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Abstract: To overcome the low recognition accuracy, slow speed, and difficulty in locating the picking
points of tea buds, this paper is concerned with the development of a deep learning method, based on
the You Only Look Once Version 4 (YOLOv4) object detection algorithm, for the detection of tea buds
and their picking points with tea-picking machines. The segmentation method, based on color and
depth data from a stereo vision camera, is proposed to detect the shapes of tea buds in 2D and 3D
spaces more accurately than using 2D images. The YOLOv4 deep learning model for object detection
was modified to obtain a lightweight model with a shorter inference time, called YOLOv4-lighted.
Then, Squeeze-and-Excitation Networks (SENet), Efficient Channel Attention (ECA), Convolutional
Block Attention Module (CBAM), and improved CBAM (ICBAM) were added to the output layer of
the feature extraction network, for improving the detection accuracy of tea features. Finally, the Path
Aggregation Network (PANet) in the neck network was simplified to the Feature Pyramid Network
(FPN). The light-weighted YOLOv4 with ICBAM, called YOLOv4-lighted + ICBAM, was determined
as the optimal recognition model for the detection of tea buds in terms of accuracy (94.19%), recall
(93.50%), F1 score (0.94), and average precision (97.29%). Compared with the baseline YOLOv4
model, the size of the YOLOv4-lighted + ICBAM model decreased by 75.18%, and the frame rate
increased by 7.21%. In addition, the method for predicting the picking point of each detected tea bud
was developed by segmentation of the tea buds in each detected bounding box, with filtering of each
segment based on its depth from the camera. The test results showed that the average positioning
success rate and the average positioning time were 87.10% and 0.12 s, respectively. In conclusion, the
recognition and positioning method proposed in this paper provides a theoretical basis and method
for the automatic picking of tea buds.

Keywords: tea buds; YOLOv4; attention mechanism; intelligent recognition; depth filter; picking point

1. Introduction

Tea is one of the three major non-alcoholic beverages in the world [1,2]. According to
the data from the Food and Agriculture Organization of the United Nations, tea production
in the world was 5.73 million tons in 2016, of which China accounted for 42.6%, the
largest tea producer. The types of tea harvesting machines can be mainly categorized into
reciprocating cutting, spiral hob, horizontal circular knives, and spiral folding [3–5]. These
conventional mechanized tea-harvesting methods often result in a mixture of new and old
tea leaves. Although effective for most tea leaves, these machines are not appropriate for
picking premium quality tea leaves, because mixed old leaves will lower the quality of the
product and decrease the yield [6]. At present, the picking of premium-quality tea leaves is
done manually. The decrease in the agricultural population (labor shortages even in China),
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and rising labor costs, necessitate the development of methods and machines for intelligent
and automated detection and picking of tea leaves [7–9]. However, there is a research gap
in detecting and differentiating tea buds from other leaves and stems, and predicting the
locations for picking the tea buds individually.

Many researchers have reported the detection and classification of crops [10], including
apple [11], citrus [12], melon [13], strawberry [14], kiwi [15], tomato [16], cucumber [17],
and pepper [18]. In the area of detection of tea leaves, it is important to differentiate
tea buds from other tea leaves, because these tea buds of premium tea plants are sold
separately from other leaves, at high prices. However, tea buds are similar to other tea
leaves in color and shape. Thus, it is difficult to accurately detect only tea buds in their
natural growing condition. Traditional image processing techniques, based on K-means
clustering and Bayesian discrimination of color features, have been proposed to detect tea
buds [19,20]. However, due to the complex environment of tea plantations, and changing
lighting conditions, these traditional image processing methods cannot solve the problem
of the identification of tea buds and picking positions.

