
region was 0.955 (see Figure 10c). The results of the monitoring visualization are shown in
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Figure 10g. The results indicate that the LCC maturity soybean thresholds obtained from
P3 are feasible for use in P4 soybean maturity monitoring.

4.3.2. Soybean Population Canopy FVC Histogram Analysis and Harvest Monitoring

In this section, the mature soybean regions monitored were extracted, as shown in
Figure 10d, and the harvest monitoring of soybean in these regions during the P4 period was
performed using FVC. The grayscale histogram of the FVC anomaly distribution is shown
in Figure 11a, and the red grayscale histogram on the left denotes the harvest monitoring
region, with a threshold of 0.609. The evaluation of the confusion matrix visualized under
this harvest threshold revealed the results presented in Figure 11c, with a total accuracy
of 0.981, a harvest accuracy of 0.972, and a maturity accuracy of 0.987. This indicates
the relative sensitivity of the harvest region when monitoring soybeans using FVC. After
validating the results, it was found that this error was caused by different soybean managers
leaving stubble on the lower part of the soybean stalk when performing harvesting.
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Figure 11. Harvest monitoring results for P4 (mature) soybean: (a) histogram of FVC anomaly distri-
bution for P4; (b) P4-RGB; (c) P4 harvest monitoring accuracy; (d) P4-FVC threshold visualization
results. Note: This section discusses harvest monitoring in the mature soybean region only (i.e.,
containing the harvest and maturity regions), rather than the entire region, during the P4 period.

5. Discussion
5.1. Multi-Period LCC and FVC Estimation

In this study, four regression models were selected in order to predict soybean LCC
and FVC. GPR had the best stability and accuracy when predicting LCC and FVC in
soybean fields (see Table 5), and was superior to the three machine learning models, PLSR,
MSR, and RF. In previous studies using PLSR to predict crop parameters [66], PLSR showed
excellent prediction ability. However, Figure 8 shows that the LCC predicted using PLSR
deviated from the field survey data (RMSE: 6.80). This may be because the VI and LCC used
in our study were not purely linear. PLSR, as a linear regression method, cannot effectively
determine the nonlinear relationship between VI and LCC. Including the prediction results
of MSR for LCC in this experiment can explain this phenomenon more reasonably. The
results of FVC estimation showed that all four selected regression models showed good
predictive ability, and GPR still constituted the optimal regression model. In a related
study, Atzberger et al. [67] used hyperspectral data and regression techniques such as
PLSR to predict LCC. However, hyperspectral data are more expensive than RGB images
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and are not generalizable. In two other studies [68,69], the LCC and FVC were estimated
using the PROSALL physical model. Although good results were obtained, this method is
usually susceptible to the initial model parameters and requires a priori information. Liang
et al. [70] used a hybrid approach (i.e., the PROSALL model in combination with RF) to
predict LCC, obtaining a high accuracy. However, the stable coupling required to employ
this method remains a challenge. In contrast, the method for estimating FVC and LCC
reported in this paper is simple and accurate, and the results are within a reasonable range.

Our ultimate goal was to investigate the effectiveness of four regression techniques
for the estimation of soybean FVC and LCC and for monitoring soybean maturity using
soybean LCC and FVC anomaly detection methods. This requires us to consider the effects
caused by the harvesting area of soybean fields. That is, while exploring a high-precision
prediction model for vegetated areas, attention should also be paid to the estimation of
bare and near-bare areas (i.e., areas with small amounts of mature soybean stubble or areas
influenced by lateral branches of surrounding soybean plants). Although we have tried to
make the model converge as much as possible when constructing the GPR, there is still an
error of 0.85 Dualex units (LCC) and 0.10 (FVC) in the non-vegetated areas. Of course, this
does not exclude the shadows produced at noon on both sides of the soil, which cause the
pixel channels to affect the adjacent image elements. Nevertheless, the final results show
that GPR is an excellent prediction model for significant coefficients of variation in LCC
and FVC.

