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Abstract: Under the “Double Carbon” background, the development of green agricultural machinery
is very fast. An important factor that determines the performance of electric farm machinery is the
endurance capacity, which is directly related to the running path of farm machinery. The optimized
driving path can reduce the operating loss and extend the mileage of agricultural machinery, then
multi-node path planning helps to improve the working efficiency of electric tractors. Ant Colony
Optimization (ACO) is often used to solve multi-node path planning problems. However, ACO
has some problems, such as poor global search ability, few initial pheromones, poor convergence,
and weak optimization ability, which is not conducive to obtaining the optimal path. This paper
proposes a multi-node path planning algorithm based on Improved Whale Optimized ACO, named
IWOA-ACO. The algorithm first introduces reverse learning strategy, nonlinear convergence factor,
and adaptive inertia weight factor to improve the global and local convergence ability. Then, an
appropriate evaluation function is designed to evaluate the solving process and obtain the best fitting
parameters of ACO. Finally, the optimal objective function, fast convergence, and stable operation
requirements are achieved through the best fitting parameters to obtain the global path optimization.
The simulation results show that in flat environment, the length and energy consumption of IWOA-
ACO planned path are the same as those of PSO-ACO, and are 0.61% less than those of WOA-ACO.
In addition, in bump environment, the length and energy consumption of IWOA-ACO planned
path are 1.91% and 4.32% less than those of PSO-ACO, and are 1.95% and 1.25% less than those of
WOA-ACO. Therefore, it is helpful to improve the operating efficiency along with the endurance of
electric tractors, which has practical application value.

Keywords: path planning; ACO; IWOA; electric tractor

1. Introduction

Based on the needs of large agricultural bases in Xinjiang and the development
of facility agriculture, agricultural machinery has been widely used. As a new type of
agricultural machinery, the electric tractor has the advantages of low pollution, low noise,
high efficiency, easy operation, etc. [1]. In recent years, it has been gradually applied to
agricultural production [2,3]. From the reduction in loss and the improvement in endurance,
we need to plan the optimal path to improve efficiency of electric tractors.

Multi-node path planning refers to the path after traversing all nodes in a certain area,
starting from a node, with the set of optimal operation rules. This is an increasingly impor-
tant area in automated production includes plant protection and farmland leveling [4,5], as
well as tractor path planning [6]. Ref. [7] proposed a path planning and tracking control
method, which was helpful for vehicle collision-free driving. Ref. [8] proposed a trac-
tor path planning method applied in complex environment, which improved the tractor
operation efficiency and coverage. In recent years, intelligent algorithm is a major area
of interest within the field of multi-node path planning [9–11], such as ACO algorithm,
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genetic algorithm (GA), Particle Swarm Optimization (PSO), etc. Ref. [12] proposed an
improved ant colony algorithm based on the adaptive volatile coefficient for the traveling
salesman problems. Ref. [13] proposed a parallel ant colony algorithm for multi-node
path planning of facility greenhouse robots. Ref. [14] proposed ant colony optimization
algorithm variants to increase the probability of the algorithm to find the object. Ref. [15]
proposed an improved ant colony optimization algorithm to solve the traveling salesman
problem. Ref. [16] proposed an improved particle swarm optimization for multi-node path
planning. Ref. [17] proposed GA for the traveling salesman problems. As the bionic ant
colony foraging behavior adopted by ACO is similar to path planning, ACO is a commonly
used algorithm to solve the multi-node path planning problem. When applying ACO to
solving specific problems, it is possible to set the iteration rules of the algorithm parameters
in a targeted way. However, ACO requires many parameters, and it is difficult to determine
the optimal fitting combination of parameters. Therefore, it is easy for the algorithm to fall
into local optimal solution, which is not conducive to obtaining the optimal path.

The Whale Optimization Algorithm (WOA) is an intelligent algorithm proposed
by Australian scholars [18] which simulates the foraging behavior of whales to solve
the objective function. WOA has the advantages of small number of setting parameters
and strong convergence performance; however, it easily falls into local optimum and
has low convergence accuracy. In recent years, a number of researchers have sought
to improve WOA. References proposed improved whale optimization algorithms based
on elite backward learning [19], the crossover and mutation operations [20], nonlinear
convergence factor [21–23], and adaptive weighting factor [22,23], respectively, which
balance between global and local convergence capability and enhance the diversity of
the initial solution. Therefore, WOA has the possibility to further optimize population
initialization and iteration rules to improve algorithm performance. However, a major
problem with those is the complexity of optimization algorithm logic, which reduces the
operational efficiency of the algorithm.

The main contributions of this paper are as follows:

1. This paper proposes a fusion improved Whale Optimization Algorithm and Ant
Colony algorithm, named IWOA-ACO, to plan the multi-node path of the electric
tractor by optimizing the parameters of ACO. At the same time, IWOA introduces
reverse learning strategy, nonlinear convergence factor and adaptive inertia weighting
factor to balance between global and local convergence capability of it and enhance the
diversity of the initial solution. Then, IWOA-ACO improves the evaluation function to
ensure accurate evaluation of ACO performance during iteration. The block diagram
of IWOA-ACO is shown in Figure 1.
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Figure 1. The block diagram of IWOA-ACO.