Compared with traditional image processing techniques, deep learning has signifi-
cantly improved recognition accuracy in many other agriculture applications and tea bud
detection tasks [21–24]. Qian et al. proposed an improved deep convolutional decoding
network (TS-SegNet) for the segmentation of tea sprouts. Xu et al. proposed a convolu-
tional neural network combining the You Only Look Once v3 (YOLOv3) and DenseNet201
algorithms, to achieve a detection accuracy of 95.71% for tea buds. Sun et al. combined
the improved YOLO network, using largescale and mesoscale detection instead of the
original multi-scale detection, with the super green feature and the OSTU algorithm, to
solve the tea bud detection problem [25]. Chen et al. found that more input information
can lead to a better detection result. They proposed a method using image enhancement
and a Fusion Single-Shot Detector [26]. Li et al. proposed a real-time tea shoot detection
method, using the channel and layer pruned YOLOv3-SPP deep learning algorithm. The
number of parameters, model size, and inference time of the tea shoot detection model
after compression were reduced by 96.82%, 96.81%, and 59.62%, respectively, and the mean
average precision of the model was only 0.40% lower than that of the original model [27].
Researchers also proposed using deep learning to detect tea buds, based on the improved
YOLOv3 and the Mask-RCNN (region-based convolutional neural network), where a thin-
ning algorithm [28], and a method for finding the centroid of a stem [29], were proposed, to
locate the picking points. Yan et al. proposed the method of tea segmentation and picking
point location based on a lightweight convolutional neural network named MC-DM (Multi
Class DeepLabV3+ MobileNetV2 (Mobile Networks Vision 2)), to solve the problem of
identifying the tea shoot picking point in a natural environment. The accuracy of picking
point identification reached 82.52%, 90.07%, and 84.78% for single bud, one bud with one
leaf, and one bud with two leaves, respectively [30]. Chen et al. used a Faster R-CNN
model and a fully convolutional network (FCN) in cascade, to detect tea buds, and achieved
an average accuracy of 84.91%. This literature review shows that the previous studies
using deep learning to identify tea buds and locate picking points achieved good accuracy
(ranging from 85% to 96% in detecting tea buds and from 70% to 95% in localizing the
picking points), and the processing time, in terms of processed frames per second, was
between 0.12 and 7.70 [31]. There was still a need to improve the detection and localization
performance, while reducing the processing time, for deploying an automated tea-harvest
machine in practice.

Hence, the main objective of this paper is to introduce a new deep learning-based
object detection algorithm for the accurate detection and localization of tea buds, and their
picking, in real-time. Since the first version of YOLO [32] was introduced in 2016, the object
detection performance in accuracy and speed has been greatly improved. Due to the size
of the network meaning it cannot achieve a real-time detection effect, some researchers
have reported light networks of YOLO series, to identify and count targets [33–39]. In this
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paper, YOLO v4 [40] was used as our baseline object detection model, and it was made
more lightweight and improved.

The sub-objectives of the paper are: (1) to study a solution to detect tea buds growing
in outdoor natural light using a stereo vision (RGB-D) camera, (2) to characterize the
performance of the stereo camera, (3) to develop a lightweight YOLOv4, with improved
detection accuracy, (4) to apply 3D depth information to improve the detection accuracy of
tea buds, (5) finally to solve the problem of locating picking points.

2. Materials and Methods
2.1. Image Acquisition and Dataset Construction
2.1.1. Tea Plants

Biluochun tea (Tetraena mongolica Maxim) that grew naturally in a tea plantation
(Qingcheng Road Tea Tourist Plantation, Dujiangyan, Sichuan Province, China) was se-
lected for this study. The planting parameters in the tea plantation were as follows: (1) the
width and the height of a tea ridge were about 900 mm and 750 mm, respectively, (2) the
distance between tea ridges was about 600 mm, and (3) the top surface of the tea ridge was
close to the plane. To make the detection model suitable for the different lighting conditions
of the tea plantation, images using a stereo vision camera were collected in video mode at
three time periods: 9:00–10:00, 12:00–13:00, and 17:00–18:00, on 8 April 2020. Four sets of
videos were collected during each period, and the images included tea buds, tender leaves,
old leaves, and the real scene of the tea plantation environment.

