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Abstract: Design of low-density SNP chips provides an opportunity for wide application of genomic
selection at lower cost. A novel strategy referred to as the “block-free” method is proposed in this
study to select a subset of SNPs from a high-density chip to form a low-density panel. In this method,
Feature Selection using a Feature Similarity (FSFS) algorithm was first performed to remove highly
correlated SNPs, and then a Multiple-Objective, Local-Optimization (MOLO) algorithm was used
to pick SNPs for the low-density panel. Two other commonly used methods called the “uniform”
method and the “block-based” method were also implemented for comparison purposes. A real pig
dataset with 7967 individuals from three breeds containing 43,832 SNPs was used for comparison
of the methods. In terms of genotype imputation accuracy and genomic prediction accuracy, our
strategy was superior in most cases when the densities were lower than 1K. The genotype imputation
accuracy from the low-density chip compared to the original high-density chip was higher than 90%
in all pig breeds as the density increased to 1K. In addition, the accuracies of predicted genomic
breeding values (GEBV) calculated using the imputed panel were nearly 90% of estimates from the
original chip for all traits and breeds. Our strategy is effective to design low-density chips by making
full use of information of close relationships for genomic selection in animals and plants.

Keywords: genomic selection; low-density SNP chip; feature selection; local optimization; imputation

1. Introduction

Genomic selection (GS) was first proposed by Meuwissen et al. in 2001 [1]. It is also
referred to as genomic prediction following its wide implementation in animal and plant
breeding. Given the advantages of reducing breeding costs and shortening the generation
interval, GS has become a routine genetic evaluation strategy for many livestock species [2].
Currently, it plays an important role in the livestock breeding industry, especially for
animals with high economic value, such as dairy cattle, pigs, and chickens [3], and for
traits with low heritability or that are hard to measure, such as reproductive traits and
meat quality traits. Although the costs of SNP (single nucleotide polymorphism) chips
genotyping have significantly decreased in recent years, it is still too expensive to genotype
all candidate individuals for most highly prolific species, such as pigs and chickens. An
appealingly suitable solution is to apply lower-density SNP chips, and then impute them
to medium- or high-density genotypes for practical GS application.

Many studies have investigated the effectiveness of low-density chips for different
livestock species, including studies on dairy and beef cattle [4,5], pigs [6–8], sheep [9–11],
and broiler and laying chickens [12,13], and all of them have proved that low-density
chips were beneficial in GS with a proper genotype imputation processing procedure.
Commercial low-density SNP chips, such as Illumina Bovine3K BeadChip and BovineLD
BeadChip (6K), were designed to support imputation to higher-density genotypes in dairy
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and beef cattle and were verified to perform well in terms of both imputation accuracies
and genomic prediction accuracies [14,15].

Therefore, developing a low-density SNP panel and then imputing to higher density
panels is a cost-effective solution for practical application of GS in many livestock species.
Many strategies have been proposed for designing low-density SNP panels. For example, a
simple strategy was to maximize the information entropy of the low-density SNP panels,
in which evenly spaced SNPs were selected with the highest minor allele frequencies
(MAF) [14]. However, this approach could not ensure minimization of the linkages between
the selected SNPs. Another proposed strategy was to choose a set of SNPs that captures the
largest proportion of genetic variance based on the results of previous studies [16], but this
was not generalized due to trait specificity. In general, as far as we know, there has been
no widely acceptable or standard strategy to design a low-density panel from a previous
high-density panel.

The objective of this study was to propose a new strategy for designing low-density
panels based on former high-density panels. To demonstrate the effectiveness of the pro-
posed method, a real pig breeding dataset was used for method comparisons, and we
compared our new method with other two state-of-the-art approaches. Genotype imputa-
tion accuracies and prediction of genomic estimated breeding values (GEBV) accuracies
were compared for different low-density panel design methods.

2. Materials and Methods
2.1. Low-Density Chip Selection Methods

“Uniform” Method: This was considered the baseline method. SNPs in the low-density
panel were selected uniformly across the map of high-density panel. This was achieved
through the K-means algorithm because SNPs were not absolutely evenly distributed across
the genome. First, each chromosome was divided into a fixed number of blocks according to
its length and total number of designed SNPs on the chromosome. Then, the SNP marker in
the center of each block was selected as the representative marker on the low-density panel.