2. The operation node data of cultivated land environment in Xinjiang is taken and as
an example, the experimental results show that IWOA-ACO algorithm can optimize
ACO setting parameters to plan the optimal path of electric tractor, which is better
than WOA-ACO and PSO-ACO in path length and energy consumption. Moreover,
considering the flat terrain of Xinjiang, this paper constructs a bump environment
model and conducts simulation experiments to reflect the universality of IWOA-ACO
algorithm. In addition, the experimental results show that the length and energy
consumption of the planned path of the algorithm is still better than those of WOA-
ACO and PSO-ACO, reflecting the good value of the algorithm.
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In a word, we propose an IWOA-ACO algorithm to plan a path with better path
length and energy consumption. Based on the experimental analysis of complex nodes
and experimental fields in Xinjiang, the path length and energy consumption of electric
tractors planned by IWOA-ACO are better than those of WOA-ACO and PSO-ACO, thus
improving the operating efficiency and endurance level of electric tractors.

2. Methods
2.1. Analysis of ACO

This section briefly introduces the operation principle of ACO algorithm and the
impact of the main parameters on the algorithm performance. Aiming at the iteration
redundancy problem that may be caused by setting an excessively high maximum iteration
number of the algorithm, the Iteration Early Termination Strategy (IETS) is introduced to
enhance the operational efficiency of the algorithm.

2.1.1. The Introduction of ACO

Ant foraging is a group behavior. In the process of foraging, ants will release volatile
pheromones and perceive the residual pheromone concentration released by after other
ones. Ants use roulette strategy when choosing the path, and will prioritize the path
with short path and high pheromone concentration, which constitutes a positive feedback
mechanism. After a period of time, the ant colony will choose an optimal path. The state
transition function is shown by

PtACO
ij =


Taij(tACO)

αEtij(tACO)
β

∑
tACO∈allow(tACO,i)

Taij(tACO)
αEtij(tACO)

β , j ∈ allow(tACO, i)

0, j /∈ allow(tACO, i)
(1)

where tACO is the current iteration, PtACO
ij is the state transition function, β is the heuristic

function importance factor, α is the pheromone importance factor, i and j are the adjacent
nodes, and allow(tACO,i) is the node that has not been accessed. Taij(tACO) is pheromone
concentration, as presented in Equation (2). Etij(tACO) is heuristic function, as presented in
Equation (3).

Taij(tACO) = (1− rh)Taij(tACO − 1) + ∆Taij(tACO) (2)

where rh is the pheromone concentration volatilization factor, and ∆Taij(tACO) is the new
increment of pheromone on the path, which is related to whether ants pass through the path.

Etij(tACO) =
1

Disij
(3)

where Disij is the European distance through the path.
When researchers apply the ant colony algorithm to specific problems, the main

parameters to be set are α, β, rh and the ant quantity, such as m. This paper analyzes the
impact of four parameters on the performance of ACO algorithm as follows [24]:

1. α and β influence PtACO
ij together. α reflects the importance of the ant colony to the

existing pheromone when searching the path, and β reflects the degree to which the
ant colony pays attention to the local shortest path when searching the path. When
the setting values of α and β are large, the local convergence ability of the algorithm is
strong. On the contrary, the algorithm has strong global convergence.

2. rh affects the pheromone concentration level, thus affecting PtACO
ij . When the setting

value of rh is large, the pheromone concentration on the path is low, and the positive
feedback effect is weakened, so the algorithm has strong global convergence ability,
but the convergence speed of the algorithm is slow. On the contrary, the pheromone
concentration on the path is high, and the positive feedback effect is enhanced, so the
algorithm converges quickly, but it easily falls into the local optimal solution.
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3. m affects the convergence ability and running speed of the algorithm. When the
setting value of m is large, the global convergence of the algorithm is good, but the
running speed is slow. On the contrary, the running speed of the algorithm is fast, but
the convergence performance is poor, and it easily falls into the local optimal solution.

2.1.2. The Introduction of IETS

In ACO algorithm, when the set number of iteration terminations is larger than the
solution problem, multiple iterations will have the same value at the end of the iteration,
reducing the efficiency of the algorithm. This paper introduces IETS: when the iterative
solution reaches the set value tset with the same number of consecutive times t0 and the
iterative solution is less than the set value xset, the iteration is terminated. Otherwise, the
iteration will continue until the maximum iteration period tmax is met. The flowchart of
IETS is shown in Figure 2.

Agriculture 2023, 13, x FOR PEER REVIEW 4 of 20 
 

 

the setting values of α and β are large, the local convergence ability of the algorithm 
is strong. On the contrary, the algorithm has strong global convergence. 