2.1.2. Image Acquisition System

In this paper, an RGB-D camera, based on two RGB stereo sensors (ZED-Mini, Stere-
olabs, San Francisco, CA, USA), was used for acquiring color images and their spatially
corresponding depth images. The stereo camera was set to operate in a video mode, to
acquire color and depth images with a frame rate of 30 Hz, a pixel resolution of 1920 × 1080,
a depth range of 0.1–15 m, and a field of view of 90◦ (horizontal)× 60◦ (vertical). The depth
mode for the highest depth range (ULTRA) was selected, and a mode (FILL) to fill in holes
occurring due to occlusion and filtering was also selected. The stereo camera, calibrated by
the manufacturer, was recalibrated manually with the manufacturer-provided calibration
tool (ZED Calibration).

An experiment for obtaining the best working distance of the stereo camera was
conducted, through an analysis of depth errors. For the depth error analysis, a planar
target with a grid pattern was first attached to the wall, and the view of the stereo camera,
installed on a tripod, was adjusted such that the optical center of the left camera coincided
with that of the grid target (Figure 1a). The live view was also checked to ensure the relative
angle between the camera and the X, Y, and Z axes of the grid were 0◦. Under this setup,
the distance of the camera was measured between the optical center of the left camera
and the center of the grid target. The initial camera distance was set to 0.2 m. Then, the
camera distance to the grid target was increased by a step size of 0.1 m, between 0.2 and
1 m, and then by a step size of 0.2 m, from 1 m to 1.8 m. At each change in the distance, the
distance between the eight equal points on the horizontal and vertical center lines of the
grid target and the optical center of the left camera were calculated. A distance meter was
used to measure the real distance, and the depth errors of the calculated distances and real
distances were analyzed. The depth error analysis results are shown in Figure 1b. When
the camera distance was greater than 0.2 m but less than 0.5 m, the depth measurement
error was less than 5 mm. In the range from 0.5 m to 1 m, the pixels along the optical axis
had a depth measurement error of less than 5 mm, but the error size increased toward the
edges of the field of view, to 5 to 9 mm. While the depth accuracy along the vertical field of
view was better than the horizontal view when the camera distance was longer than 1.0 m,
the errors at the image edges in the far distance of over 1.4 m were greater than 9 mm. In
general, the error increased with the increase in the center distance, no matter whether in
the horizontal field of view or the vertical field of view.



Agriculture 2023, 13, 518 4 of 19

Agriculture 2023, 13, x FOR PEER REVIEW 4 of 21 
 

 

than 1.0 m, the errors at the image edges in the far distance of over 1.4 m were greater 
than 9 mm. In general, the error increased with the increase in the center distance, no 
matter whether in the horizontal field of view or the vertical field of view. 

 
Figure 1. Depth measurement errors of the stereo camera. (a) Test setup; (b) Spatial distributions of 
measured depth errors. The numbers from 200 to 1800 are in millimeters. 

The stereo camera for tea plant imaging was attached to a gimbal, and the camera’s 
shoot angle was set to about 45°. Considering the camera performance, the operation of 
an intelligent tea-picking machine, and the accuracy of detection and positioning models, 
the optimal parameters for image data collection were determined as follows: a camera 
working distance of 0.6 m, and a horizontal field of view of about 0.936 m. The expected 
error of the measured depths under this setup was about 5–9 mm, from the depth error 
analysis study (Figure 1b). 

