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Abstract: Sugarcane aphids have caused economic damage on sorghum and other grain production
in Oklahoma. When applied in a timely manner, insecticides provide efficient control; however,
it is difficult to protect against the unexpected heavy infestations that have appeared frequently
since 2016. This article evaluates the effect of spatial and temporal patterns of weather variables on
sugarcane infestation airborne movements. Econometric methods identified persistent northwesterly
wind patterns that explain aphid movements. Results serve as a base for sugarcane aphid infestation
predictions and to assist stakeholders in developing an early warning system for sorghum producers.
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1. Introduction

United States grain sorghum (Sorghum bicolor ssp. bicolor) production maintains a
global importance, though it is only regionally important compared to wheat and maize [1].
In 2017, 80% of the world’s total grain sorghum exports originated from North America [2].
Exports to sub-Saharan Africa provide a valuable food source and assist in closing gaps
necessary for many developing nations to achieve food security. Elsewhere, sorghum
is used as an animal feed in beef and poultry production and on household tables as a
sweetener. The total value of grain sorghum produced in the United States (US) in 2019 was
USD 151 million, with acreage primarily located in the Great Plains states of Oklahoma,
Texas, Kansas, and Nebraska [3,4]. Sorghum is a niche crop for producers in the Great
Plains, where its drought tolerance provides an advantage over wheat and maize [5].

Sugarcane aphids (SCA) Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae) were
first discovered on US grain sorghum plants during the 2013 growing season and created
immediate concerns [6]. Over the following years, SCA have caused subsequent economic
damage to sorghum production in Oklahoma, Kansas, Texas, and surrounding states. SCA
feeding causes wilting, leaf death, and stunted plant growth, and infestations often result
in significant yield loss and economic damage [7]. In extreme cases, SCA can kill grain
sorghum plants, though overall damage depends on the period of plant growth stage
in which infestation takes hold [7]. Failing to control SCA may result in yield losses of
20–100%, depending on the pest control management practices of the producer [8]. When
applied in a timely manner, insecticides provide effective control, making early detection
and scouting an important component of pest management.

Studies on the movement of insect damage have been extensively carried out on several
crops and regions [9–12]. Remote sensing (RS) and similar sensor-based methods have been
a recent focus of research, with efforts to estimate pest damage and subsequent production
losses across broader scales than those confined to the field level [13–16]. Ye, S. and Rogan,
J. proposed an RS method that includes information on changes in forest conditions from
mapping early-stage mortality rates caused by bark beetles in Colorado [13]. Magstadt, S.
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and Gwenzi, D. proposed a similar RS method for the early detection of peeling through
mapping spatial patterns of commercial redwood wooden stands [15]. Leal-Sáenz, A.
and Waring K. investigated insect damage to Pinus strobiformis in northern Mexico [17].
Gutiérrez, J. and Barry-Ryan C. measured the effects of herbicides on sunflower crops using
aerial images of seasonal phases [14]. Other studies measured the effects of mountain pine
beetles on tree mortality as explained by environmental variables [16,18,19].

A common conclusion of these studies is that environmental variables affect insect
damage on host plant species and that spatial data provide valuable information for
mapping and georeferencing insect damage. In particular, the studies emphasize the con-
tribution of various spatial information data sources including moisture indices, Aperture
Optical Sciences (AOS), satellite remote sensing data, helicopter-GPS, and aerial photog-
raphy in providing the required data for spatial analysis. This includes environmental
variables that enable synthesizing the biodynamics of organism populations, essential for
assessing the temporal and spatial patterns of insect movement. Adding the temporal
dimension is consistent with the literature. Robertson, C. and Mulder, M. argue that adding
temporal trends in the prediction of spatial patterns improves the predictive ability of
insect infestations.

Studies developing spatial and temporal patterns of weather, including their effect
on crop yields, have been applied in many fields [20,21] and greatly outnumber studies
forecasting patterns of insect movements. Prior studies have often identified persistence in
weather patterns, suggesting that pest movements that largely depend on weather can be
predicted within statistically significant confidence intervals [22,23]. In the entomological
literature, insect movements have primarily been modeled using simulated weather pat-
terns rather than observed weather [24,25]. Simulation methods are acceptable for research,
but providing real-time forecasts that have practical use requires the use of actual weather
data from recent years.

EDDMapS is a national mapping system that tracks invasive species (insects, wildlife,
plants, and disease) and assists producers in near real-time monitoring and control of pests
such as SCA. Producers and other stakeholders voluntarily upload infestation reports to
the EDDMapS web database. Maps are made available to provide producers with up-to-
date information on the spread of ongoing infestations. Such reporting also provides the
research community with data that can be used to estimate and create ground-truth models
of pest movement, including the effect of weather and other environmental variables
on pest population dynamics and migratory movements. Forecasts of the spatial and
temporal patterns of pest movements can be integrated with existing platforms such as
EDDMapS to provide producers with an early warning system that can alert them to
highly probable infestations. Such early warning alarms reinforce the need for scouting
and provide additional planning time to enact optimal pest control measures.