2. rh affects the pheromone concentration level, thus affecting ACOt
ijP . When the setting 

value of rh is large, the pheromone concentration on the path is low, and the positive 
feedback effect is weakened, so the algorithm has strong global convergence ability, 
but the convergence speed of the algorithm is slow. On the contrary, the pheromone 
concentration on the path is high, and the positive feedback effect is enhanced, so the 
algorithm converges quickly, but it easily falls into the local optimal solution. 

3. m affects the convergence ability and running speed of the algorithm. When the setting 
value of m is large, the global convergence of the algorithm is good, but the running 
speed is slow. On the contrary, the running speed of the algorithm is fast, but the 
convergence performance is poor, and it easily falls into the local optimal solution. 

2.1.2. The Introduction of IETS 
In ACO algorithm, when the set number of iteration terminations is larger than the 

solution problem, multiple iterations will have the same value at the end of the iteration, 
reducing the efficiency of the algorithm. This paper introduces IETS: when the iterative 
solution reaches the set value tset with the same number of consecutive times t0 and the 
iterative solution is less than the set value xset, the iteration is terminated. Otherwise, the 
iteration will continue until the maximum iteration period tmax is met. The flowchart of 
IETS is shown in Figure 2. 

The same solution for the last 
two iterations

Yes

t0=t0+1

t0≥tset?

Solution≤xset?

Output

End

Start
t0=0

Previous 
iteration

No

t0=0

Continue

No

NoYes

Yes

 
Figure 2. The flowchart of IETS. 

2.2. Analysis of IWOA 
This section introduces the operating principle of IWOA. Test functions are used to 

verify the operation performance of IWOA. 

2.2.1. The Introduction of WOA 

Figure 2. The flowchart of IETS.

2.2. Analysis of IWOA

This section introduces the operating principle of IWOA. Test functions are used to
verify the operation performance of IWOA.

2.2.1. The Introduction of WOA

The operation logic of WOA originates from the foraging behavior of whales, including
three search mechanisms: local optimization consisting of encirclement predation mecha-
nism, spiral mechanism, and global optimization consisting of random search mechanism.

1. Encirclement predation mechanism

The encirclement predation mechanism originates from the behavior of whales to
identify and encircle their prey. The location of whales closest to their prey can be regarded
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as a local optimal solution, and other whales converge to the local optimal solution, as
presented in Equations (4) and (5).

D = |CX∗(t)− X(t)| (4)

X(t + 1) = X∗(t)− AD (5)

where X is the current whale position, X* is the best whale location. A and C are coefficient
vectors, as presented in Equations (6) and (7).

A = 2ar− a = a(2r− 1) (6)

C = 2r (7)

where r is a random variable belonging to [0, 1], a is the linearly decreasing convergence
factor from 2 to 0.

2. Spiral mechanism

The spiral mechanism is based on the fact that whales emit bubbles and move to their
prey in a spiral motion in the process of foraging, as presented in Equation (8).

X(t + 1) = Debl cos(2πl) + X∗(t) (8)

where b is a constant, l is a random variable belonging to [0, 1].

3. Random search mechanism

The random search mechanism is based on the fact that whales not only approach the
nearest whale location from their prey, but also randomly select other whale locations in
the population to search, as presented in Equations (9) and (10).

D∗ = |CXrand(t)− X(t)| (9)

X(t + 1) = Xrand(t)− AD∗ (10)

where Xrand is the position of whales randomly selected in the population.
The operation logic of the three search mechanisms is as follows:

p = rand(0,1)
if p < 0.5

if |A| < 1
Encirclement predation, (5)

else
Random search, (10)

end
else

Spiral, (8)
end

2.2.2. Analysis of IWOA

In order to improve the convergence performance of WOA, this paper optimizes WOA
in three aspects to obtain IWOA.

1. Population initialization with reverse learning strategy (PIRL)

The quality of the initial population affects the convergence speed and accuracy of the
algorithm, and high-quality initial population is conducive to the rapid convergence of
the algorithm. In WOA, the initialization of the population is completely random, which
has the advantage of ensuring the diversity of the initial population, but the quality of the
initial population generated by this scheme is not high. To ensure the diversity of the initial
population and improve the quality of the initial population, PIRL is introduced in this
paper. The strategy steps are as follows:
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• Establish a random initial population, and analyze the position of individuals in the
random initial population in turn.

• Set a random variable p belonging to [0, 1]. Adopt reverse learning strategy if p ≥ 0.3.
Assume that the position of individual r in the d-dimensional space is Xr(1, 2, . . . , d),
then the corresponding reverse individual is X̃r(1, 2, . . . , d), as presented in Equa-
tion (11).

X̃r(k) = L(k) + U(k)− Xr(k) (11)

where L(k) and U(k) are the boundaries of population space. The fitness values of individu-
als Xr(1, 2, . . . , d) and X̃r(1, 2, . . . , d) are calculated, respectively, and the individual with
better fitness is retained as the final initial population.