2.1.3. Dataset Construction 
To simulate the view of the picking machine, crossing the ridge straight forward, to 

capture SVO video. The videos were taken during three time periods, under normal light, 
intense light, and low light conditions. Five videos were taken under every light condi-
tion. The video captured by the stereo camera were saved in the manufacturer’s proprie-
tary video format (SVO). Using a Python custom code, based on the ZED SDK, every third 
frame in a video was extracted and exported into a PNG format image (1920 × 1080 pixels). 
The initial tea dataset was composed of one image selected from every 10 transformed 
images, so as to reflect the image changes caused by environmental factors to a certain 
extent. A total of 3900 stereo images were extracted from the acquired videos, with 1300 
stereo pairs per light condition. The images included old tea leaves, tea buds, and the 
complex tea plantation environment. 

To improve the contrast between the leaves and tea buds in the images, histogram 
equalization processing was performed and evaluated, before adding the contrast-en-
hanced images to the final dataset, for which global histogram equalization (GHE) and 
adaptive histogram equalization (AHE) were tested. Moreover, data augmentation was 
performed to improve the generalization ability of the model via sharpening, adding salt 
and pepper noise, and rotating (clockwise 45° and 135°). The total number of images, in-
cluding the original and processed images, was 15,600 (Table 1). 
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The stereo camera for tea plant imaging was attached to a gimbal, and the camera’s
shoot angle was set to about 45◦. Considering the camera performance, the operation of
an intelligent tea-picking machine, and the accuracy of detection and positioning models,
the optimal parameters for image data collection were determined as follows: a camera
working distance of 0.6 m, and a horizontal field of view of about 0.936 m. The expected
error of the measured depths under this setup was about 5–9 mm, from the depth error
analysis study (Figure 1b).

2.1.3. Dataset Construction

To simulate the view of the picking machine, crossing the ridge straight forward, to
capture SVO video. The videos were taken during three time periods, under normal light,
intense light, and low light conditions. Five videos were taken under every light condition.
The video captured by the stereo camera were saved in the manufacturer’s proprietary
video format (SVO). Using a Python custom code, based on the ZED SDK, every third frame
in a video was extracted and exported into a PNG format image (1920 × 1080 pixels). The
initial tea dataset was composed of one image selected from every 10 transformed images,
so as to reflect the image changes caused by environmental factors to a certain extent. A
total of 3900 stereo images were extracted from the acquired videos, with 1300 stereo pairs
per light condition. The images included old tea leaves, tea buds, and the complex tea
plantation environment.

To improve the contrast between the leaves and tea buds in the images, histogram
equalization processing was performed and evaluated, before adding the contrast-enhanced
images to the final dataset, for which global histogram equalization (GHE) and adaptive
histogram equalization (AHE) were tested. Moreover, data augmentation was performed
to improve the generalization ability of the model via sharpening, adding salt and pepper
noise, and rotating (clockwise 45◦ and 135◦). The total number of images, including the
original and processed images, was 15,600 (Table 1).

It has been reported that the optimal picking position of green tea leaves has a strong
correlation with metabolism [41]. A comprehensive analysis of 18 metabolites in green
tea showed that tea buds had a higher concentration of beneficial metabolites, such as
gallic acid, compared to the concentration of harmful metabolites such as theanine [42]. In
this study, one bud and one leaf were included in one target object, to detect such that a
ground-truth-bounding box for training and evaluation of the models included one bud
and one tender leaf, as shown in Figure 2. The determination of the real label sample on the
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ground truth is very important for the accuracy of the detection, while the results obtained
by the artificial naked eye sensory method will inevitably have errors. Despite all this, the
research object of this work, the tea, is a perennial plant, and the differences between new
buds and old leaves are obvious, especially in color and shape (Figure 2). Moreover, in
this paper, a unique combination of one bud and one leaf is selected as the identification
standard, which makes the label data more targeted. Besides, the automatic picking of tea
is still developing, thus there is no very mature standard. This work is also a preliminary
one, further work will be conducted in the near future. The optimal picking areas were also
covered as the area of the yellow rectangular box. LabelImg was the labeling tool used to
make the ground-truth-bounding boxes in the images.

Table 1. Dataset composition.