The purpose of this study is to determine the effects of spatial and temporal patterns of
weather variables on SCA population dynamics and migration. Models based on observed
weather data fill a gap in applied entomologic research because they provide improved
and more realistic forecasts compared to existing models based on simulated weather.
This paper first develops an empirical model of SCA survival and migration based on
actual weather data. The weather variables used in the SCA model are evaluated next
with a spatial–temporal regression to gauge the effect of weather persistence on migration.
The regression model is constructed based on SCA data and is used to explore in-sample
model forecasting accuracy. The modeling framework serves as a basis for predicting SCA
infestation and, subsequently, producing plans for managing SCA.

2. Methods and Data
2.1. Structural Model of SCA Movement

To measure the effect of weather variables on the probability of predicted migration
of SCA, a structural model was developed based on an integrated set of survival and
migratory-flight functions. The model uses a daily time step to predict the likely move-
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ment of SCA, starting from an initial infestation [24]. Each day, the model updates the
survival of the SCA population based on two weather-based probability functions, with
one accounting for the effect of rainfall and the other temperature. Wind-related equations
then forecast likely SCA flight paths based on prevailing wind speed and its direction. The
following subsections describe each of the models’ structural equations, quantifying daily
survivability and movement.

2.1.1. Effect of Temperature on SCA Survivability

Numerous studies report the effect of temperature on the reproduction and survival
of SCA, as well as other aphids of similar size and biological features [9,26–33]. In general,
although these studies find a diverse and unique response to temperature depending on
factors, primarily host plant, they all report temperature’s significant effect on the survival,
fecundity, growth, and other transformational properties of aphids. Angleitta, M. and
Dunham, A. summarize an even larger number of studies and report that in 73 out of
89 cases, temperature had a positive effect on species growth across temperatures ranging
up to 23 ◦C, beyond which growth turned negative. DeSouza, M. and Armstrong, J. derived
SCA survivability and fecundity hosted by sorghum plants in Matagoradoa, TX, a region
with agroecological conditions most similar to our Oklahoma study area [33]. Acreman, S.J.
and Dixon, A.F. report a similar effect of temperature on the survivability and fecundity of
wheat aphids (Sitobion avenae F.).

The daily survivability probability function was developed based on the general
characteristics from the prior studies that suggest a quadratic polynomial functional form:

PTAVG = f (TAVG) = κ ∗ TAVG + λ ∗ (TAVG)2 (1)

where Ptemp is the probability of survival, TAVG is the daily average temperature, and κ
and λ are parameters affecting the relationship between temperature and SCA survivability
(κ > 0, λ < 0). The quadratic was parametrized to achieve maximum survivability at 20 ◦C,
a compromise between the DeSouza M. and Acreman, S.J. models, corresponding to κ = 0.1
and λ = −0.0026 (Figure 1).
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Figure 1. Relationship between probability of SCA survival and temperature based on Equation (1)
(κ = 0.1, λ = −0.0026).

2.1.2. Effect of Rainfall on SCA Survivability

Several experiment station studies have investigated the effect of rainfall on insect
survivability. These studies generally report a negative effect on the survival rate and
colonization of insects such as SCA [9–12,34]. Intense rainfall dislodges insects and larvae
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from the host plant and disrupts feeding and development processes, leading to increased
mortality, delayed development, and hindered movement, including flying [10,34,35].
Rainfall’s effect varies by host species and rainfall intensity. Koboro, Y. and Amano, H.
report the effect of artificial rainfall intensity as measured by droplet size, which had a
significant effect on diamondback moths (Plutella xylostella) hosting on cabbage with larger-
sized droplets (3 mm diam.), causing more than 120% more larvae mortality compared to
normal droplets (1.7 mm diam.). The survivability of Lepidoptera (Plutella xylostella) feeding
on black mustard (Brassica nigra) declined by 36% and 64% when exposed to artificial rainfall
of normal and high intensity [10]. In a Bavarian study of Aphidius roseae, foraging on rose
bush hosts, survivability, fecundity, foraging, and movement were estimated as explicit
functions of discrete rainfall events [34]. Colony survivability decreased by an average of
62.9%, fecundity by 89.4%, foraging by 90.2%, and within-field movement by 35.0% as a
result of intense June rainfall. Rainfall’s effect on SCA hosted by sorghum, Sorghum bicolor
(L.) Moench, was investigated in Río Bravo, Tamaulipas, Mexico, by Rodriguez-Bosque
and Silva under both natural and artificial rainfall events [35]. Their findings are consistent
with prior studies that rainfall’s effect is modest at low and normal intensity levels, but
increases dramatically under heavy rainfall [36–38].

Based on Rodriguez-Bosque, M. and Silva, M., the most relevant to our Oklahoma
SCA–sorghum-based study, the daily probability survivability function for rainfall was
chosen as:

Prain = f (RAIN) = exp(−β ∗ RAIN) (2)

where R is the daily rainfall, β = 3, and exp is the exponential function (Figure 2).
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Figure 2. Probability of SCA survival as given by rainfall (β = 3).