• Do not adopt reverse learning strategy if p < 0.3. The individual Xr(1, 2, . . . , d) is
retained as the final initial population.

2. Nonlinear convergence factor.

After analyzing the operation logic of the three search mechanisms, the paper con-
cludes that the size of |A| determines the global and local search of the algorithm. Accord-
ing to Equation (6), the size of convergence factor a determines the size of |A|. In WOA,
convergence factor a is linearly decreasing. Therefore, when the number of iterations is
greater than half of the maximum number of iterations, a < 1. In the middle of iteration,
|A| drops to a low value too early, so that WOA changes from global search to local search
too early, increasing the possibility of the algorithm falling into the local optimal solution.

In order to better balance the ability of global search and local search of the algorithm
and make the algorithm turn to local search after full global search, exponential nonlinear
convergence factor a* is introduced in this paper, as presented in Equation (12).

a∗ =
−e

t
Tmax ln 51 + 51

25
(12)

where a* is the nonlinear convergence factor, Tmax is the maximum number of iterations.
Assuming Tmax = 50, the curve of a* is drawn as shown in Figure 3.
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In the early and middle stages of the iteration process, the value of a* is kept at a high
level to ensure the global search capability of the algorithm, and it decreases rapidly in the
late iteration period to ensure that the algorithm focuses on local search.

3. Adaptive inertia weighting factor

The idea of inertia weight factor is derived from PSO [25]. Individuals consider the
impact of the current position when they move to the local optimal solution. In WOA, the
value of inertia weight factor is always 1. In the early of iteration process, a large inertia
weight factor is helpful to the global search of WOA. However, in the late iteration period,
it causes the individual to pay too much attention to the current optimal solution position,
so the algorithm easily falls into local optimization.
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Therefore, this paper introduces adaptive inertial weighting factor w, as presented in
Equation (13). In the early of iteration process, the global search ability of IWOA can be
enhanced by the large value of w. In the late iteration period, the smaller value of w can
reduce the dependence of individuals on the current optimal solution and avoid IWOA
falling into the local optimal solution.

w = 0.4
(

t
Tmax

)2
− 0.8

t
Tmax

+ 0.9 (13)

In IWOA, Equations (5) and (8) should be changed to Equations (14) and (15).

X(t + 1) = wX∗(t)− AD (14)

X(t + 1) = Debl cos(2πl) + wX∗(t) (15)

2.2.3. Operation Steps of IWOA

IWOA is optimized in terms of population initialization and iteration parameters. The
operation steps of IWOA are as follows:

1. Set algorithm parameters, such as variable dimension, number of population individ-
uals, and maximum number of iterations.

2. Randomly initialize the population within the range of variable values.
3. Establish initial population by PIRL and record the individual position with better

fitness as the optimal position.
4. The algorithm updates the location of individuals based on different search mecha-

nisms. Set a random variable as p = rand (0,1). If p < 0.5 and |A| < 1, the algorithm
individually updates their positions according to the encirclement predation mech-
anism, as in Equation (14). If p < 0.5 and |A| ≥ 1, individually update position
according to the random search mechanism, as presented in Equation (10). If p ≥ 0.5,
individually update position according to the spiral mechanism, as in Equation (15).

5. The algorithm restricts the range of the updated position of the individuals, calculates
the fitness values of those, and updates the optimal position.

6. The algorithm judges whether the maximum number of iterations is reached. If so, it
exits the iteration and outputs the optimal location and fitness value. If not, it returns
to step (4) to continue iteration.

2.2.4. Performance Testing for IWOA

This paper selects four test functions to verify the performance of IWOA [26], as shown
in Table 1. Then, this paper sets the population number as 40 and the maximum number of
iterations as 100, and compares the performance of the three algorithms, including IWOA,
WOA and PSO.

Table 1. Introduction to test functions.

Name Expression Dimension Domain of Definition Theoretical Optimal Value

Sphere F =
n
∑

i=1
x2

i
30 [−100, 100] 0

Quartic F = rand(0, 1) +
n
∑

i=1
ix4

i
30 [−1.28, 1.28] 0

Schwefel 2.26 F =
n
∑

i=1
−xi sin

√
|xi| 30 [−500, 500] −12,569

Rastrigin F =
n
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
] 30 [−5.12, 5.12] 0

Sphere and Quartic are unimodal functions used to test the local search ability of those
algorithms, and Schwefel 2.26 and Rastigin are multimodal functions used to test the global
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search ability of those algorithms. And the convergence curves of test functions are shown
in Figure 4.
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IWOA has converged to the optimal value in the 10th to 20th iterations, so IWOA is
superior to WOA and PSO in convergence speed.

In order to better compare and analyze the performance of IWOA, this paper uses those
algorithms to run each test function 30 times, and records the optimal values, the worst
values and the standard deviation of the optimization results. The analysis of optimization
results is shown in Table 2.