Lighting
Condition

Original
Image

Contrast
Enhanced

Added Salt and
Pepper Noise Rotated Total

Normal light 1300 0 1300 2600 5200
Intense light 0 1300 1300 2600 5200

Low light 0 1300 1300 2600 5200
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2.2. Detection of Tea Buds
2.2.1. Baseline YOLOv4 Network

The YOLOv4 network was used as a baseline model to evaluate the performance of
the new models introduced in this paper. The YOLOv4 architecture was based on three sub-
networks, including the backbone network, for feature extraction; the neck network, for
fusion of extracted features; and the head network, for bounding box localization and object
classification.

The backbone network of YOLOv4 was CSPDarkNet53, which combined Darknet53
and CSPDenseNet. CSPDarkNet53 consisted of one convolution, batch normalization, and
Mish (CBM) module, and five stacked Resblock_body (RB) modules. The Mish activation
function in the CBM module had a generalization ability [43]. The RB module used the
cross-stage partial network (CSPNet) approach [44] for partitioning the feature map of
the base layer into two parts, and then merging them through a cross-stage hierarchy.
The spatial pyramid pooling (SPP) block, and a path aggregation network (PANet) block,
were used as the neck network, with bottom-up and top-down pyramid path structures.
The SPP block utilized pooling kernels of different scales for max-pooling, to separate
salient contextual features. The PANet structure realized the repeated extraction and fusion
of features.

The head of Yolov3 was used for the head network, where bounding boxes were
located and classification was performed. The coordinates of the bounding boxes, as well
as their scores, were predicted.
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2.2.2. Lightweight YOLOv4 Network

The speed of the YOLOv4 model, for the detection of tea buds, can be improved with a
lightweight model. In this paper, the last RB was removed from the backbone network, and
three feature layers were reserved for the input of the neck network, where the unnecessary
feature layer of 13 × 13 × 1024 was removed, and a feature layer of 104 × 104 × 128 was
introduced, to focus on the small-scale features of tea buds. In the neck network, the PANet
structure was replaced by the feature pyramid network (FPN), to simplify the model. In
this work, the lightweight network model was named YOLOv4-lighted.

Figure 3a shows the basic structure of the improved tea buds detection algorithm
model proposed in this paper. We chose an image of 416× 416 pixels as the model input.
Through the CBM module, the shallow feature information was aggregated. Then, through
the four-layer RB structure, further features were extracted, and three effective feature
layers were obtained, where the first two focused on the detection of small- and medium-
sized tea buds, and the last one focused on large-scale features. Then, the different attention
mechanism modules were introduced. The specific processes are shown in Figure 3b.
The last layer used the SPP structure to enlarge the receptive field, and FPN to realize
the features’ fusion. Finally, we obtained the features with dimensions of 104× 104× 18,
52× 52× 18, and 26× 26× 18 (where 18 is 3 × (1 + 1 + 4): 3 is the number of anchors, 1
is the number of categories, 1 is the confidence level, and 4 is the coordinate information of
the object).
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2.2.3. Multi-Scale Fusion Pyramid with Attention Mechanism

Although the introduction of a low-dimensional feature layer was beneficial for ex-
tracting small-sized objects [45], it also introduced a large amount of background noise,
which could affect the accuracy of identification. To solve this problem, we used an atten-
tion mechanism at the beginning of the neck network. The channel attention mechanism
SENet [46], efficient channel attention (ECA) [47], convolutional block attention module
(CBAM) [48], and the self-improved attention mechanism (ICBAM) were evaluated and
compared, to find the optimal attention mechanism. The ICBAM structure is shown in
Figure 3b, which was divided into two parts, the left was the channel attention mecha-
nism, and the right was the spatial attention mechanism. Under the channel attention
mechanism, the original feature map, H ×W × C, was compressed into two 1 × 1 × C
feature maps spatially, through maximum pooling and average pooling. Then the Conv1D
construction replaced fully connected layers, to improve the detection speed and obtain
feature information across channels. Finally, the two-channel feature maps were fused,
using a sigmoid function, to form the new channel. The weight coefficient enhanced the
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classification information. A new enhanced feature map was obtained through multiplying
by the weight coefficients of the original feature map. Similarly, the maximum pooling
and average pooling in the channel dimension were used to pool the original feature map
(H ×W × C), to obtain two H ×W × 1 feature maps, and after stacking the two feature
maps, the spatial attention of H ×W × 1 was finally obtained through the 7 × 7 convo-
lutional layer and the sigmoid function. The force weight was multiplied by the original
feature map to obtain a new feature map. The feature layer of the changed attention
mechanism was used as the input of the neck network to extract further features.