5.2. Soybean Maturity Monitoring Study Analysis

There is a vast difference in the soybean growth cycle in breeding fields. This
causes anomalies in the distribution of LCC and FVC in soybeans before and after the
growth period. Capturing such anomalies enables soybean maturity monitoring.
Castillo-Villamor et al. [71] used optical vegetation indices as input, then monitored crop
growth by anomaly detection and combined it with yield analysis. Although this method
has also been used in agriculture, its potential for crop maturity monitoring has been
overlooked. Hence, in this work, we detected soybean LCC and FVC distribution. As a
result, soybean maturity monitoring was achieved. In a previous study on crop maturity
monitoring, Yu et al. [72] achieved 93% accuracy using a novel random forest model to
monitor mature regions. However, such methods using spectral indices combined with
ML often provide erratic monitoring. Moeinizade et al. [1] achieved 95% accuracy in
monitoring soybean maturity using a CNN-LSTM model. Ashtiani et al. [73] used transfer
learning based on CNN to monitor mulberry maturity, achieving an overall accuracy of
98.03%. Although DL and transfer learning-based crop maturity monitoring perform better,
these methods require a large amount of sample image data for support, necessitating the
challenge of collecting data in the field. Moreover, the model automatically extracts the
original image features, ignoring the potential of crop FVC.LCC images for soybean matu-
rity monitoring. In contrast, our present work considered the maturity information brought
by the change in the distribution of soybean FVC and LCC images. The three monitoring
accuracies obtained in this study ranged from 98.1% to 98.8%, further demonstrating the
potential of the method for soybean maturity monitoring in breeding fields.

In this study, although we achieved high accuracy in monitoring soybean maturity.
However, there are still some limitations. For example, in the P3 period, even though
most of the early maturing soybeans were mature. However, there were still some unripe
early maturing strains of soybean. This is one of the reasons for the reduced monitoring
efficiency. The overall LCC of soybean gradually shifted to the left with time from P2 to
P3 until the early maturing region moved away from the normal distribution during P2.
This process is dynamic, and the optimal threshold does not necessarily arise at P2 but
perhaps 2–3 days before and after P2 (the same is true for the soybean harvesting area
monitored by FVC in this study). We monitored whether the soybeans had been harvested
in the mature area of P4 using the FVC and LCC anomaly detection methods. Although
we have achieved better identification results (Figure 11c), some things still need to be
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corrected. The different harvesting criteria of different soybean managers are the leading
cause of these errors. In our study, LCC and FVC of immature soybean showed a normal
distribution. Whether this is the case for all breeding field crops is worth exploring. In
addition, the environment of our experiment unfolded in a soybean breeding site with high
heterogeneity among soybean fields. Hence, the applicability of this method to monitor
crop maturity in specific fields needs to be further explored.

5.3. Future Work

Both parts of the work conducted in this study showed promising results. However,
these results are still influenced and limited by some uncertainty factors, including the
following: (1) Uncertainty of image acquisition: The study is centered on images. Therefore,
even though UAV images have high resolution and solid temporal reconstruction capability,
the effects of light changes and camera positions in the same space–time cannot be avoided
during the image acquisition process. (2) Uncertainty in the ground data environment:
From the P3 images, the presence of leaf stagnation following pod senescence in harvest
stubble areas is evident, leading to a reduction in the accuracy of monitoring using the
soybean LCC and FVC anomaly detection methods, and increasing the error in the harvest
and maturity areas. These uncertainties affect the study, such that these can be added to
the study to be performed as part of our follow-up work.

6. Conclusions

In this study, we completed a two-part experiment based on four regression techniques
for the rapid and accurate estimation of soybean FVC and LCC, and the monitoring of
maturity information based on methods for detecting LCC and FVC abnormalities in
soybean material. The experiment was conducted in a multi-strain soybean breeding field
covering four soybean growth stages (P1–P4). The results were as follows.

(1) The combination of low-altitude drone technology and machine learning regression
models can be used to furnish high-performance soybean FVC and LCC estimation
results. Soybean FVC and LCC were estimated using PLSR, MSR, RF, and GPR,
respectively, and GPR exhibited the best performance. The LCC prediction results
were as follows: R2: 0.84; RMSE: 3.36 Dualex units. The FVC prediction results were
R2: 0.96; RMSE: 0.08.

(2) The analysis of LCC and FVC anomalies detected in soybean material detection
can provide highly accurate monitoring results regarding the maturity of soybean
material. The total monitoring accuracies of P3 and P4 mature and immature soybeans
were 0.988 and 0.984, respectively. The monitoring accuracy for the P4 mature and
harvested area was 0.981.

(3) On the basis of the results of this research process, the frequency of image acquisition
between P3 and P4 will be increased with the aim of investigating the relationship
between the time interval of image acquisition and the maturity monitoring effect.
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