Table 2. The analysis of optimization results.

Name Statistic IWOA WOA PSO Optimal Algorithm

Sphere
Optimal value 6.66 × 10−40 4.83 × 10−17 478.21

IWOAWorst value 7.01 × 10−29 5.89 × 10−11 2296.15
Standard deviation 1.30 × 10−29 1.06 × 10−11 407.98

Quartic
Optimal value 8.41 × 10−6 7.01 × 10−4 0.29

IWOAWorst value 2.22 × 10−3 5.81 × 10−2 1.85
Standard deviation 5.02 × 10−4 1.15 × 10−2 0.45

Schwefel 2.26
Optimal value −12,569.24 −12,318.02 −8677.97

IWOAWorst value −10,600.90 −7422.42 −5034.17
Standard deviation 453.58 1378.79 908.84

Rastrigin
Optimal value 0 0 73.14

IWOAWorst value 0 1.30 × 10−6 182.02
Standard deviation 0 2.33 × 10−7 23.79

The optimal and the worst values of the function obtained by IWOA convergence
are better than those of WOA and PSO, and the standard deviation of the data obtained
by IWOA in 30 groups of tests is lower, so the performance of IWOA is more stable. In
general, IWOA performs better than WOA and PSO in unimodal and multimodal test
functions. Therefore, IWOA performs better in local search and global search, verifying the
optimization effect.
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2.3. Multi-Node Path Planning Problem of Electric Tractor
2.3.1. Analyze the Application Scenario

Multi-node path planning problem refers to the optimal path planning for multiple
nodes in a certain area. The legal path is the path that starts from a node and traverses all
other nodes. In agricultural production, the nodes are the marshal point of the harvested
crops, and the electric tractor needs to traverse all the nodes in the region to collect all
the harvested crops. In this paper, we employ a cultivated area, including node data and
operating parameters of electric tractor, as the experimental object to verify the effectiveness
of IWOA-ACO.

In order to exclude the influence of irrelevant factors on the experiment, we make the
following assumptions:

1. The path between nodes is a segment.
2. Neglect the turning action of electric tractor at nodes.
3. Neglect the air resistance of the electric tractor.
4. Focus on the path length and energy consumption of electric tractors between nodes.

We choose the cultivated area located near 87.4 E and 44.3 N. The positions of 26 nodes
in space are shown in Figure 5.
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Figure 5. Spatial location map of 26 nodes.

2.3.2. Kinematics Model of Electric Tractor

When the electric tractor travels between different operating points, it often travels at a
low speed and at a constant speed. The energy loss in the operation of the electric tractor is
mainly the energy consumed during travel. The force analysis of the electric tractor under
different road conditions (flat ground and slope) [27] is shown in Figure 6.
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When the electric tractor runs on the slope, the slope angle θi,j is shown in Equation (16).
The path length of electric tractor traveling between nodes i and j is shown in Equation (17).

θi,j = arctan

(
hi,j

si,j

)
(16)

γi,j =
√

si,j
2 + hi,j

2 (17)

where γi,j is the path length between nodes, si,j is the horizontal distance between nodes,
hi,j is the height difference between nodes.
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The mechanical expression of the electric tractor in uniform running is shown in
Equation (18).

Fq = µG cos(θi,j) + G sin(θi,j) (18)

where Fq is the driving force of power motor of electric tractor, µ is the friction coefficient
of traveling road surface, G is the gravity of electric tractor.

The energy consumed by the motor during operation is shown in Equation (19).

Qi,j = Uqi,j (19)

where U is the input voltage of motor, qi,j is the power consumed by the motor.
The driving force of the electric tractor during traveling is shown in Equation (20).

Fq =
Txigi0η

R
=

Ttigi0η
R

(20)

where Tx is the output torque of planet carrier, ig is the transmission speed ratio of electric
tractor, i0 is the differential speed ratio, η is the transmission efficiency; R is the wheel
radius of electric tractor, Tt is the torque of motor, as shown in Equation (21).

Tt =
9550P

n
(21)

where n is the motor speed, P is the output power of motor.
The relationship between the traveling speed of the electric tractor v and the motor

speed is shown in Equation (22).

v =
0.377Rn

igi0
(22)

From Equations (16)–(22), the energy consumed by electric tractor Qi,j when traveling
between nodes i and j is shown in Equation (23).

Qi,j =
(µG cos(θi,j) + G sin(θi,j))si,j

3.6η cos(θi,j)
(23)

Regarding balance, from Equations (17) and (23), the kinematic function model of
electric tractor is shown in Equation (24).

Fkin = f (γi,j, Qi,j) (24)

2.4. IWOA-ACO

The basic idea of IWOA-ACO is to use ACO to solve the optimal path of multiple
nodes, and then use IWOA to optimize the operation parameters of ACO. There are two
key problems when fusing IWOA and ACO algorithm. On the one hand, IWOA-ACO
needs to set appropriate evaluation function to evaluate the solution process and results of
ACO algorithm. On the other hand, IWOA-ACO needs to put ACO algorithm into IWOA
iteration to solve the multi-node problem, and in IWOA iteration, input the four setting
parameters mentioned in Section 2.1 to ACO algorithm.