“Block-Based” Method: This is the most commonly used method in recent studies. In
information theory, Shannon Entropy (H) is defined as the average level of “information”,
“surprise”, or “uncertainty” inherent in the variable’s possible outcomes [17]. Shannon
Entropy of each locus was calculated with the following formula:

H =

2

∑
i=1

pi[log2
1
pi
] = −[pilog2 pi + (1 − pi)log2(1 − pi)]

where pi is the MAF of the ith locus (only available for bi-allelic loci). The maximum
Shannon Entropy value for a locus is one when MAF of this locus equals 0.5. Each chro-
mosome was divided into multiple blocks as described above in the “uniform” method.
The averaged MAF of each SNP considering all breeds was calculated. In each block, the
SNP with the highest averaged MAF was chosen as an SNP for the low-density panel. This
method could achieve the highest Shannon Entropy for the low-density panel.

“Block-free” Method: This is the key method proposed in this study. The “block-
free” method is based on two approaches: the first one is called the “Feature Selection
using Feature Similarity” (FSFS) algorithm [18–20], in which a machine learning strategy
is utilized to solve the “tagging SNP problem” [21]. This algorithm selects features by
first grouping them into homogeneous subsets and then choosing a representative feature
from each subset. The second approach is the “Multiple-Objective, Local Optimization”
(MOLO) [5,22] algorithm, in which both Shannon Entropy and uniformity are considered
simultaneously, and a local optimal solution is obtained by a formula.

The method included the following three steps. Step 1: The FSFS algorithm was first
performed to select SNPs. The extent of linkage between SNPs was expressed as 1 − r2,
in which r2 was the measure of the linkage disequilibrium (LD) between SNPs. If SNPs
with strong LD were in the same cluster, then the SNP in the middle of each cluster was



Agriculture 2023, 13, 614 3 of 11

chosen to represent the cluster. The threshold of r2 can be adjusted to control the size of
clusters. If there is more than one breed in the data, the breed with the largest number
of genotyped animals would be chosen as the representative breed in this step. Step 2:
The SNPs with MAF lower than a given threshold in any of the breeds were excluded.
Step 3: The MOLO algorithm was used to finally select SNPs for the low-density panel in
this step. The selection index of each SNP was computed as follows:

f = w1Et1 + w2Ut2

where E score was defined as the averaged Shannon Entropy of each SNP and U score
was calculated to reflect the uniformity of the SNPs. Calculation details are available in
the references [5,22]. w1 and w2 were the corresponding weights for E and U, respectively,
under the restriction of 0 ≤ w1 ≤ 1, 0 ≤ w2 ≤ 1, and w1 + w2 = 1; t1 and t2 were shrinkage
parameters. These parameters can be set up based on the data structure used in the research.

Each chromosome was divided into blocks. The SNPs were ranked by their respective
scores within each block, and the SNP with the highest score was selected to represent the
block. The MOLO algorithm in step 3 was realized through R package selectSNPs [22].

2.2. Data for Method Comparison

A dataset with three pure-breed breeds from a pig breeding farm in Inner Mongolia
of China were used to validate the low-density SNP panel selection methods. There were
1518 Duroc (DD), 1702 Landrace (LL) and 4789 Yorkshire (YY) pigs with SNP genotypes in
the dataset, and all pigs were born between 2014 and 2020. Two growth traits adjusted for
age at 100 kg weights (AGE) and adjusted back-fat thickness at 100 kg weights (BF) were
analyzed for genomic prediction. Details of the phenotype data collection and processing
procedures are explained in Appendix A. All pigs were genotyped using a KPSISUS50-
V1 chip consisting of 43,832 SNPs across the genome (detailed information presented
in Appendix B).

Principal component analysis (PCA) was performed based on the raw genotype data
to identify clusters using GCTA [23] as Supplementary Figure S1 showed. All individuals
were clustered using the K-means method (k = 3). In total, 7967 individuals were grouped
to the correct cluster, while 42 pigs were excluded as they obviously deviated from their
breed clusters. Thus, total numbers of 1507, 1691, and 4769 individuals in DD, LL, and YY
breeds were left, respectively, in the subsequent analysis.

Genotyping quality control (QC) for SNPs includes the following criterions:
(1) genotype call rate > 95%, (2) MAF > 0.01, and (3) were not located on sex chromo-
somes. Filtration of SNPs was performed using the Plink v1.90 software [24], and it was
performed for each breed separately. After QC, the number of remaining SNPs was 28,411,
34,111 and 34,768 for DD, LL and YY, respectively. There were 15,412 SNPs removed after
QC in DD population, which leads to a substantial reduction of SNPs in the original panel.
Finally, a total number of 24,161 SNPs were retained as common SNPs for these three pig
breeds, and they were used as the original high-density panel to design the low-density
panels (Figure 1a).

