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Abstract: The rapid increase in the number of new maize varieties and the intensification of market
competition have raised the need to precisely promote new maize varieties to suitable planting areas
and fully exploit the variety potential and win the market competition. This paper proposes a precise
recommendation method for suitable planting areas of maize varieties based on a knowledge graph.
The meteorology knowledge graph of maize ecological regions is constructed at county-scale and a
RippleNet recommendation model is used to mine the potential spatial correlation of maize variety
suitability in different meteorological environments. The county-scale precise recommendation for
suitable planting areas is then realized. In total, 331 maize varieties and agricultural meteorological
data of 59 experimental areas in the Huang-Huai-Hai ecological region are used for model training
and testing (accuracy 76.3%). Through experimental comparison, the recommendation accuracy of
this method is 24.3% higher than that of six traditional machine learning methods, 11.2% higher than
that of graph attention networks, and 5.8% higher than that of graph convolution neural networks.
This study provides a data-driven solution for the precise recommendation and market positioning
of maize varieties, enhances the scientificity of variety recommendation and helps to fully exploit
their planting potential.

Keywords: maize varieties; knowledge graph; recommendation model; RippleNet; county-scale

1. Introduction

The number of maize varieties approved increases year by year due to the rapid
development of the maize breeding industry. In 2021, the number of Chinese national
authorized maize varieties reached 919. Many varieties entered the market, making the
competition extremely fierce. The digital process in the breeding industry has advanced
considerably, with many tools available on the market, such as the national regional
trial system and breeding system [1,2], which bring great convenience to both breeding
companies and consumers. The demand of breeding companies and consumers for faster
and more convenient recommendation methods has resulted in new requirements for the
recommendation methods of suitable growing areas of maize varieties that are lagging
behind in development [3]. Simultaneously, China’s national maize variety validation test
considers the ecological region as the research unit, with each ecological region covering
a large area. For instance, the Huang-Huai-Hai maize ecological region covers eight
provinces, namely Hebei, Shanxi, Jiangsu, Anhui, Shandong, Henan, Hubei and Shaanxi.
However, great differences in the meteorological environment and yield performance of
varieties exist in each ecological region [4,5]. Therefore, conducting in-depth research on the
precise recommendation of varieties at the county scale and exploring the optimal planting
area for each variety is crucial to give full play to the planting potential of varieties.
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Factors such as accumulated temperature, planting density, lodging, large spot and
empty stalk are the main indicators for fine zoning of maize varieties [4]. The previous
research methods of crop suitability regionalization include, among others, the overlapping
method, dominant factor method and the clustering method. These methods employ corre-
lation analysis [6], principal component analysis [7] and other statistical analysis methods
to determine the indicators, while the analytic hierarchy process [8], maximum entropy
model [9] and other methods impact the weight distribution of indicators considerably.
In the process of constructing the index evaluation system, the determination method
of the index weight coefficient has the problem of too much qualitative analysis, which
does not conform to the laws of data science or has the problem of practical application
difficulties [8,9]. With the development and application of artificial intelligence technology
in recent years, machine learning has been introduced into crop environmental suitability
evaluation research. Qiusi et al. [10] collected the crop phenotype data and meteorological
data of multiple maize field experiment areas, a graph neural network was introduced
to mine the similarity between features through node aggregation, and the correlation
between geographical locations was fully utilized. Compared with traditional machine
learning classification models, this method achieved better results in crop suitability evalua-
tion. Qi et al. [11] designed a crop variety yield prediction system, CVYPS-VYDC, based on
the random forest model. The system can analyze the impact of the environment on maize
yield and figure out the most important environmental factors, which has guiding value
for maize production. Additionally, the impact of multiple maize varieties can be analyzed
by the system under multiple environmental factors at the same time. Machine learning
methods not only help to improve the accuracy of suitability evaluation by self-learning,
real data and mining the potential relationship between various features, but also reduce hu-
man interference and are more consistent with the actual law compared with the completion
of crop environmental suitability evaluation based on the construction of the index system.

The knowledge graph (KG) method has achieved good application results in vari-
ous agricultural fields, such as agricultural knowledge services and pest diagnosis [12].
Chen et al. [13] proposed an agricultural KG (AgriKG) for effective integration of frag-
mented information generated by many applications in the agricultural field, used for
agricultural entity retrieval and agricultural knowledge Q&A. Researching the application
of KG in crop disease and pest diagnosis, Damos et al. [14] used ontology and semantic
knowledge representation to classify pests, and developed a pest expert system to simulate
the ability of pests and diseases to affect crops. In the cross-field between agriculture
and meteorology, Chenglin et al. [15] proposed a construction method for a Chinese me-
teorological and agricultural KG (Cn-MAKG) based on semi-structured data, which was
successfully applied to the automatic generation of crop meteorological reports.