2.2.4. Construction Strategy of Tea Buds Detection Algorithm

The lightweight network YOLOv4-lighted, was combined with the attention mecha-
nism SENet, ECA, CBAM, and ICBAM modules, to make five improved YOLOv4 networks,
as shown in Table 2 Compared with the baseline YOLOv4, the total number of parameters
of the YOLOv4-lighted network was reduced by 79.40%. In addition, compared with
the YOLOv4-lighted network, the networks with different attention mechanisms had an
increase of less than 1.31% in the total number of parameters. Although the total amount of
the five improved network parameters was basically the same, the model detection effect
needed to be further compared.

Table 2. Comparison of model sizes.

YOLOv4 YOLOv4-
lighted SENet ECA CBAM ICBAM Number of

Parameters
√

64,429,405√
14,811,101√ √
14,984,253√ √
14,811,116√ √
14,984,550√ √
14,820,358

2.3. Position of Picking Points

Tea buds and other tea leaves have irregular and non-uniform shapes and similar
colors, while they are closely connected in location and sometimes occluding each other
in 2D images. This occlusion condition makes it difficult to accurately detect the shapes
of tea buds and their picking points from 2D images alone, even after the proposed object
detection algorithm can accurately find the locations of tea buds in the form of bounding
boxes. To solve this problem, this paper proposes using a depth filter in 3D space.

First, the bounding boxes of all detected tea buds were cropped into sub-images. Then,
all cropped sub-images were processed for segmentation of tea buds with a series of image
processing techniques, including (1) edge-preserving and noise-reducing smoothing with a
bilateral filter; (2) edge detection with a Laplacian filter, for sharpening, enhancing, and
highlighting the textures and edges of tea buds; (3) intensity thresholding for segmenting
tea buds with the Otsu method, based on a green color channel; and (4) morphological
eroding and dilating, for further removal of background clutter.

When the tea buds were occluded by other objects in 2D images, they were likely
separated in 3D space. After the tea bud segmentation, the segmented tea buds were
regarded as foreground, and the rest of the pixels were regarded as background. Because a
stereo vision (RGB-D) camera was used, depth values were readily available for the pixels
of the segmented image from the corresponding depth image.

According to the positioning principle of a binocular camera, the depth values of
the pixel coordinates in the tea image are obtained as shown in Figure 4. In addition,
the lightweight neural network stereo matching algorithm in the ZED-Mini binocular
stereo camera SDK was used, to match the same features in the left and right eye fields of
the binocular camera, calculate the parallax of pixel points, and obtain the depth images
to visualize the parallax. To obtain clear and smooth dense depth images with edges
and sharpness, the resolution, camera frame rate, depth mode (DEPTH_MODE) and
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sensing mode (SENSING_MODE) were adjusted to 1920 × 1080 pixels, 15FPS, ULTRA, and
FILL, respectively.
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Figure 4. Positioning principle of a binocular camera. OL-XLYLZL and OR-XRYRZR are the left and
right eye coordinate systems of the binocular camera, respectively; OL and OR are the optical centers
of the left and right eyes, respectively; f is the focal length of the binocular camera; b is the baseline
distance of the binocular camera. The coordinates of the tea to be located are point P in the camera
coordinate system, and its coordinates are (X, Y, Z).