2.1.3. Effect of Wind on SCA Movement

Several studies have dealt with the effects of wind strength, i.e., speed, on the mi-
gratory flight patterns of small airborne insect movements such as SCA [35,39,40]. These
studies find that wind speed directly affects small organisms such as aphids and is the
most important factor in determining the distances that insects travel. Small-sized insects
such as SCA essentially “fly with the wind”, as they do not possess adequate strength
to change direction or accelerate with or against prevailing wind currents to alter their
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flight trajectory. Higher wind speeds, hence, increase the expected distances that SCA
travel. Existing evidence on the duration of SCA migratory flights is scant, but a reasonable
estimate is that SCA travel five hours per day on average. Based on this expected travel
time, the probability of distance traveled using the wind speed of the county is given by
the following triangular distribution:

PWSPD = f (WSPD) = 1− |WPSD(t− 5)|
5 ∗WPSD

(3)

where PWSPD is the probability of movement using WSPD, WSPD is the average of all
5 min wind speed observations each day (miles per hours), w is wind speed, and t is the
time the SCA travel per day. The probability according to the travel distance according
to WSPD is shown in Figure 3 below. Equation (3) shows that the SCA is most likely to
travel 5 h according to the wind speed, and the probability decreases as it moves away
from it. This means that as the distance between the initial location and the field is closer
to the distance traveled for five hours at the corresponding wind speed, the probability
that the SCA will move to the field increases. The distance traveled to each field was
calculated using the Haversian formula, which was necessary since Euclidean measures
are not accurate, given Earth’s curvature. Using the latitude and longitude coordinates of
field centroids, the distance between two fields is given by:

dh = 2arccsin

(√
sin2

(
θ2 − θ2

2

)
+ cos(θ1) cos(θ2)sin2

(
δ2 − δ2

2

))
(4)

where θ2, θ2 are the field centroid latitudes in radians and δ2, δ1 are the field longitude
centroids in radians.
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Figure 3. Probability of SCA movement along a straight-line distance from initial infestation to
destination field.

There are no studies estimating the correlation between the wind direction and SCA,
but studies on observed SCA migratory patterns suggest that wind direction largely de-
termines the vector of SCA movement [35,39,40]. Based on this empirical evidence, a
probabilistic function was developed to quantify the likelihood of SCA migration. The
function requires the location of both the source field, where SCA infestation has already oc-
curred, and a destination field where migration may occur. If wind direction, as measured
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from the source field, is in the same direction as the destination field, then the probability of
the SCA flying over the destination field is 1, assuming that wind velocity was sufficiently
strong (Equation (3)) for the SCA migratory cohort to reach the destination. For wind
directions varying away from this ideal situation, the probability of reaching the destina-
tion field decreases. The probability distribution has the form of a triangular distribution
and is based on the wind direction measurement system used by the Oklahoma Mesonet.
This is a 16-point cardinal direction that records daily prevailing wind direction using an
integer between 0 and 15, PPDIR, with a corresponding angular range of ±11.25◦ between
each of the 16 possible wind directions. The probability function assumes that flight varies
from the primary direction by ±1 wind-directional unit, e.g., a primary direction of 7 is
assumed to vary between 6 and 8 by ±11.25◦. This parametrization places lower limits on
the probability distribution, which declines linearly from a probability of 1 along PPDIR to
zero at the boundary between PPDIR and its nearest direction. The probability distribution
is shown in Figure 4 and is given by the following formula:

PPDIR = 1− ((|di|∗σ)/11.25) (5)

where PPDIR is probability of movement using the primary wind direction, PDIR is most
common wind direction for the day, di is the angular difference in degrees between PDIR
and angles, and σ is a parameter (σ > 0) that establishes the boundary where probability
equals zero. For this study, a value of σ = 1 was chosen so that the zero-probability boundary
occurs at PDIR ± 1 wind-direction value, whereas other values such as σ = 2 or σ = 3 shift
the boundary inward (Figure 4).
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Figure 4. Probability of SCA migratory flight landing on destination field as a function of angular
deviation from daily observed wind direction.

2.1.4. Joint Probability of SCA Movement

The modeling of SCA movement took place over 10 days in early June, when SCA
infestations typically emerge. The small window of time is appropriate, because the aim
was to investigate the flight movement of SCA and the persistence of wind patterns,
which are hypothesized to be trending primarily northward in early June. Hence, our
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aim was to develop a model of SCA survival throughout the ten-day period rather than a
complete simulation model. The entomology literature contains excellent examples of such
highly developed biophysically and morphologically based aphid and insect simulation
models [24]. Moreover, our purpose is not to predict actual aphid populations but to
provide probabilities of SCA movement from an initial known location to other fields,
so actual population at the time of migration is of much less importance. Probabilities
reported in the Results section should be interpreted as the relative probability of SCA
infestation on one field compared to others.

Simulation began at an initially infested location i at time t where location is georefer-
enced at the sorghum field’s centroid and t is measured in days. Each day, the probability
of SCA infestation at location i transitioned in according to the temperature and rainfall
survival probabilities following in the Leslie population growth approach often used in
simulation [25,41–44]:

Pi
t+1 =Pi

t × Pi
t,rain × Pi

t,temp (6)

where Pi
t,rain and Pi

t,temp are calculated from Equations (1) and (2). A cohort of the remaining
SCA population migrated through flight according to the following assumptions: (1) pop-
ulation pressure was sufficiently large to induce migration [24]; (2) a sufficient number
of alleles were available each day for migratory flight; and (3) to reduce model complex-
ity, daily migratory SCA population was replaced by colony growth so that daily SCA
probability of infestation remained constant.