In addition, the research results of KG-based recommendation models are remarkable.
Zhang et al. [16] proposed a collaborative filtering recommendation algorithm based on
KG embedding (KGECF), built a sub-knowledge base based on Freebase KG, designed
an end-to-end joint learning model and embedded structured information and historical
preference information into a unified vector space. This algorithm outperformed BPR [17],
LINE [18], CFKG [19] and KTUP [20] in multiple indicators. Zhao et al. [21] proposed a
unified graph-based recommendation model (UGRec) to fully utilize the item–item co-
occurrence information (i.e., co-view) that contains rich item–item similarity information.
This model integrated the traditional directed relationship and undirected item–item co-
occurrence relationship in the KG. The results of experiments on multiple public datasets
were superior to several previous state-of-the-art methods. Zhang et al. [22] proposed a
new recommendation method in social media recommendation called multi graph het-
erogeneous interactive fusion (MG-HIF), to address the problem of early summarization
and data sparsity. Yixin et al. [20] introduced the KG into the recommendation system.
Considering the impact of the incompleteness of the KG on the recommendation results,
the translation-based user preference model (TUP) proposed in this article jointly trains the
recommendation model and completes the KG. Wang et al. [23] proposed an end-to-end
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framework called RipleNet, which naturally incorporates the KG into the recommendation
system to address the limitations of existing embedded-based and path-based methods
for knowledge-graph-aware recommendation. Finally, standard recommendation models
based on the KG, such as CKE [24], DKN [25] and SHINE [26], have produced good results
in fields like movie recommendation, news recommendation and social media sentiment
analysis, respectively.

Artificial intelligence technology has been widely used in crop variety recommenda-
tion [10,11] and has achieved good results. The maize varieties in the Huang-Huai-Hai
ecological region are hereby explored as the research object. Based on the meteorological
data of cities and counties in the Huang-Huai-Hai ecological region, the hidden relationship
of environmental factors in different planting areas is discovered using the meteorology
KG, the meteorological similarity between maize variety test stations is evaluated and
categorized, and the RippleNet recommendation model is integrated to provide a new
method for precise crop variety recommendation. The suitable planting area of each maize
variety can be accurately located from the large ecological area to the county planting area,
so as to achieve accurate recommendation of maize varieties.

2. Materials and Methods
2.1. The General Situation of Research Area

The Huang-Huai-Hai ecological region is the largest maize production area in China,
with a planting area of about 7.5 million hectares, accounting for more than 30% of the
national maize area. The yellow area in Figure 1 is the scope of the Huang-Huai-Hai
ecological region. Extending from 31◦5′ N to 39◦5′ N, the variety of climates in this region
is great. The annual accumulated active temperature of ≥10 ◦C is 4000–5000 ◦C, and
the annual accumulated rainfall is 500–900 mm. The Huang-Huai-Hai ecological region
includes 558 districts and counties in the middle and lower reaches of the Yellow River,
Huaihe River and Haihe River basins, including Shandong, Henan, south-central Hebei,
southern Shanxi, Guanzhong of Shaanxi, southern Shaanxi, northern Jiangsu and northern
Anhui. The specific distribution per province is shown in Table 1.
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Table 1. Distribution of cities in Huang-Huai-Hai ecological region.

Province City County

Anhui 4 21
Hebei 6 100
Henan 17 157
Shanxi 3 43
Shaanxi 5 54

Shandong 17 137
Jiangsu 5 37
Hubei 1 9
Total 58 558

2.2. Technical Process of This Research

Figure 2 shows the model flowchart, which includes three parts: data processing, con-
struction of meteorology KG and recommendations for planting areas. The data processing
part involves the meteorological data and maize field test data classification to obtain the
meteorological factor data of each region to be recommended, as described previously.
The construction of the meteorology KG includes the correlation establishment between
counties according to the meteorological factor data of each region to be recommended. The
planting area recommendation part is based on the RippleNet model and the constructed
meteorology KG to recommend the suitable planting area of maize varieties. The meteorol-
ogy KG data and the implicit feedback of “variety-test station” data (“variety-test station”
implicit feedback is the planting behavior of varieties that does not directly indicate the
preference of varieties) are input into RippleNet. After multiple iterations of the model
training, the suitable planting probability of each variety in each planting area is output.
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2.3. Acquisition and Processing of Data
2.3.1. Primitive Meteorological Data

The meteorological data was acquired from the National Meteorological Information
Center and included daily meteorological data from 558 meteorology stations distributed in the
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Huang-Huai-Hai ecological region during 2017–2021, recording 11 meteorological indicators,
namely daily maximum temperature, surface pressure, relative humidity, daily minimum
temperature, wind level, daily average temperature, daily precipitation, daily average wind
speed, wind direction angle, daily maximum wind speed and daily sunshine duration.

2.3.2. Primitive Test Data from Chinese National Maize Variety Field Trials

The field trials data were collected from the national maize variety regional trial
conducted from 2017 to 2021 at 59 test stations in the Huang-Huai-Hai ecological region,
involving 331 maize varieties (including 13 check varieties). In total, 49 traits were collected
for each variety, including plant height, ear level, growth period, plot yield, fall rate, empty
stalk rate, disease and pest incidence level and others.

2.3.3. Processing of Primitive Meteorological Data and Test Data

• Meteorological data processing during the growth period of maize varieties.

The effective meteorological data of maize varieties during their growth period in the
Huang-Huai-Hai ecological region were analyzed in this study. Therefore, before processing
meteorological data, it is necessary to determine the time range of meteorological data
processing for each county according to the growth period of maize varieties. For counties
including the national maize variety field test station, the time range was determined by
the sowing date and maturity period in the historical field test. For counties without test
stations, that is, non-test areas, the time range calculation adopted the mean of the sowing
date and maturity of the county where the test station was located.