Therefore, it is known that the points of P in the left and right images of the binocular
camera are Pl (xl, yl) and Pr (xr, yr). The three-dimensional coordinates of P in the OL-
XLYLZL coordinate system can be obtained as shown in Equation (1), where Z is the depth
value of point P. 

X = xlb
xl−xr

Y = yl b
xl−xr

Z = f b
xl−xr

(1)

The depth filter, defined in Equations (2) and (3), used the threshold depth value to
remove the background pixels behind the tea buds in the depth map.

Igray(x, y) =

{
Igray(x, y), if ID(x, y) < Threshold

0, Otherwise
(2)

Threshold = MIND + Leaf _Width (3)

where Igray(x, y) is the gray value at (x, y), ID(x, y) is the depth value at (x, y), Threshold
is the depth threshold, MIND is the minimum depth value of all pixels in the image, and
Leaf_Width is the width value of the tea leaves.

The gray-scale values of the corresponding pixel points according to the depth were
adjusted. The original gray-scale values of the pixel points in the RGB image whose depth
is in the range of foreground were retained, otherwise, the gray-scale values were adjusted
to 0. The parts of tender leaves behind the identified tea buds were removed and it was
ensured that the tea buds were completely extracted. The tender buds located at the back
were then detected again in the next detection cycle, which did not cause missed detection.

The widths of 150 tea buds were measured manually to determine Leaf _Width. The
measurements included different forms such as unseparated buds, stretched buds, sep-
arated buds, and completely stretched buds. Some of the measurements are shown in
Figure 5. The maximum value of the measured width (19.34 mm) was taken as the width
of tea buds, to protect the integrity of recognized tea buds.
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Figure 5. Measurement of the width of tea leaves.

After being segmented by the depth filter, in the same depth plane, there may also be
some small parts of other tea buds in the image. Based on the idea of identification focus,
only the identified tea buds have the largest contours in the image. Therefore, traversing
and calculating the area of all contours in the segmented image, only contours that had
the largest area were extracted. The original image was masked to obtain an image with
only tea buds identified by the extracted contours. The lowest pixel point of the tea bud’s
contour was located, and the coordinates of this point (xi, yi) extracted as the picking point.
The coordinates of the identification frame were combined to convert the coordinates in the
RGB image, according to Equation (4):{

xj= lefti+xi
yj= topi+yi

(4)

where xi , yi are the coordinates of the picking point in the single extraction image of the
i-th tea leaves, lefti , topi are the coordinates of the upper left corner of the identification
frame of the i-th tea leaves, xj, yj are the coordinates of the picking point of the identified
i-th tea leaves in the original field of view of the camera.

The method flow chart of the recognition and positioning of fresh tea buds is shown
in Figure 6.
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3. Results
3.1. Detection of Tea Buds
3.1.1. Preprocessing

The RGB color images acquired under the different light conditions (normal: 9–10 a.m.,
strong: 12–1 p.m., low: 5–6 p.m.) showed different contrast and histograms before and after
equalizing the histograms via global and locally adaptive methods, as shown in Figure 7.
The images under the normal lighting condition, taken between 9 and 10 a.m., showed
overexposure in the bright leaf areas after histogram equalization. Thus, the normal
lighting images were assigned to the dataset without changing the intensities through
any histogram equalization. The intensity histogram of images taken under the intense
light condition, between 12 and 1 p.m., showed overexposure in the highlighted areas,
as expected. Adaptive histogram equalization (AHE) performed better in revealing the
lost detail in the highlighted areas, compared with global histogram equalization (GHE).
Hence, the images taken under the intense light condition were preprocessed with AHE.
On the other hand, because the images taken under the low light condition suffered from
a loss of detail in the shadowed (or dark) areas, contrast enhancement help to reveal the
lost detail. Similar to the intense light condition case, the AHE performed better than GHE
in enhancing the contrast, while minimizing the loss of detail in all intensities. Thus, the
low-light images were preprocessed with AHE. All image data, corrected for the light effect,
were further augmented by unsharp masking for image sharpening, median filtering for
removal of salt and pepper noise, and rotation. These preprocessed images were used for
training the tea bud detection models.