An appropriate evaluation function is crucial for IWOA-ACO to optimize the parame-
ters of ACO. The evaluation function should reflect the optimality, fast convergence and
algorithm stability of the objective function of ACO for solving multi-node path planning.
The evaluation function is shown in Equation (25).

y = k1 f1 + k2 f2 + k3 f3 + k4 f4 (25)

where f 1 is the difference between the path length value obtained by ACO and the empirical
optimal value of path length, as shown in Equation (26). f 2 is the difference between the
energy consumption value obtained by ACO and the empirical optimal value of energy
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consumption, as shown in Equation (27). f 1 and f 2 represent the optimality of the algorithm
for solving the objective function. f 3 is the iteration number of ACO, representing the fast
convergence of the algorithm, as shown in Equation (28). f 4 is the standard deviation of the
iterative data of ACO, representing the stability of the iterative data of the algorithm, as
shown in Equation (29). k1, k2, k3 and k4 are the weight coefficients.

f1 = length− length _min (26)

f2 = energy− energy _min (27)

f3 = ∑ length (28)

f4 = δ(length) (29)

The flow chart of IWOA-ACO is shown in Figure 7.
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3. Results and Discussion

This section applies IWOA-ACO to solve the problem and analyzes the simulation
results of flat and bump environment by the three algorithms so as to verify the performance
of IWOA-ACO.

3.1. Simulation of Flat Environment

First, according to the analysis in Section 2.3.1, we need to extract the node data from
the test field, and the experiment needs a planned optimal path for the electric tractor to
traverse all nodes. Second, we need to set the relevant parameters of the electric tractor as
follows: the friction coefficient of traveling road surface is 0.07, the gravity of electric tractor
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is 10,700, and the transmission efficiency is 0.85. Then, we need to unify the evaluation
functions of the three algorithms into Equation (25), and unify the setting parameters as
follows: the variable dimension is 4, the number of individuals in the population is 30, the
maximum number of iterations is 50. Finally, in order to eliminate the impact of algorithm
simulation environment on algorithm performance, we unify the simulation environment
of the three algorithms as follows: Windows10 (64 bit), Core (TM) i7-8550U, CPU 1.80 GHz,
16 GB, MatlabR2017a.

In order to better analyze the operational performance of IWOA-ACO, this paper
solves the node path planning problem as shown in Figure 5 with IWOA-ACO, WOA-
ACO and PSO-ACO, compares the iteration curves of the evaluation functions of the three
algorithms, and records the operation parameters of ACO algorithm, respectively.

The convergence curve of the evaluation function corresponding to the three algo-
rithms is shown in Figure 8. The parameter values of ACO obtained by convergence of
three functions are shown in Table 3. The convergence value of the evaluation function of
IWOA-ACO is better than that of WOA-ACO and PSO-ACO.
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Table 3. The parameter values of ACO in the simulation of flat environment.

Algorithm m rh β α

PSO-ACO 80 0.80 4.39 0.50
WOA-ACO 80 0.80 3.39 2.00
IWOA-ACO 80 0.80 5.00 0.50

Ref. [24] referred to the scheme of determining the parameter values of standard ACO
algorithm by empirical method. In order to better verify the convergence performance
of the IWOA-ACO algorithm, we employ the optimization scheme of the standard ACO
algorithm as the control group in the comparison simulation. The parameter values of the
algorithm are set according to Ref. [24]: m = 50, α = 1, β = 7 and rh = 0.3.

ACO plans the 26 node paths of the electric tractor according to the operation parame-
ters in Table 3 and experience parameters. The generated path planning diagram is shown
in Figure 9. This paper uses the iteration path length convergence curve to compare the
convergence performance of ACO under different parameters, as shown in Figure 10.

3.2. Simulation of Bump Environment

The cultivated land environment in Xinjiang is characterized by flat terrain [28,29].
Therefore, the node data in the cultivated area selected in this paper is approximately 2D.
In order to further explore the adaptability of IWOA-ACO in the diversified cultivated
land environment, we introduce the data of 31 nodes in the bump environment. The
experimental steps and the parameters are set as shown in Section 3.1, and this paper
compares the simulation results of the three algorithms. The positions of 31 nodes in space
are shown in Figure 11.
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The convergence curve of the evaluation function corresponding to the three algo-
rithms is shown in Figure 12. The parameter values of ACO obtained by convergence of
three functions are shown in Table 4. The convergence value of the evaluation function of
IWOA-ACO is better than that of WOA-ACO and PSO-ACO. Moreover, the evaluation
function value of IWOA-ACO can converge to the optimal value after five iterations, while
WOA-ACO requires 20 iterations and PSO-ACO requires 15 iterations. It can be seen
that the convergence performance of IWOA-ACO is better than that of WOA-ACO and
PSO-ACO in solving the multi-node path planning problem.
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Table 4. The parameter values of ACO in the simulation of bump environment.