SCA migration was predicted for all possible paths from field i to all other sorghum
fields in Oklahoma. The predicted probability of the SCA cohort movement from field i to
a particular field j was calculated based on wind speed (Equation (3)) and wind direction
(Equation (5)) that are independent of one another:

Pij
t = Pij

t,PDIR × Pij
t,WSPD for t = 1, 2 . . . N (7)

where Pij
t is the daily probability of moving from initial location i to sorghum field j at time

t. Equation (7) is calculated on a daily basis for all 1632 sorghum fields that were actively
planted during the initial infestation. Following projected flight movements at time t, the J
destination fields were updated beginning on the day following their arrival in the same
manner as the source fields. Labeling the newly arrived colonies as Pj

t , the following day’s
probability of survival was updated by the temperature and rainfall survival probabilities
given by:

Pj
t+1 = Pj

t × Pj
t,rain × Pj

t,temp (8)

The simulation process was repeated for N = 11 days, always beginning from the
initial infestation at location i. Subsequent migration from the J destination fields was
not considered since the primary objective is to investigate if persistent weather patterns
exist across years. Isolating the predicted movement of a single colony was considered
sufficient to achieve our research aim. Once completed, the predicted probability of an
SCA infestation on each field j was calculated as the 11-day time average over which the
migratory flights were calculated.

2.2. Explaining Spatial Patterns of SCA Movements over Time

The probability of SCA flight migration from an initial infestation in Kiowa County,
Oklahoma, was regressed using the GPS coordinates of the destination field’s centroid
as explanatory variables. Since the survivability and flight movement probabilities are
derived from weather variables, our working hypothesis is that persistence in weather
variables implies that field-location regression parameters should likewise be significant.
Eight years (2013–2020) of simulated SCA migration generated a balanced dataset of
13,056 observations representing flight migration from an initial infestation in Kiowa
County to 1632 destination sorghum fields. Since probabilities are defined in the range
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from 0 to 1, the use of OLS would provide misleading results. A fractal regression model
was hence used since it estimates a logistic function that takes on values from 0 to 1. Its
general form is the following:

E(Pj,T |Z) =
expZ

(1 + expZ)
(9)

where Pj,T is the cumulative probability at the end of the simulation period in year T and Z
is a vector of regression parameters. The regression equation uses a 2nd-order polynomial
with an interaction term for Z as given by:

Z = a + β1Xi,j + β2Yi,j + β3X2
i,j + β4Y2

i,j + β5Xi,jYi,j + dT + εrt (10)

where Xi,j and Yi,j are the relative coordinates measured from field i, the location of the
initial infestation in Kiowa County, dt are year dummy variables, a is the intercept, and εrt
is an independently and identically distributed error term for sorghum field r on day t with
mean zero and variance σ2. The Xi,j,Yi,j coordinates were obtained from the georeferenced
latitude–longitude of each field’s centroid using ARC-MAP software. The model was
estimated in Stata software using the fracreg statement. The estimated regression equation
is essentially a probability distribution of SCA movement across two-dimensional space.

2.3. Data

Data used for the SCA weather survival and flight movement simulation equations
were daily averaged observations data of air temperature (TAVG), rainfall (RAIN), wind
speed (WSPD), and primary wind direction (PDIR) as recorded by the Oklahoma Mesonet.
This system includes 119 weather stations located in each county, with some larger counties
operating multiple stations. In such cases, weather variables were averaged for each county.
Mesonet stations measure TAVG and WSPD based on daily averages of temperature
and wind speed measured at 5 min intervals. PDIR is reported as the prevailing wind
direction for the day based on a discrete 16-point compass heading, i.e., a 22.5◦ separation
between readings.

The SCA model was run for an eleven-day period, 15–25 June, coinciding with the
initial SCA infestation in Kiowa County that was observed in 2018. Since this mid-June
time frame is the typical time and place when and where SCA first arrive in Oklahoma,
the SCA model was run across the same eleven-day window (15–25 June) using weather
conditions from seven other years (2013–2017; 2019–2020) to investigate how SCA move-
ment would have occurred across different years. This constructs a set of panel data from
which econometrics can test if weather can explain the temporal and spatial patterns of
SCA movement. Hence, model results presented in the following section represent field
conditions only for 2018, with other years based on observed weather beginning with the
same initial infestation in Kiowa County. Average values of weather variables by year are
listed in Table 1.

The SCA migration probabilities were calculated for each sorghum-producing field
in Oklahoma. The CROPSCAPE-georeferenced dataset was used to identify the entire
population of sorghum-producing fields in Oklahoma (Figure 5). The average number of
sorghum fields during the analysis period was 1632. Sorghum production in Oklahoma
is mainly concentrated to the western portion of the state, with the primary region in the
panhandle. The SCA migration probabilities were calculated using the centroid of Kiowa
County as the destination coordinates (Figure 5). This location was selected since the first
occurrence of SCA has typically been in this location, or neighboring counties, from early
to mid-June [45]. Hence, the SCA probabilities were calculated from 15 June to 25 June.
The eleven-day period was chosen since infestations typically last for this length of time
before they are either be controlled by pesticides or colonies die off through natural causes.
Over an eleven-day period, based on reported sightings, SCA movements were typically in
the range of 100 miles.
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Table 1. Summary statistics for weather variables used in SCA movement model.