The meteorological factor data were processed according to the starting and ending
time range of the growth period in each county. The data included effective accumulated
temperature, maximum temperature, minimum temperature, accumulated precipitation,
total sunshine duration and maximum wind speed. Since the meteorological factor data
are numerical data, which cannot meet the requirements of constructing a meteorology KG,
the meteorological factor data were further pre-classified according to the characteristics of
the maize planting environment.

(1) Effective accumulated temperature (eaT).

The accumulated temperature of the daily average temperature ≥10 ◦C at each meteo-
rology station during the growth period was annually calculated from 2017 to 2021. The
accumulated temperature of each year was used to calculate the mean value, which was
taken as the local effective accumulated temperature. Effective accumulated temperature
data were normally distributed. To ensure that the number of classified meteorology sta-
tions under each classification label was evenly distributed, the accumulated temperature
was divided into nine categories (Table 2). The same data processing method was followed
for the other five meteorological factors as well.

Table 2. Classification of effective accumulated temperature (eaT).

Number Range of Accumulated
Temperature (◦C) Categorization Label

1 eaT < 2100 JW1
2 2100 ≤ eaT < 2300 JW2
3 2300 ≤ eaT < 2500 JW3
4 2500 ≤ eaT < 2700 JW4
5 2700 ≤ eaT < 2800 JW5
6 2800 ≤ eaT < 2900 JW6
7 2900 ≤ eaT < 3000 JW7
8 3000 ≤ eaT < 3100 JW8
9 eaT > 3100 JW9

(2) Maximum temperature (maxT) and minimum temperature (minT).
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The maximum and minimum temperatures values of each meteorology station during
the growth period were annually counted. The mean values of maximum and minimum
temperature of the meteorology stations from 2017 to 2021 were obtained and used as
the maximum and minimum temperature of the counties where each meteorology sta-
tion is located. The classification of maximum and minimum temperature is shown in
Tables 3 and 4, respectively.

Table 3. Classification of maximum temperature (maxT).

Number Range of Maximum
Temperature (◦C) Categorization Label

1 maxT < 30 H1
2 30 ≤maxT < 33 H2
3 33 ≤maxT < 35 H3
4 35 ≤maxT < 36 H4
5 36 ≤maxT < 37 H5
6 37 ≤maxT < 38 H6
7 38 ≤maxT < 39 H7
8 39 ≤maxT H8

Table 4. Classification of minimum temperature (minT).

Number Range of Minimum
Temperature (◦C) Categorization Label

1 minT < 3 L1
2 3 ≤minT < 6 L2
3 6 ≤minT < 9 L3
4 9 ≤minT < 10 L4
5 10 ≤minT < 11 L5
6 11 ≤minT < 12 L6
7 12 ≤minT < 13 L7
8 13 ≤minT < 14 L8
9 14 ≤minT < 15 L9
10 15 ≤minT L10

(3) Cumulative precipitation (pre).

The cumulative sum of daily precipitation during the growth period of each meteorol-
ogy station was annually calculated. The mean value of the sum of the annual precipitation
of the meteorology stations from 2017 to 2021 was taken as the cumulative precipitation
during the growth period of each station. The classification of cumulative precipitation is
shown in Table 5.

Table 5. Classification of cumulative precipitation (pre).

Number Range of Cumulative
Precipitation (mm) Categorization Label

1 pre < 300 P1
2 300 ≤ pre < 375 P2
3 375 ≤ pre < 400 P3
4 400 ≤ pre < 475 P4
5 475 ≤ pre < 550 P5
6 550 ≤ pre < 625 P6
7 625 ≤ pre < 700 P7
8 700 ≤ pre P8

(4) Maximum wind speed (maxWS).
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The maximum value of the maximum wind speed in the growth period of each
station was annually calculated. The mean value of the maximum wind speed at each
meteorology station from 2017 to 2021 was calculated as the maximum wind speed during
the growth period of the counties where each meteorology station is located. We can see
the classification of maximum wind speed in Table 6.

Table 6. Classification of maximum wind speed (maxWS).

Number Range of Maximum Wind
Speed (m/s) Categorization Label

1 maxWS < 4 W1
2 4 ≤maxWS < 6 W2
3 6 ≤maxWS < 7 W3
4 7 ≤maxWS < 8 W4
5 8 ≤maxWS < 9 W5
6 9 ≤maxWS < 10 W6
7 10 ≤maxWS < 12 W7
8 12 ≤maxWS < 14 W8
9 14 ≤maxWS W9

(5) Total sunshine duration (tsD).

According to the sunshine duration in the meteorological data, the sunshine duration
of each station during the growth period was calculated by the annual sum of the day by
day, and the average of the total sunshine duration of each station from 2017 to 2021 was
calculated as the total sunshine duration of each station. The classification of total sunshine
duration is shown in Table 7.

Table 7. Classification of total sunshine duration (tsD).

Number Range of Total Sunshine
Duration (hour) Categorization Label

1 tsD < 1050 SSD1
2 1050 ≤ tsD < 1070 SSD2
3 1070 ≤ tsD < 1090 SSD3
4 1090 ≤ tsD < 1110 SSD4
5 1110 ≤ tsD < 1130 SSD5
6 1130 ≤ tsD < 1150 SSD6
7 1150 ≤ tsD SSD7

• Experimental data processing for field trials of maize varieties.