Algorithm m rh β α

PSO-ACO 47 0.2 4.69 0.55
WOA-ACO 76 0.32 3.68 2
IWOA-ACO 72 0.78 2 0.83

As in Section 3.1, in order to better verify the convergence performance of the IWOA-
ACO algorithm, we employ the optimization scheme of the standard ACO algorithm as the
control group in the comparison simulation. The parameter values of the algorithm are
m = 50, α = 1, β = 7 and rh = 0.3.

ACO plans the 31-node path of electric tractor based on the operating parameters
obtained from the above three algorithms and experience parameters, and the resulting
path planning diagram is shown in Figure 13. This paper uses the iterative path length
convergence curve to compare the convergence performance of ACO under different
parameters, as shown in Figure 14.

3.3. Discussion for Flat Environment Results

Based on Figures 9 and 10, this paper analyzes the impact of ACO algorithm control
group and the three parameter combinations shown in Table 3 on the performance of ACO
as follows:

On the one hand, as far as the convergence speed of ACO algorithm is concerned,
IWOA-ACO is equivalent to WOA-ACO and faster than PSO-ACO.

On the other hand, the path length planned by PSO-ACO is 8750 (m), and the energy
consumed by electric tractor is 2,141,837 (J). The length and energy consumption of IWOA-
ACO planned path are the same as those of PSO-ACO, and are 0.61% less than those of
WOA-ACO and ACO algorithm control group (the value of the path length is 8804 m,
and the value of the energy is 2,154,892 J). In the simulation of flat environment, the path
length and energy consumption data of electric tractor are shown in Table 5. It is worth
mentioning that since the nodes are approximately distributed in 2D space, the energy
consumed by the electric tractor is proportional to the path length.
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Table 5. The path length and energy consumption data in the simulation of flat environment.

Algorithm ACO Control Group PSO-ACO WOA-ACO IWOA-ACO

The path length (m) 8804 8750 8804 8750
0% −0.61% 0% −0.61%

The energy (J) 2,154,892 2,141,837 2,154,892 2,141,837
0% −0.61% 0% −0.61%

In general, the path planned by IWOA-ACO for the electric tractor has the advantages
of fast convergence speed of WOA-ACO and strong convergence ability of PSO-ACO,
which is helpful for efficient operation of the electric tractor.

3.4. Discussion for Bump Environment Results

In the simulation of bump environment, the path length and energy consumption data
of electric tractor are shown in Table 6.



Agriculture 2023, 13, 586 16 of 19

Table 6. The path length and energy consumption data in the simulation of bump environment.

Algorithm ACO Control Group PSO-ACO WOA-ACO IWOA-ACO

The path length (m) 19,395 19,420 19,428 19,057
0% +0.13% +0.17% −1.74%

The energy (J) 4,213,209 4,246,522 4,121,440 4,070,478
0% +0.79% −2.18% −3.39%

Based on Figures 13 and 14, this paper analyzes the impact of the three parameter
combinations shown in Table 4 on the performance of ACO as follows:

First of all, ACO, according to the parameters obtained from PSO-ACO, requires
approximately 60 iterations to converge to the optimal value. The path length planned by
the algorithm is 19,420 (m), and the energy consumed by electric tractor is 4,246,522 (J). The
reason is that a small quantity of ants (the value is 47) leads to the slow convergence speed
of the algorithm, and a small number of the pheromone concentration volatilization factor
(the value is 0.2) leads to the local optimal solution of the algorithm.

In the second place, ACO, according to the parameters obtained from WOA-ACO,
requires approximately 20 iterations to converge to the optimal value. The path length
planned by the algorithm is 19,428 (m), and the energy consumed by electric tractor is
4,121,440 (J). The reason is that a large quantity of ants (the value is 76) leads to the fast
convergence speed of the algorithm, but a small number of the pheromone concentration
volatilization factor (the value is 0.32) leads to the local optimal solution of the algorithm.

Once more, ACO, according to the parameters obtained from IWOA-ACO, requires
approximately 20 iterations to converge to the optimal value. The algorithm converges
faster than the ACO algorithm with the parameters obtained from PSO-ACO, and approx-
imates to the ACO algorithm with the parameters obtained from WOA-ACO. The path
length planned by the algorithm is 19,057 (m), which is 1.91% less than that planned by
the ACO algorithm with the parameters obtained from PSO-ACO and 1.95% less than
that planned by the ACO algorithm with the parameters obtained from WOA-ACO. The
energy consumed by electric tractor is 4,070,478 (J), which is 4.32% less than that optimized
by the ACO algorithm with the parameters obtained from PSO-ACO and 1.25% less than
that optimized by the ACO algorithm with the parameters obtained from WOA-ACO. In
addition, the length and energy consumption of IWOA-ACO planned path are 1.74% and
3.39% less than those of ACO algorithm control group.