Year TAVG (◦F) RAIN (Inches) WSPD (Miles/Hours) PDIR (16-Point)

2013 79.80 0.13 14.80 7.29
2014 77.40 0.12 13.90 7.53
2015 78.50 0.03 11.90 7.65
2016 81.40 0.10 11.10 7.63
2017 77.00 0.08 10.50 6.43
2018 76.30 0.27 12.80 7.70
2019 73.30 0.13 9.78 8.32
2020 77.50 0.14 13.30 6.83
Ave 77.34 0.12 12.26 7.42

Note: TAVG is average of all 5 min averaged temperature observations, PDIR is most common wind direction for
the day, WSPD is average of all 5 min wind speeds, and RAIN is liquid precipitation measured each day. Source:
https://www.mesonet.org/ (accessed on 28 February 2023).
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Figure 5. Georeferenced map of sorghum fields in Oklahoma identified during the 2018 growing
season. Source: CROPSCAPE.

The probability of SCA movement for a single day, beginning from the source of
infestation, Kiowa County, is illustrated in Figure 6. Sample calculations are provided for
the field of maximum probability of an SCA airborne infestation, P = 0.37, as indicated
by the red square (Figure 6). For this day, 15 June 2018, wind direction was PDIR = 8,
indicating a due north wind direction. As a result, only fields contained within a 22.5◦

spoke emanating from the infested field in Kiowa County, oriented in a due north direction,
had non-zero probabilities for this simulation day (Figure 6). All fields outside the spoke
had zero probability of SCA migration and are not drawn. Based on Equation (4), fields
due north of the infested field had the highest probability based on the prevailing wind
direction (PDIR = 8). Moving from the middle of the cone to its boundary decreases the
probability of SCA landing on fields in that region. The sample field is oriented −0.19◦ W
of the source field, resulting in a directional probability of PPDIR = 0.983. The effect of wind
speed is also evident as the highest probabilities are near the midway point between the
infested field and fields furthest to the north. For the sample field, located 91.1 miles from
the source field, on a day with a wind speed of 17.9 mph, resulted in a 5.08 h flight. This is
extremely close to the ideal 5 h flight, the highest-probability flight time in Equation (3),
generating a wind-speed probability of PWSD = 0.9775. SCA colonies successfully landing
on a destination field were then updated according to daily rainfall and temperature.
The sample field with 0.1766 in of rain and a temperature of 30.1 ◦C resulted in losses

https://www.mesonet.org/
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of PRAIN = 0.588 and PTEMP = 0.649 using Equations (1) and (2). Using Equation (7), the
overall probability of an SCA colony on the red field was P = 0.37.
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3. Results

This section presents the results of the fractal regression model and a discussion of
their implications and findings compared to prior research. This includes an assessment of
the limitations in our current modeling approach, as well as its potential use in an early
warning system.

3.1. Effect of Weather Variables on Predicted Cumulative Probability

The fractal regression model fit the predicted SCA probabilities modestly well with a
pseudo R2 of 0.30 and a highly significant Wald test of 1102.13 (Table 2). All of the model
parameters were significant at the 5% level or greater except for the year 2014 dummy
variable (Table 2). The effect of each regression coefficient on SCA movement was consistent
with expectations, as illustrated in Figure 7. For example, ignoring second-order terms,
the northwesterly movement found in each year of the simulation is explained by the
negative sign on the X variable (westward movement) and the positive sign on the Y
variable (northerly movement).

The spatial regression model’s in-sample predictions were reasonably accurate, consis-
tent with the pseudo R2 that explained roughly one third of the model variance (Table 2).
Figure 7 illustrates three years of SCA movement: red subfigures represent simulated
movements from the SCA model, whereas green subfigures are predicted movements
from the regression model. Colored dots represent sorghum fields where output from
either the fracreg regression model or the SCA simulated model was greater than 0.5,
the threshold value used when interpreting binary variables. Results indicate that the
fracreg regression model is able to predict the overall trend in SCA movement across years,
which with an average PDIR = 7.42 over the eight years of simulation corresponds to a
north-to-northwesterly movement towards the Oklahoma panhandle. Variations in wind
patterns across years, in both speed and direction, were not entirely explained by the fracreg
regression model (Figure 7). For example, in 2014, there were unusually strong winds
to the northeast that were not well-captured by the fractal regression model (Figure 7).
Conditions in 2018, when temperature and rainfall events were unusually strong and
resulted in fewer forecasted infestations, were also difficult for the regression model to
accurately predict (Figure 7).
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Table 2. Fractional regression results for sugarcane aphid predicted cumulative probability
(2013–2020).