In the field trials of maize varieties, the varieties with stable performance are usually
selected as the check varieties used for comparison. Taking yield as an example, the yield
of a test variety that exceeds the yield of the check variety indicates that the variety is
suitable for local planting. Before the validation of each maize variety, field tests need to
be conducted for three consecutive years. After the field tests meet the standards in each
year, the field tests in the next year can be conducted, the maize variety is considered to
be unsuitable and is eliminated. For varieties with multiple test records at the same test
station, the test data of the latest year in the field test is retained, and the data of other
stages are excluded. The location, yield and evaluation of the maize field test data in the
Huang-Huai-Hai ecological region are shown in Table 8.
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Table 8. Field trials data of maize varieties in Huang-Huai-Hai.

Variety Number Province City County Yield Increase Percentage Compared
with the Check Variety (%)

HHCY68 H1 H1ZK ZK01 11.0
HHCY68 S1 S1WN WN03 4.3
HHCY68 A1 A1BZ BZ04 −1.3
HHCY68 H1 H1XC XC02 0.4

HHHY509 S1 S1XY XY02 −3.2
HHHY509 A1 A1FY FY01 17.8
HHBQ610 H1 H1SQ SQ01 4.0
HHBQ610 H1 H1JZ JZ02 11.1

For the purposes of this study, the explicit feedback of varieties and test areas in Table 8
needs to be converted into implicit feedback. To this end, the data in Table 8 were labeled
with 1 after they met the threshold value (refer to Formula (1) for threshold setting), and 0
if they did not meet the threshold value.

2.4. Construction of the Meteorology KG
2.4.1. Schema Design of the Meteorology KG

The top-down approach and bottom-up approach were used in the construction of
the meteorology KG. Among them, the top-down approach starts with designing the
schema layer, and then filling in the data of a specific instance (entity), while the bottom-up
approach is to directly face the data, extract entities according to the characteristics of the
data, and then abstract and summarize the concepts based on these entities, and finally form
the ontology concept hierarchy that can be used as the schema layer. Before constructing
the meteorology KG, the meteorological schema design needs to be first implemented.
Before design, therefore, the relevant domain knowledge of the impact of weather on the
maize growth must be studied.

The knowledge graph built in this study needs to be applied to the recommendation
of maize varieties. Before designing the meteorological ontology model, we take the knowl-
edge related to the recommendation of maize varieties and the core requirements of variety
recommendation in reality as the knowledge boundary of building the meteorology KG.
Many scientific experiments and production practices have proven that the yield of maize
is closely related to the meteorological conditions in the growing season [27]. For example,
meteorological changes are closely related to maize pests and diseases, both of which
are important factors leading to maize yield reduction [28–30]. Among meteorological
conditions, temperature, light and precipitation are the most important factors for maize
growth [31]. Maximum wind speed is also an important factor affecting maize lodging. In
order to more comprehensively describe the meteorological characteristics of the county
(district) to which the meteorology station belongs, the temperature during the growth
period was subdivided into effective accumulated temperature, maximum temperature
and minimum temperature. Illumination was represented by the accumulation of sunshine
duration. Precipitation was calculated as the cumulative total of daily precipitation during
the maize growth period. The schema of the meteorology KG constructed in this paper is
shown in Figure 3.
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2.4.2. Storage of the Meteorology KG

In this paper, the storage method for the meteorology KG is the graphical database
Neo4j. Neo4j has many advantages, such as its excellent and complete query language,
Cypher, and it can also support various graphic algorithms. The details of the constructed
meteorology KG are shown in Table 9.

Table 9. Statistical details of the meteorology knowledge graph (KG) composition.

Elements of the Meteorology KG Numbers of Elements

Node labels of the meteorology KG 9
Relation types of the meteorology KG 10
Property keys of the meteorology KG 16

Nodes of the meteorology KG 625
Relations of the meteorology KG 5580

2.5. Recommendation Model of Suitable Planting Area for Maize Based on RippleNet
2.5.1. The Role of Knowledge Graph in Recommendation Model Based on RippleNet

The meteorology KG describes the meteorological characteristics of the counties in
the Huang-Huai-Hai ecological region and builds a foundation for the recommendation
of suitable planting areas by using the recommendation model. The RippleNet model is
hereby introduced as the recommendation model. In the process of recommendation, the
model takes the planting performance of maize varieties in the tested area as the seed on the
meteorology KG, discovers the preference of maize varieties for meteorological conditions
through iterative propagation in the meteorology KG and recommends the untested areas
with similar meteorological characteristics according to the meteorological preferences of
maize varieties. In addition to the small-scale division of the Huang-Huai-Hai ecological
region from the ecological region-level to the county-level, the meteorology KG can also
provide rich connections between varieties and the meteorological environment, thereby
improving the accuracy and interpretability of the recommended results. An example of
the specific recommendation process is shown in Figure 4. A maize variety was planted
in three test areas (i.e., Chuanhui District, Zhoukou City; Jiefang District, Jiaozuo City;
and Laizhou City, Yantai City) and performed better than in other test areas. During the



Agriculture 2023, 13, 526 10 of 19

dissemination of the meteorology KG, it was revealed that if other untested areas with the
same meteorological characteristics as the three test areas exist, they can be used as the
suitable planting areas for this maize variety, according to their meteorological preferences.
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2.5.2. Concrete Implementation of Recommendation Model Based on RippleNet

• Relative definition of the recommendation model.