The reasons for the above results are as follows. On the one hand, a large quantity of
ants (the value is 72) leads to the fast convergence speed of the algorithm and a large value
of pheromone concentration volatilization factor (the value is 0.78) leads to good global
convergence of the algorithm. On the other hand, the difference between the pheromone
importance factor (the value is 0.83) and the heuristic function importance factor (the value
is 2) is small, so that the algorithm can fully consider the pheromone concentration and
heuristic function in the iterative process. Therefore, the algorithm can balance global and
local searches.

However, IWOA-ACO has some limitations in practical application. On the one hand,
IWOA-ACO can only obtain a set of set value parameters of ACO algorithm with good
matching, but the ideal ACO parameter should be an adaptive function. On the other
hand, affected by the fluctuation of ACO convergence results, the reliability of IWOA-ACO
evaluation function has a negative correlation with the optimization time of the algorithm.
We need to adjust the weight of evaluation function reliability and optimization time
according to specific conditions.

4. Conclusions and Future Research
4.1. Conclusions

This paper proposes IWOA-ACO to plan the operation path of the electric tractor.
IWOA introduces reverse learning strategy, nonlinear convergence factor and adaptive
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inertia weighting factor to balance between global and local convergence capability of it
and enhance the diversity of the initial solution. At the same time, IWOA-ACO improves
evaluation function to ensure accurate evaluation of ACO performance during iteration.

First of all, taking a cultivated land environment in Xinjiang as an example, IWOA-
ACO is used to plan the optimal path for the electric tractor to traverse the crop concen-
tration points. The simulation results show that the algorithm has the advantages of fast
convergence speed and good global convergence performance, which is helpful to improve
the working efficiency of the electric tractor. Furthermore, taking the complex nodes in a
concave–convex environment as an example, the length and energy consumption of IWOA-
ACO planned path are 1.91% and 4.32% less than those of PSO-ACO, and are 1.95% and
1.25% less than those of WOA-ACO. This verifies the strong adaptability of IWOA-ACO to
various environments.

In conclusion, IWOA-ACO can reduce the length and energy consumption of the
planned path, which improves the operational efficiency and endurance of the electric
tractor and assists the development of green agricultural machinery.

4.2. Suggestions for Future Work

There is room for further progress in the research on obtaining optimization parameters
of ACO algorithm. This paper makes a brief analysis of them to provide research ideas for
follow-up researchers.

1. As analyzed in Section 2.1.1, the ideal ACO parameter should not be a fixed value, but
an adaptive function that is an iterative rule. In the research scheme proposed in this
paper, IWOA-ACO algorithm can only obtain a set of set value parameters of ACO
algorithm with good matching, but the step of obtaining the function from the set
value parameters still needs to be completed by researchers. We propose that IWOA-
ACO cannot directly derive the parameter iteration rules of ACO algorithm because
of the limitations of its performance and dimensions. The analysis is as follows:

Assuming that the number of parameters to be determined by ACO algorithm is
nx, and the maximum number of iterations set by ACO algorithm when solving the path
planning is mx, the calculation dimension Cd of IWOA-ACO is as shown in Equation (30).

Cd = nxmx (30)

Taking the simulation in Section 3 as an example, the maximum number of iterations
is mx = 100. In ACO algorithm iteration, the ant quantity should be set as a constant.
Therefore, the value of Cd should be Cd = 1 + 300 = 301. However, the value of Cd with the
scheme adopted in this paper is Cd = 4.

In a word, this scheme, obtaining the adaptive functions directly from IWOA-ACO,
has a large calculation dimension, which greatly increases the computational complexity of
the algorithm. Therefore, the algorithm easily falls into the local optimal solution, and the
operation effect may not be as good as that of the scheme adopted in this paper. In further
research, it might be possible to use a better performance algorithm to achieve this scheme.

2. As described in Section 2.4, in IWOA-ACO, the evaluation function is calculated by
running the ACO algorithm only once under a set of parameter values. However,
ACO algorithm, like GA, PSO, and WOA, belongs to intelligent algorithm, which has
a high probability of obtaining the optimal value, but it cannot guarantee that every
time it is the optimal value. If we aim to obtain a more reliable evaluation function,
we need to allow ACO to run nt times under each set of parameters to calculate the
evaluation function by integrating the operation results. However, this will increase
the running time of IWOA-ACO algorithm, as shown in Equation (31).

NT = tIWOA−ACOnt (31)
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where tIWOA-ACO is the time required for the scheme adopted in this paper which lets ACO
run once under each set of parameters to calculate the evaluation function.

In a word, we realize that researchers can set the running times of the ACO algorithm
nt on the basis of measuring the running time of the IWOA-ACO algorithm NT and the
reliability of the evaluation function.
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