2.3. Method Comparison Strategies

We used the above pig breeding dataset to compare our newly proposed SNP panel
selection method (“block-free method”) with the counterpart methods (“uniform method”
and “block-based method”). For each SNP selection method, seven levels of low-density
panels were generated using the three methods mentioned previously. To fully investigate
the effectiveness of low-density panels, the total number of SNPs for the seven levels
of densities were set as 300, 500, 800, 1000 (1K), 1500 (1.5K), 2000 (2K), and 3000 (3K),
respectively. Each of the three methods was implemented to create these seven levels of
low-density panels. For the “block-free” method, degree of linkage disequilibrium was
calculated by Plink v1.90 [24]. In step one, the threshold of 1 − r2 was set to be 0.8. In
step two, the MAF threshold was chosen as 0.1. In step three, E score was calculated by



Agriculture 2023, 13, 614 4 of 11

the average MAF of all three breeds, and the parameters for the selection index of the
MOLO algorithm were set as: w1 = 0.1, w2 = 0.9, t1 = 1, t2 = 1. Panels with the same density
contained the same amount of SNPs on each chromosome for these three breeds. After the
low-density panels were selected by each method, the usefulness of different low-density
panels was compared both in terms of imputation and genomic selection.
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The reference and validation populations in the process of genotype imputation
and genomic selection were defined based on the year of birth, while only individuals
with genome information were used in genomic selection. Individuals in the reference
population were born up to 2019, while others born in 2020 were included in the validation
populations. The details of the reference population sizes are showed in Table 1.
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Table 1. Number of animals in the training and validation populations.

Pig Breeds

Populations Duroc Landrace Yorkshire

Genotype imputations
Training population 1117 1194 4024

Validation population 390 497 745
Total 1507 1691 4769

Genomic predictions
Training population 1050 1132 3621

Validation population 174 256 322
Total 1224 1388 3943

The accuracy of imputation was assessed as the mean of the percentage of correctly
imputed genotypes for all imputed SNPs. Correlation coefficients of the genotype matrices
of the imputed and the real genotypes (coded 0, 1, 2) were also calculated as another
measurement of genotype imputation accuracy. Details of the structure of validation
population in imputation are shown in Supplementary Table S1.

A bivariate genomic best linear unbiased model (GBLUP) for AGE and BF was used
to calculate genomic estimated breeding values (GEBVs) by DMU software [25], and the
model was as follows: [

y1
y2

]
=

[
1µ1
1µ2

]
+

[
g1
g2

]
+

[
e1
e2

]
(1)

where y1 and y2 were the vector of observations for AGE and BF trait; µ1 and µ2 were the
trait means for AGE and BF; g1 and g2 were the additive genomic values; and e1 and e2
were model residuals.

The genomic prediction accuracy was accessed by the correlation of GEBVs and corrected
phenotypes (yc). A bivariate BLUP model was used for the full dataset, and yc were calculated
as the sum of estimated breeding values (EBVs) and estimated residuals [26,27].

3. Results

In this study, we examined three strategies for the design of low-density chips: the
“uniform”, “block-based”, and “block-free” methods, wherein the “block-free” method was
a novel strategy we proposed. Under each strategy, we designed seven panels consisting
of 300, 500, 800, 1K, 1.5K, 2K, and 3K SNP markers. To verify the advantage of our novel
strategy, a pig breeding dataset of 1507 Duroc, 1691 Landrace, and 4769 Yorkshire pigs with
high-density SNP chip was used to evaluate different strategies. The pigs of each breed
were divided into the reference and validation sets. Then, we masked all markers except
those that belonged to the low-density panels in the validation population and imputed
them into the original density. Accuracies of genotype imputation and genomic prediction
were then calculated.

3.1. Accuracy of Genotype Imputation

The Shannon Entropy, accuracy of imputation, and correlation coefficients of the
genotype matrices were strongly determined by the number of SNPs in the low-density
panels. As is shown in Figure 2, the “block-based method” always achieved the highest
Shannon Entropy, as expected, while the tendency of imputation accuracy and correlation
coefficients of the matrices were not exactly consistent with the rank of Shannon Entropy.
As the density increased up to 1K for the low-density panels, the genotype imputation
accuracies of “block-free method” were best (Figure 3a,b) in DD and YY breeds. Meanwhile,
as the density increased to above 1K, the “block-based method” outperformed the other
two methods in all breeds; that is, Shannon Entropy began to play a critical role. As the
densities of the panel were increased from 300 to 1K, the imputation accuracies were im-
proved rapidly, and a density of at least 1K was required for reaching genotype imputation
accuracy around 90% for each breed.
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Figure 3. Genotype imputation performance of different low-density panels. The horizontal coordi-
nate represented the density of low-density panels, and the vertical coordinate indicated (a) genotype
imputation accuracies, (b) correlation coefficients of the matrices of the imputed and raw genotypes.
The shapes of square, circle, and triangle represented the “uniform” method, the “block-based”
method, and the “block-free” method, respectively. The colors blue, orange, and green represented
Duroc, Landrace, and Yorkshire, respectively.