The recommendation problem based on the meteorology KG is formulated as follows.
In the maize variety precise recommendation system, this study needs to define the maize
variety set and the planting area set, where the set of maize varieties is represented by
U = {u1, u2, . . .}, and the planting areas set is V = {v1, v2, . . .}. Y = {yuv|u ∈ U , v ∈ V} is
the interaction matrix between the approved maize varieties and the planting areas, where
yuv is the suitability result of the maize varieties in the test planting area, and the value
rules are shown in Equation (1).

In addition, the meteorology KG needs to be defined in this study. The meteorology KG
is represented by MG, and the meteorology KG contains a large number of triples (h, r, t),
in which h ∈ E, r ∈ R and t ∈ E represent the head entity, relationship and tail entity,
respectively, and E and R represent the sets of entities and relations in the meteorology KG.

The
∧

yuv = F (u, v|Θ) refers to a prediction function, where
∧

yuv is the probability that maize
varieties u will be recommended in planting area v, and Θ are the model parameters of
function F .

yuv =

{
1, yield increase percentage compared to the check variety ≥ 0%;
0, otherwise.

(1)

• The recommendation model based on RippleNet [23].

The framework of the recommendation model based on RippleNet is shown in Figure 5.
The model takes maize variety u and planting area v as input, and outputs the probability
of recommending maize variety u in planting area v. The seed in the meteorology KG is
generally composed of the field test data Vu of maize variety u.Sk

u(k = 1, 2, . . . , H), which
refers to multiple ripple sets of maize variety u, is formed when the seed is expanded with
the link. The set of knowledge triples that are k-hop(s) away from the seed set Vu consist
of a ripple set Sk

u. These ripple sets interact iteratively with the planting area embedding
(the light yellow block) to obtain the responses of maize variety to planting area (the green
blocks). The recommendation model obtains the final embedding (the dark gray block)
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of the maize variety by combining all the responses. Finally, the probability
∧

yuv that each
planting area v is suitable for planting the maize variety u is calculated by embedding the
approved maize variety u and the planting area v.
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The meteorology KG contains rich facts and relationships between entities. In order
to express the hierarchical meteorological preference of maize varieties in the meteoro-
logical KG, we recursively define the k-hop relevant entities set of maize variety u in the
recommendation model based on RippleNet, as shown below:

Definition 1 is the detailed explanation of the relevant entity, and Definition 2 is used
to elaborate how a ripple set is formed by the recommended model with the help of the
meteorology KG.

Definition 1. The relevant entity set of k-hop of maize varieties is defined as Equation (2) when
“variety–plant station” interaction matrix Y and the meteorology knowledge graph MG is given.

Ek
u = {t | (h, r, t) ∈ MG and h ∈ E(k−1)

u },k = 1, 2, . . . , H. (2)

E0
u = Vu = {v|yuv = 1} in Equation (2) refers to the area set where the maize variety

has been tested in the field and the yield increase percentage compared to the control
variety of the variety in the tested area is larger than the specified threshold, which could
be regarded as the seed set of the maize variety in the meteorology KG.

Definition 2. The seed (the historical planting records of maize variety) in the meteorology KG
extends along the link to form relevant entities of maize variety. The k-hop ripple set of maize variety
u is defined as Equation (3) when the definition of relevant entities is given. The k-hop ripple set of
maize variety u is defined as the set of knowledge triples starting from Ek−1

u .

Sk
u = (h, r, t)

∣∣∣ (h, r, t) ∈ G and h ∈ E(k−1)
u , k = 1, 2, . . . , H. (3)

In this study, the preference propagation technique is very valuable for the recommen-
dation model based on RippleNet. This technique not only models the interaction between
maize variety and planting area in a more detailed way, but also can be used to explore the
potential interests of maize varieties in the ripple sets.

v ∈ Rd is the planting area embedding of each planting area v, where d refers to the
dimension of the embeddings (Figure 5). Generally, each triple (hi, ri, ti) in the 1-hop ripple
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set S1
u of maize variety u will be assigned a relevance probability by comparing the planting

area embedding v to head hi and relation ri in this triple:

pi = softmax(vTRihi) =
exp(vTRihi)

∑(h,r,t)∈S1
u

exp(vTRh)
(4)

In Equation (4), the embeddings of relation ri and head hi are expressed by Ri ∈ Rd×d

and hi ∈ Rd, respectively. In the recommendation model, we regard the relevance prob-
ability pi as the similarity of planting area v and entity hi. In order to implement the
preference propagation technique, the relevance probability pi needs to be measured in the
embeddings of relation ri(Ri).