Variable Coeff. Std. Err Z p > |z| [95% CI]
Lower Upper

X −0.0132 a 0.001 −10.22 0 −0.0158216 −0.010
Y 0.0094 a 0.001 8.88 0 0.00739 0.0115
X2 −0.0003 a 1.1 × 10−5 −29.41 0 −0.0003467 −0.0003
Y2 −0.5 × 10−3 a 8.1 × 10−6 −5.81 0 −0.0000632 −3.1 × 10−5

XY −0.23 × 10−3 b 1.2 × 10−5 −2.00 0.046 −0.0000467 −4.20 × 10−7

2014 −0.0484 0.0612 −0.79 0.429 −0.1684028 0.0715
2015 −0.8925 a 0.0981 −9.09 0 −1.084918 −0.7001
2016 −0.3168 a 0.0778 −4.07 0 −0.4694808 −0.1642
2017 −0.2949 a 0.0556 −5.30 0 −0.4040613 −0.1857
2018 0.25337 a 0.0434 5.83 0 0.168127 0.3386
2019 −0.2769 a 0.0511 −5.41 0 −0.3773219 −0.1766
2020 0.2020 a 0.0445 4.53 0 0.11464 0.2894

a −2.305402 a 0.035933 −64.16 0 −2.375828 −2.23498

Note: a, b indicate 1% and 5% significance levels.
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The spatial regression model’s in-sample predictions were reasonably accurate, con-
sistent with the pseudo R2 that explained roughly one third of the model variance (Table 
2). Figure 7 illustrates three years of SCA movement: red subfigures represent simulated 
movements from the SCA model, whereas green subfigures are predicted movements 
from the regression model. Colored dots represent sorghum fields where output from ei-
ther the fracreg regression model or the SCA simulated model was greater than 0.5, the 
threshold value used when interpreting binary variables. Results indicate that the fracreg 
regression model is able to predict the overall trend in SCA movement across years, which 
with an average PDIR = 7.42 over the eight years of simulation corresponds to a north-to-
northwesterly movement towards the Oklahoma panhandle. Variations in wind patterns 
across years, in both speed and direction, were not entirely explained by the fracreg re-
gression model (Figure 7). For example, in 2014, there were unusually strong winds to the 
northeast that were not well-captured by the fractal regression model (Figure 7). Condi-
tions in 2018, when temperature and rainfall events were unusually strong and resulted 
in fewer forecasted infestations, were also difficult for the regression model to accurately 
predict (Figure 7). 
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Marginal effects were significant (5%) for the Y variable and several of the year dummy
variables (Table 3). This is likely explained by the strong northerly movement of SCA that
is primarily measured by distances along the Y rather than X axis (Table 3). The marginal
effect for Y can be interpreted as the increase in probability of SCA infestation for a field
located a distance Y miles from the infestation location, i.e., the centroid of Kiowa County.
For a typical daily travel distance of 100 miles, the marginal effects indicate that the change
in infestation would be 0.00185, according to Table 3. The marginal effects also indicate that
weather in 2018 and 2020 had positive, significant effects on SCA infestation, according
to the regression model. In 2018, the year effect was greatest, with a marginal effect of
0.002551. When compared to other years, probabilities were, ceteris paribus, forecasted to
be as much as 0.004231 larger than in 2016 (Table 3).
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Table 3. Marginal effects of the fracreg regression model.

Var. Coef. Std. Err z p > |z| [95% CI]
Lower Upper

X 3.19 × 10−6 2.03 × 10−6 −1.57 0.116 −7.17 × 10−6 7.83 × 10−7

Y 1.85 × 10−5 1.77 × 10−6 10.49 0 1.51 × 10−5 0.000022
2014 −0.00036 0.000435 −0.82 0.415 −0.0012079 0.0004979
2015 −0.00292 0.000218 −13.4 0 −0.0033454 −0.00249
2016 −.001765 0.000344 −5.13 0 −0.0024399 −0.00109
2017 −0.00168 0.000282 −5.95 0 −0.0022324 −0.00113
2018 0.002551 0.000486 5.25 0 0.001598 0.0035047
2019 −0.00161 0.000273 −5.88 0 −0.0021415 −0.00107
2020 0.001927 0.000462 4.17 0 0.001022 0.0028326

The strong level of consistency in predicted pest movements across years, as illustrated
in Figure 7, implies the presence of autocorrelation in the weather variables. Statistical tests
were thus conducted to identify the presence of spatial, temporal, and joint spatial–temporal
correlation. Spatial autocorrelation was identified in all four of the weather variables by
both the BSJK and Pesaran tests (Table 4). This supports the working hypothesis that
spatially persistent weather patterns existed during the eight-year, eight-day analysis
period, and corresponding spatial clustering patterns can be identified. Likewise, the tests
identified highly significant (p < 0.05) temporal autocorrelation in all four weather variables
except PDIR, which was not significant in the BSJK test (Table 4). A third test found highly
significant joint autocorrelation in all four weather variables, implying persistent weather
patterns across both time and space.

Table 4. Spatial and serial correlation tests of weather variables.

Test Statistic TAVG RAIN PDIR WSPD

Serial correlation
BSJK (LM) 4.3 b 3.3098 c 2.6254 17.333 a

Breusch–Godfrey (LM) 212.34 a 89.813 a 235.96 a 345.01 a

Spatial dependence
BSJK (LM) 104.84 a 146.37 a 60.99 a 130.65 a

Pesaran CS Dependence (Z) 108.14 a 97.8 a 64.473 a 105.26 a

Joint Serial–Spatial correlation
BSJK (LM) 894.68 a 579.17 a 1042.4 a 1569.4 a

Note: a, b, and c mean indicate rejecting the null hypothesis at the 1%, 5%, and 10% significance levels, respectively.