3.2. Accuracy of Genomic Estimated Breeding Values Prediction

The accuracies of GEBV for DD, LL, and YY when using the raw chip were 0.1314,
0.1165, and 0.1896, respectively, for AGE; and 0.2188, 0.1900, and 0.2408 for BF. The heri-
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tabilities of AGE were 0.1502, 0.2323, and 0.2543, and BF were 0.3530, 0.4131, and 0.4139
for DD, LL, and YY, respectively as Supplementary Table S2 showed. The accuracies of
predictions were similar across breeds, and accuracies for BF changed more obviously than
AGE, which may be due to the higher heritability.

For both AGE and BF, in all breeds, the “block-free” method was superior to the other
two strategies when the densities were below 1K, especially at a very low density. As the
density increased, the accuracies of the three methods became closer and closer. However,
this tendency was not obvious in the DD breed.

The accuracies of GEBVs for AGE and BF calculated from imputed SNPs were close
to 90% in efficiency compared with the raw chip when the density reached 1K. This was
consistent with the results of the imputation accuracy. The GEBV accuracies were quite
close (>95% efficiency) for different low-density panel design strategies when the density
increased to 3K. The accuracies of GEBVs for BF were slightly higher than AGE on the
whole, due to its higher heritability (Figure 4a,b).
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Figure 4. GEBV prediction accuracies of different low-density panels. The horizontal coordinate
represents the density of low-density panels, and the vertical coordinate indicates (a) accuracies of
GEBVs prediction of AGE calculated by imputed panels, and (b) accuracies of GEBVs prediction of
BF calculated by imputed panels, respectively. The shapes of square, circle, and triangle represent the
“uniform” method, the “block-based” method, and the “block-free” method, respectively. The colors
blue, orange, and green represent Duroc, Landrace, and Yorkshire, respectively.

As the result of genotype imputation showed, a density of 1K is essential in meaningful
practical application. The performance of the panel with 1K SNPs selected with our novel
“block-free” method (Figure 1b) was superior, taking the balance of information loss and
cost-saving into consideration. Accuracies of GEBV calculated by this imputed 1K chip and
the raw chip for each breed are very close (Table 2).
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Table 2. Prediction accuracies of GEBVs calculated by imputed 1K panel and raw chip.

Breeds

Populations Duroc Landrace Yorkshire

AGE
1K Panel 0.1186 0.1077 0.1803

Raw Chip 0.1314 0.1165 0.1896

BF
1K Panel 0.1939 0.1704 0.2167

Raw Chip 0.2188 0.1900 0.2408

4. Discussion

In this study, we proposed a new method for selection of SNPs in low-density panels.
Using our new method and other competing methods, a series of different low-densities
SNP chip panels were designed, and their application in genomic prediction was evaluated
with a real pig breeding dataset. The results can be summarized that when marker density
is lower than 1K, the performance of our “block-free” method was superior. With increase
in marker density, the performance of the three methods tended to be similar, and the
advantages of our method became less obvious. It is generally agreed that the low-density
panel can be put into meaningful practical use only when the genotype imputation accuracy
is greater than 90%. According to our results, to meet this condition, the density of the chip
should be greater than 1K. The results of GEBV prediction also confirmed this view.

In general, 1K is an economical viable density, given that the accuracies of imputation
and GEBV prediction all consistently reached 90% of that obtained from the raw chip. The
imputation and GEBV accuracies at higher-density chips increased at a rather slow rate,
which may offset cost considerations. These results were in line with previous studies on
low-density chips for pig genomic selection [6,7]. Different data may produce different
results; therefore, the low-density SNP selection strategy may depend on the data structure.

In a study of a low-density chip in a pig sire line [6], 1152 SNPs were necessary to
obtain imputation accuracy of 90% when their sires were genotyped. A similar study used
the same three pig breeds examined in this study with 2609 individuals for all breeds. [8].
Their study was based on a block method [4] and showed that at least 600 SNPs were
needed for LL and YY breeds to obtain >90% imputation accuracy when both parents had
dense genotypes, while more SNPs were required in the DD breed to reach an equivalent
result. Their study showed that acceptable imputation quality could be achieved only when
both parents were genotyped using a high-density chip. In some cases, the DD breed was
suggested to be considered separately.