According to the relevance probability obtained in Equation (4), the second step of
preference propagation is realized, and the relevance probability is used as a weight to
control the direction of preference propagation. We will get the vector o1

u by taking the sum
of tails in S1

u weighted by the corresponding relevance probabilities.

o1
u = ∑

(hi ,ri ,ti)∈S1
u

piti. (5)

ti ∈ Rd is the embedding of tail ti from the knowledge triple (hi, ri, ti). In addition,
vector o1

u is the 1-order response of maize variety u’s history record Vu with respect to
planting area v. Equations (4) and (5) are the main steps of the preference propagation
technique of this recommendation model. Through these two steps, the interests of a maize
variety are transferred along the links in S1

u. The set of relevant entities E1
u will inherit the

interests of the maize variety from the maize variety’s history set Vu. After the preference
propagation in S1

u is completed, o1
u is used to replace v in Equation (4), and we see the ripple

sets S2
u repeat Equations (4) and (5), and finally the second response vector is returned.

When preference propagation iterates on maize variety u’s ripple sets Si
u, i = 1, . . . , H, we

obtain corresponding response vectors in each ripple set, which carry the meteorological
preferences of maize varieties at different levels. In order to fully reflect the meteorological
preference of maize varieties and help make the subsequent recommendation more precise,
we obtain the embedding of maize variety u by combining all the response vectors from
all orders. This embedding is the preference of maize varieties u for planting area v. The
specific calculation is shown in Equation (6).

u = o1
u + o2

u + . . . + oH
u . (6)

Finally, by calculating the inner product of maize variety embedding and planting
area embedding, the output prediction recommendation probability is obtained:

∧
yuv = ∂(uTv) (7)

In Equation (7), ∂(x) = 1
1+exp(−x) is the sigmoid function.

Through the above content, the relevant definitions in the recommendation model
and the recommendation process of the recommendation model are introduced in detail.
Next, we introduce the algorithm derivation process of the recommendation model.

In the recommendation model for suitable planting areas for maize based on RippleNet,
we intend to maximize the posterior probability of the model parameters Θ when the
meteorology KG, MG and the matrix of “variety–test station” implicit feedback Y are given.
According to Bayes’ theorem, this is equivalent to maximizing

p(Θ|MG, Y) =
p(Θ, MG, Y)

p(MG, Y)
∝ p(Θ).p(MG|Θ).p(Y|Θ, MG). (8)
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In Equation (8), the embeddings of all entities, relations and planting areas are included
in the model parameters Θ. Further, p(Θ) measures the priori probability of model param-
eters Θ and is set as a Gaussian distribution with zero mean and a diagonal covariance
matrix according to [24]:

p(Θ) = N (0, λ−1
1 I). (9)

The p(MG|Θ) in Equation (8) could be used as the likelihood function of the observed
meteorology knowledge graph MG when Θ is given. In the recommendation model based
on RippleNet, the likelihood function for knowledge graph embedding (KGE) is defined
by the three-way tensor factorization method:

p(MG|Θ) = Π(h,r,t)E×R×E p((h, r, t)
∣∣∣Θ)

= Π(h,r,t)E×R×EN (Ih,r,t − hTRt, λ−1
2 )

(10)

When (h, r, t) ∈ MG,the indicator Ih,r,t in Equation (10) equals 1, otherwise Ih,r,t equals
0. Based on the definition in Equation (10), the scoring functions of entity–entity pairs
in KGE and planting area–entity pairs in preference propagation can be unified under
the same calculation model. The likelihood function of the observed “variety-test station”
implicit feedback uses the p(Y|Θ, MG) in Equation (8) when model parameters Θ and the
meteorology KG is given. Additionally, the definition of p(Y|Θ, MG) is the product of
Bernouli distributions based on Equations (2)–(7).

p(Y
∣∣∣Θ, MG) = Π(u,v)∈Yσ(uTv)

yuv .(1− σ(uTv))
1−yuv (11)

In subsequent algorithms, we take the negative logarithm of Equation (8) as the following
loss function for the recommendation model based on Ripplenet. See Equation (12) for details.

minL = − log(p(Y|Θ, MG).p(MG|Θ).p(Θ))
= ∑

(u,v)∈Y
−
(
yuv log σ(uTv) + (1− yuv) log

(
1− σ(uTv)

))
+ λ2

2 ∑
r∈R
‖Ir − ETRE‖2

2
+ λ1

2

(
‖V‖2

2 + ‖E‖
2
2 + ∑

r∈R
‖R‖2

2

) (12)

The embedding matrices for all planting areas and entities are V and E in Equation (12),
respectively. For relation r, the indicator tensor I in the meteorology KG can be sliced into
Ir, and its embedding matrix is represented by R. The cross-entropy loss between the
ground truth of interactions Y and the predicted value by the recommendation model
based on Ripplenet is measured by the first term of Equation (12). According to the
second term, the squared error between the ground truth of the meteorology KG Ir and the
reconstructed indicator matrix ETRE will be returned. The third term is the regularizer for
preventing over-fitting.

In order to solve the problem, the method of optimizing the loss function in this study
is the stochastic gradient descent (SGD) algorithm. The negative sampling strategy in [32]
is used to randomly sample a minibatch of positive/negative interactions from Y and
true/false triplets from MG during each iteration. Then the gradients of loss L with respect
to model parameters Θ are calculated, and all parameters are updated by back-propagation
based on the sampled minibatch. The detailed process of the recommendation model
algorithm is shown in Algorithm 1.