3.2. Discussion

Prior research has developed numerous simulation models that, in general, include
processes for population growth, instar development, reproduction, allele, flight dispersal,
and survivability [24,25,45,46]. Our flight dispersal–survivability-based simulation is most
similar to Kowalweski, T. and Wang, H., who developed an SCA flight dispersal model
for Oklahoma and two bordering states, Texas and Kansas, with initial infestations in the
Rio Bravo Valley in south Texas [45]. Their simulation utilizes simulated weather data and
an atmospheric dispersal model (NOAA-HYSPLIT) that predicted SCA flight movement
among 25 × 25 km sized grids, a much coarser scale than the field level used in this
paper. Their primary method of model validation was comparisons between observed and
simulated dates of the first SCA infestations reported between 2015 and 2019 as part of the
EDDMapS database. For Oklahoma, their simulation was able to predict the average date
of first SCA arrival within 7 days, to within 1 day of the latest first arrival, and to within
51 days of the earliest first arrival [45]. Using Passing-Bablok regressions on predicted
versus actual days to first infestation, no significant difference was found between them
in Texas and Oklahoma, suggesting the simulation model performed well in predicting
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regional SCA movements, though the Kansas prediction was significantly different from
observed outbreaks.

Our model provides complementary and more detailed, localized predictions of
subsequent movements following an initial infestation that prior research has not addressed.
Though too limited in scope at this point for a formal validation, Figure 8 illustrates the
probability of SCA movement at the end of our simulation in June and the location of
two EDDMapS-reported SCA infestations, one in Caddo County (20 June 2018) and another
in Grady County (21 June 2018). Although the two observed outbreaks were not accurately
predicted by our model, our model identified a single hotspot in Ellis County, 110 miles
northwest of the initial infestation, which is consistent with overall pest movement during
this time of year. While the Caddo and Grady County infestations could have been caused
by other fields with unreported infestations, misspecified components of our current model
are an equally likely source of error.
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One of the most critical features that our future research will address is to use a more
complete modeling of wind currents that carry SCA through their flight. We currently
use ground-based wind trajectories that are only accurate for flights up to approximately
100 feet, but atmospheric wind currents change in speed and direction at altitudes above
this height. This would be the most likely explanation for the lack of model validation
shown in Figure 7, since the prevailing ground wind was in the northwest direction with
only one day when wind direction was favorable to Caddo and Grady Counties. It is likely
that upper-level wind currents were more random and included both due easterly and
westerly directions that would explain infestations in Caddo and Greer Counties (Figure 8).
Future modeling needs to consider a multilayered approach to SCA flight, considering
altitudes up to 10,000 feet.

Flight time is also a critical parameter when predicting dispersal. Kowalweski, T.
and Wang, H. consider a longer range of flight time in their modeling work, with a range
between 12 and 15 h. Our model considers a range of flight time between 0 and 10 h, with
the highest probability at 5 h. Future modeling needs to consider incorporating longer
flight times as well.

3.3. Population Survivability

The survivability functions could also create difficulties in obtaining a significant
model validation. Our temperature survivability function was based primarily on DeSouza,
M. and Armstrong, J., who derived SCA survivability (and fecundity) hosted by sorghum
plants in Matagoradoa, TX, a region with agroecological conditions most similar to our
Oklahoma study area [33]. Field trials were conducted using growth chambers across a
controlled range of temperatures from 5 to 35 ◦C in 5 ◦C increments. SCA survivability
increased from an expected lifespan of 8.8 days at 5 ◦C to a maximum life of 47.4 days at
15 ◦C. Survivability decreased for the remaining hotter temperatures, falling to an expected
8.7-day survivability at 35 ◦C. SCA fecundity was more temperature-sensitive as the
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extreme temperatures of 5 ◦C and 35 ◦C prevented reproduction and only 0.1 nymphs per
day were produced at 10 ◦C. Fecundity then increased more rapidly, reaching a maximum
of 2.4 nymphs per day at 30 ◦C.

Acreman, S.J. and Dixon, A.F. also reported a similar effect of temperature on the
survivability and fecundity of wheat aphids [26] (Sitobion avenae F.). Following a similar
experimental design to DeSouza, M. and Armstrong, J., they also reported a maximum
wheat aphid survivability of 8.3 days at 15 ◦C and a maximum fecundity of 3.9 nymphs
per day at 25 ◦C. The resulting curve from Equation (1) is in close proximity to those
models. For example, at 15 ◦C, the models predicted daily mortality probabilities of 97.9%
and 92.4%, respectively, while Equation (1) predicts a 91.5% mortality. At 25 ◦C, the
temperature most reflective of conditions observed during our study period, the models
predicted daily mortality probabilities of 96.5% and 87.7%, respectively, while Equation (1)
predicts an 85.5% mortality. Since our current model did not perform well in a limited
validation exercise, future modeling will need to consider additional survival functions to
improve validation.