These results indicated that all animals can be genotyped using a low-density chip at
an early age at low cost. Then, imputation and GEBV calculation can be performed to obtain
GEBVs that reflect the genetic potential of each individual for economically important traits.
The individuals with low GEBV can be eliminated to enable early effective selection.

Our results showed that imputation accuracies were highly related to the Shannon
Entropy, and it was also necessary to consider LD between SNPs to select subsets through
feature selection. This is so because in the imputation from low-density to medium- or
high-density chips, the necessary information required is mainly from two sources: first,
the relationship between reference population and validation population, and second, the
linkage disequilibrium (LD) between current SNPs and those to be imputed.

The high imputation accuracy from this study resulted in little loss of information in
GEBVs prediction. However, the reference population and the validation population in this
study were closely related, but the characteristics (MAF and LD) used in the design may
be population specificity. Therefore, the performance of the low-density chip designed for
other pig populations using our method or under other relationship strategies needs to be
verified further.

Most strategies for low-density chip design take into account the physical distance
between SNPs and the information entropy carried by a single SNP, while the correlation
and linkage of information between SNPs is ignored, which results in information redun-
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dancy or loss. Our results showed that it is meaningful to take the LD between SNPs into
account at the genomic or chromosome level. To further optimize the SNPs simplification
strategy, more advanced machine learning methods should be attempted to achieve more
efficiency rather than using only feature selection method. There is no doubt that it is
feasible to design alternative methods to overcome the challenge of reducing genotyping
costs by reducing chip density using smart strategies. A thorough study with complex
genetic architecture and different traits would be needed to shed more light on this issue.

5. Conclusions

In conclusion, our novel strategy for creating a low-density SNP panel showed superi-
ority in real data validation. It accounted for the correlation between SNPs, the uniformity
of SNPs, and the Shannon Entropy of the panel, thereby combining the advantages of other
existing methods. Thus, this strategy has great potential for designing low-density chips,
especially when marker density is about 1K.
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Appendix A

Three purebred pig breeds, Duroc (DD), Landrace (LL), and Yorkshire (YY), were
used in this study. Phenotypes were recorded from 2017 to 2019 to keep the environmental
conditions consistent as much as possible. All individuals in this study remained in good
health during the testing period. Backfat thickness was measured between the 10th and
11th ribs of the pigs using real-time B-mode ultrasound at the end of testing.

Age at 100 kg (AGE) was adjusted using the following formula:

AGE = AGEtest + (100 − BW)

(
AGEtest − A

BW

)

https://www.mdpi.com/article/10.3390/agriculture13030614/s1
https://www.mdpi.com/article/10.3390/agriculture13030614/s1
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https://doi.org/10.6084/m9.figshare.21971204
https://doi.org/10.6084/m9.figshare.21971204
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where AGEtest represents the age at the end of testing; BW is the body weight at the end
of testing; and A is the constant correction coefficient for boars and dams, with A shown
as follows:

Table A1. Constant correction coefficients for AGE of pig breeds.

Breed Male Female

Duroc 55.289 49.361
Landrace 48.441 51.014
Yorkshire 50.775 46.415

Backfat thickness at 100 kg (BF) was adjusted using the following formula:

BF = BFtest + (100 − BW)

(
BFtest

BW − B

)
where BFtest represents backfat thickness at the end of testing; BW is the body weight at
the end of testing; and B is the constant correction coefficient for boars and dams, with B
shown as follows:

Table A2. Constant correction coefficients for BF of pig breeds.

Breed Male Female

Duroc −6.240 −4.481
Landrace −5.623 −3.315
Yorkshire −7.277 −9.440

Appendix B

The ear tissues of 1314 samples were collected, preserved with 75% alcohol, and stored
in −20 ◦C freezers. Genomic DNA was extracted from the collected frozen ear tissue samples
using a Qiagen DNeasy Tissue kit (Qiagen, Germany), and they were then analyzed using
spectrophotometry and agarose gel electrophoresis to ensure that they were of high quality.
All DNA samples were suitable for genotyping with a ratio of light absorption (A260/280)
between 1.8 and 2.0, a concentration >50 ng/µL, and a total volume < 50 µL.

The SNP chip array named KPSISUS50-V1 used in this study was designed using
the Illumina platform based on pig genome version 10.2. SNP markers were chosen from
multiple sources, including SNPs related to major economic traits from the published
literature (5706 SNPs), SNPs with favorable polymorphisms detected in multiple pig breeds
at home and abroad (34,262 SNPs), and SNPs from the NCBI pig SNP database (8265 SNPs).
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