Agriculture 2023, 13, 526 14 of 19

Algorithm 1: Learning algorithm for the recommendation model based on RippleNet

Input of this model: The field test data Y and the meteorology knowledge graph MG
Output of this model: F (u, v|Θ) , a prediction function for recommending non-test planting
areas for maize varieties
1: Initialize all the recommendation model parameters;

2: The ripple sets
{

Sk
u

}H

k=1
for each maize variety u is calculated through the meteorology

knowledge graph;
3: for number of training iteration do
4: Positive and negative interactions from Y and true and false triples from MG are sampled
by the minibatch;
5: Calculate gradients ∂L/∂V, ∂L/∂E, {∂L/∂R}r∈R and {∂L/∂αi}H

i=1 on the minibatch by
back-propagation according to Equations (4)–(12);
6: Update V, E, {R}r∈R, and {αi}H

i=1 by gradient descent with learning rate η;
7: end for
8: return the prediction function F (u, v|Θ)

3. Results

The influence of relevant model parameters on the performance of the RippleNet
model was assessed. The influence of matrix embedded dimension d and KG embedding
training weight on the performance of the Ripplenet model was first analyzed. Then, the
change process of RippleNet performance was analyzed by changing the maximal hop
number H and the size of the ripple set in each hop. The experimental results are shown in
Figure 6. Finally, the maximal hop number H of the experiment and the optimal value of
the size of the ripple set in each hop were selected, and the optimal model parameters were
finally obtained (Table 10).
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Figure 6. Parameter sensitivity analysis of RippleNet model. (a) The influence of the change of matrix
embedding dimension d on model AUC index. (b) The influence of the change of the maximal hop
number H on model AUC. (c) The influence of the change of the parameter λ2 on model AUC. (d) The
influence of the size of ripple set on model AUC.
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Table 10. Optimum performance parameters of RippleNet model.

Parameter d H λ1 λ2 η

Value 8 2 10−7 0.005 0.02

In the above table, λ1 and η refer to the weight of L2 regularization and the learning
rate, respectively.

Compared with six other traditional machine learning methods, the performance of
this model was assessed. The models included K-nearest neighbor (KNN, K = 15), logical
regression (LR), support vector machine (SVM), naive Bayes classifier (NB), decision tree
(DT) and random forest (RF). During the experiment, the dataset was divided into training
and test sets according to the ratio of 4:1, and then the machine learning methods were
trained, respectively. In addition, the proposed model was compared with the graph
attention neural network (GAT) [33] model and the graph convolution neural network
(GCN) [34] model. The traditional machine learning model and graph neural network
training datasets are tabular data comprising meteorological factor data. However, the
meteorological factor data used to construct the meteorology KG in this research requires
pre-classification. The impact of the pre-classification of the original meteorological factor
data on the performance of the eight models mentioned above were also explored. In this
paper, the datasets of meteorological factors before and after pre-classification were taken
as the input of training, and the impact of pre-classification on model performance was
experimentally assessed. Table 11 shows the comparison of accuracy results in different
models before and after dataset pre-classification.

Table 11. Comparison of accuracy of different models before and after pre-classification of meteoro-
logical factor data.

Models KNN LR SVM NB DT RF GAT GCN

After
pre-classification 0.584 0.581 0.545 0.6 0.616 0.613 0.694 0.724

Before
pre-classification 0.577 0.581 0.538 0.6 0.614 0.612 0.693 0.721

Accuracy, recall rate, precision, F1-Score and area under curve (AUC) are the five
evaluation indicators that are usually used to assess the performance of the proposed
model. Finally, the experimental result is obtained by the mean value of the 20 repeated
experiments. Accuracy can be obtained by calculating the ratio of the number of correctly
classified samples to the total number of samples, which can directly reflect the performance
of the model. AUC is defined as the area under the receiver operating characteristic (ROC)
curve. The closer the AUC value obtained by the method is to 1, the greater the authenticity
of the detection method. In contrast, the authenticity is lower and the detection method
has no application value when the AUC value is lower than 0.5. Precision rate is the ratio
of the number of correctly classified positive examples to the number of classified positive
examples. Recall rate refers to the proportion of correctly classified positive samples to the
number of real positive samples and is specific to the sample. The definition of the F1-score
is shown in Equation (13). We can see the training results of the mode in Table 12, and
highlight the higher performance in bold.

F1= 2∗ Precision ∗ Recall
Precision + Recall

(13)
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Table 12. Performance comparison of the recommendation model based on RippleNet with 8 contrast
models.

Models KNN LR SVM NB DT RF GAT GCN RippleNet

Accuracy 0.584 0.581 0.545 0.6 0.616 0.613 0.694 0.724 0.763
Precision 0.604 0.574 0.538 0.604 0.610 0.606 0.706 0.686 0.788

Recall 0.621 0.853 0.924 0.744 0.811 0.796 0.721 0.937 0.898
F1 0.612 0.686 0.699 0.667 0.693 0.688 0.813 0.792 0.839

AUC 0.573 0.558 0.5 0.588 0.598 0.597 0.718 0.723 0.807

4. Discussion
4.1. Result Analysis

The results in Table 11 indicate that the pre-classification of meteorological feature
data did not notably improve the performance of eight contrast models. The reason may
be that the pre-classification of the original meteorological factor data did not change the
feature distribution of each row of data in the dataset.