The effect of rainfall on survivability is more difficult to assess due to differences in
the data available for our study and those used in previous studies. Weather observations
available to this study unfortunately did not include rainfall intensity, e.g., hourly rainfall,
which previous studies concluded had a more significant effect than total rainfall. Popula-
tion losses due to rainfall, modeled in Equation (2), should be modified in future research
to include a more refined equation that accounts for rain intensity through hourly or even
shorter-duration rainfall measurements (Figure 2). This is particularly important since
late spring and summer rainfall in Oklahoma is typically intense, and the daily rainfall
used in this study is likely an aggregate of several storms, each high in intensity and of
short duration. For example, 1 in (25.4 mm) of daily rainfall could likely be two storm
events of 15 min with an intensity of 50.8 mm per hr of rainfall. Our current model would
underpredict SCA population losses from rainfall. For example, our model predicts a
loss of 63.2% compared to the 78.0% loss predicted by Rodriguez-Bosque under actual
rainfall conditions.

3.4. Weather Persistence and Improved Forecasting

The significant explanatory power of the spatial regression model provides empirical
support that persistent wind patterns existed during the study period that are further
corroborated by the spatial and temporal autocorrelation reported in Table 4. This is a
meaningful finding since known weather patterns should result in more accurate predic-
tions and are expected to provide localized models such as ours an advantage over regional
models that rely on simulated data that have no forecasting capacity. Hence, approaches
such as the one presented in this paper are better suited for an early warning system.
Existing extension networks have integrated a large number of producers into various
information-sharing programs including pest management. State reporting of infestations
typically occurs from county-level agents scouting alongside producers. Once identified,
state agencies relay this information to producers through web-based portals, providing
recommended treatments and maps indicating affected farms. Recent advances in AI and
image detection are on the verge of adoption and are expected to vastly improve scouting
by reducing time in the field, and improve accuracy.

To function as an early warning system, existing reporting methods need to provide
producers with forecasted movements in real-time so farms can be adequately prepared
for upcoming events. The preliminary findings in this paper suggest that the joint spatial–
temporal autocorrelation identified in the weather panel data could be the basis of a pest
movement-forecasting tool for airborne infestations that are highly dependent on prevailing
wind currents, such as SCA. Once identified, infested-field location could be used to
initiate the forecasting procedure by combining predicted weather outcomes based on both
previous years, through the temporal autocorrelation, and across the statewide farming
community through spatial autocorrelation. Temporal autocorrelation would provide a
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weather forecast based on a daily time step, using information from previous weather. For
example, an infestation reported on 10 June could be forecasted using expected weather
on 11 June since the temporal autocorrelation implies prior days’ weather has significant
explanatory power. Likewise, the spatial autocorrelation would provide improved forecasts
across space. For example, fields in flight proximity of an infested field would have weather
forecasts based on their location in regard to the infested field. The spatial autocorrelation
implies that having field location provides significant forecasting power. The forecasted
weather could then be fed into a daily time step pest movement model, such as that
developed in this paper, to provide producers with expected areas of infestation.

4. Conclusions

In this study, the temporal and spatial characteristics of weather variables were in-
vestigated to assess whether SCA movements could be forecasted. Spatial and temporal
correlations of weather variables were estimated and results suggest that wind direction,
wind speed, average temperature, and precipitation have joint spatial and temporal auto-
correlation in both cross-sectional data and panel data, exhibiting persistence. While further
analysis is required to develop findings across different climatic regions, initial evidence in-
dicates that weather variables could potentially be utilized in forecasting SCA movements.

A critical need is to continue developing early warning programs to provide producers
with adequate time to prepare for likely infestations. The scant data available on SCA
infestation make it difficult for model validation and calibration. Ongoing efforts that
encourage producers to upload their SCA scouting and monitoring findings in real time,
in conjunction with AI-based cell phone apps that greatly reduce scouting time, should
continue and be expanded as it is unlikely that satellite imagery or related technology will
be able to substitute for manually based scouting approaches.

The model presented in this paper was intended primarily to investigate weather
patterns and to assess if there was adequate predictive power to provide contemporaneous
forecasts of SCA movement. In future research, the equations governing SCA movement
need to be expanded to include additional variables and model parameters estimated based
on empirical data. Estimation is currently challenged by lack of observed SCA infestations,
but over time, data will become increasingly available. This could include the effect of wind,
plant growth stage, and plant stress on SCA survivability. The latter could be of particular
importance since water-stressed plants are typically more susceptible to phytophagous
insects due to increased nitrogen availability [12]. Weather variability and extreme events
could also be included in the negative effects of extreme, fluctuating temperatures. Machine
learning and similar estimation approaches can be utilized to train the governing equations
consistent with observed outbreaks, including the use newly developed algorithms based
on deep learning.

Future modeling could include a broader geographic scope and a longer time span
encompassing earlier migratory movements. SCA are believed to begin their northward
migration in early spring from southern Texas, near latitudes where temperatures remain
above freezing. This paper presented a modest framework to forecast movement from a
single location over an expected colony lifespan of ten days. While additional scrutiny is
warranted, findings suggest that weather persistence could provide significant predictive
power. A suggested second-generation modeling approach would consider tracking daily
SCA movements from a larger number of infested fields. From experience gained in devel-
oping the model presented in this paper, considering simultaneous outbreaks is expected
to greatly increase computing requirements. Artificial intelligence algorithms, including
machine learning and neural networks, should be explored as possible approaches.
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