RF and DT in traditional machine learning models performed slightly better than other
machine learning models (Table 12). This may be because this training set is tabular data,
and the tree model performs better on tabular datasets than other traditional machine learn-
ing models. The operation of RF is based on the integration of multiple DTs, and the results
are determined by majority voting or averaging of each tree. Therefore, RF performed
slightly better than DT in some evaluation indices. Among them, KNN model, SVM and LR
performed the worst, and the correlation between meteorological characteristic data rows
is small, which cannot provide more classification features. When the machine learning
model is faced with such a situation, it cannot achieve good results. Different data in this
training sample comes from different test areas, and there is obvious correlation between
adjacent test areas (such as climate factors). On the other hand, one of characteristics of
graph neural networks is that they can transfer information with the help of the graph
structure. In addition, the state of hidden nodes of graph neural networks can be updated
through the sum of weights of adjacent nodes, and graph neural networks can effectively
use associations between feature nodes. The graph neural network can both mine the
similarity between features, in addition to exploiting the association between geographical
locations with the help of node aggregation, which may also be the reason why the graph
neural network outperformed the traditional machine learning model [10]. GAT needs two
steps to update the characteristics of nodes. GAT needs to calculate the attention score of
all adjacent nodes. This step is the data basis for aggregating adjacent features in the next
step. In this way, GAT makes full use of the correlation between features. GAT (69.4%) may
not perform as well as GCN (72.4%) in this study because edge information is not fully
utilized and the weight learning ability between nodes is relatively weak. The accuracy
value of RippleNet in this test was 76.3%. Compared with the traditional machine learning
optimal value (61.6%), RippleNet obtained a higher accuracy rate of recommended suitable
planting areas for maize varieties in a limited sample. In addition, compared with GAT
(69.4%) and GCN (72.4%), RippleNet also performed better in terms of accuracy, but its
recall value was slightly lower than the GCN model and better than GAT model. RippleNet
also produced good precision (78.8%), F1 (83.9%) and AUC (80.7%) scores, which were
considerably higher than in other methods, further verifying the superiority the model.

The constructed meteorology KG of the Huang-Huai-Hai ecological region presented
in this paper will help to precisely locate suitable planting areas for maize varieties from the
ecological region-level to the county-level and connect all counties in the Huang-Huai-Hai
ecological region. The meteorology KG can fully explore and utilize the meteorological
correlation between locations through its strong link connectivity and the rich relationships
and nodes to cluster locations with the same meteorological characteristics. The historical
research of crop variety recommendation focuses on the construction of an indicator system.
For example, [4] takes the Huang-Huai-Hai ecological region as the research object, uses
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the characteristics of accumulated temperature, average planting density, etc., to build
an indicator system, so as to achieve the fine division of maize variety planting areas in
the Huang-Huai-Hai ecological region. However, this method requires a large amount
of crop variety planting data in the ecological area to ensure that the constructed index
system is more in line with scientific laws. This kind of method is not suitable for maize
varieties that have only been investigated in field trials. In recent years, researchers have
introduced artificial intelligence technology into crop yield prediction, such as [10,11]. The
application of artificial intelligence technology has greatly improved the accuracy of yield
prediction. This research needs to predict the yield of crop varieties before realizing the
recommendation of crop varieties, and cannot directly recommend crop varieties, which
complicates the recommendation process. In addition, compared with GCN in [10], which
simply uses the node aggregation method to explore the geographical association between
nodes, the method proposed in this paper can also use the preference propagation of
RippleNet to iteratively expand on the meteorology KG of the Huang-Huai-Hai ecological
region, and effectively discover the meteorological preference of each maize variety. As
such, the recommended planting area can better meet the requirements of each variety’s
planting environment, which is conducive to the precise promotion of varieties.

4.2. The Future Research Focus

The suitability of maize varieties is affected not only by meteorological factors, but
also by soil moisture and other factors. In the future, more factors related to the recom-
mendation of suitable planting areas will be introduced into the KG, a KG with richer
node relationships will be constructed and the accuracy of the recommendation of suitable
planting areas will be increased. Simultaneously, the expansion of the KG leads to more
nodes and increased complexity of the relationship between nodes, which puts forward
higher requirements for the operation efficiency of the algorithm. Future work will also
focus on the optimization of the generalization ability of the algorithm and its application
to rice, wheat and other crops.

5. Conclusions

The field performance of maize varieties is affected by many factors, so it is of great
significance to construct a precise recommendation model for maize varieties at the county-
scale to extract the yield and income potential of new varieties. Based on the spatial
correlation of the meteorological environment in the variety planting area, a precise recom-
mendation method for suitable planting areas of maize varieties is hereby proposed based
on the knowledge graph. The RippleNet recommendation model was used to construct
a propagation network of preference for variety environmental adaptability, which also
explored the implicit relationship between the variety field performance and the meteo-
rological factors in the planting area. Consequently, a precise evaluation of the suitability
of maize varieties was achieved. In terms of recommendation accuracy, the accuracy of
this method reached 76.3%, which is notably better than traditional machine learning
methods such as K-nearest neighbor, and has significant application value in precision
recommendations for maize variety suitability.
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