3.1.2. Model Training

The experiments for model development were performed using Python programs
based on Keras for TensorFlow and PyCharm for Python 3.8, on a Windows-10 PC, with
an NVIDIA GPU card (GeForce GTX 1650). The hardware and software configurations for
model development are summarized in Table 3.

Table 3. Hardware and software configurations for model development.

Component Description

CPU Intel Core i5-10400F (2.9 GHz)
GPU hardware NVIDIA GeForce GTX 1650

GPU programming library CUDA 11.0 and CUDNN 8.0
Integrated development environment PyCharm 2021.1.1

Operating system Windows 10

The six object detection models shown in Table 2 were trained with the labeled data in
a supervised way. The 15,600 images were divided into training, validation, and testing
sets, with a ratio of 8:1:1, and the input image size was adjusted to 416× 416 (pixels). The
training process included two training stages: freezing and thawing. For the freezing stage,
the number of layers was 100; the batch size was 4; the initial learning rate was 0.001; and
the training epochs were 200. For the thawing stage, the batch size was 1; the initial learning
rate was 0.0001; the training epochs were 300; and the confidence score threshold was set to
0.5. During the training process, the Mosaic data augmentation that was first introduced in
YOLOv4 was used to increase the generalization power of the models. The non-maximum
suppression (NMS) has been a standard in many object detection algorithms producing
bounding boxes as output, and was also used in this study to select the best bounding box
among many possible candidate boxes. The cosine annealing learning rate scheduler was
used to improve the accuracy of the models. The six tea bud detection algorithms (YOLOV4,
YOLOV4-light, YOLOV4-light + SENet, YOLOV4-light + ECA, YOLOV4-light + CBAM,
and YOLOV4-light + ICBAM) were trained for 3319 min, 2886 min, 3124 min, 2947 min,
3185 min and 3016 min, respectively.
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3.1.3. Performance Comparison of Six Tea Bud Detection Models

The performances of the six trained detection models were compared using 1560 RGB
images in the test set, and are summarized in Table 4, with accuracy, recall, and F1 score. The
confidence score threshold and IoU threshold for the object detection models were 0.5 and
0.3, respectively. Using YOLOv4 as a baseline model, the performance gain of the YOLOv4-
lighted and YOLOv4-lighted + SENet models over the baseline model was marginal in
precision and F1 score, at the expense of decreased recall, while the performance gain of
the YOLOv4-lighted + ECA, YOLOv4-lighted + CBAM, and YOLOv4-lighted + ICBAM
models was noticeable. The precision, recall, and F1 score of the YOLOv4-lighted + CBAM
and YOLOv4-lighted + ICBAM models increased by over 8%, 7%, and 10% with respect to
the baseline model, respectively.
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Table 4. Performance of six tea bud detection models.

Model Precision (%) Recall (%) F1 Score

YOLOv4 85.94 86.21 0.84
YOLOv4-lighted 86.52 81.23 0.84

YOLOv4-lighted + SENet 87.13 84.93 0.86
YOLOv4-lighted + ECA 86.38 87.92 0.87

YOLOv4-lighted + CBAM 94.30 93.66 0.94
YOLOv4-lighted + ICBAM 94.19 93.50 0.94

When AP was compared among the six tea bud detection models, as shown in Figure 8,
the performance of YOLOv4-lighted + CBAM (97%) and YOLOv4-lighted + ICBAM (97%)
was much better than the YOLOv4 (89%), YOLOv4-lighted (87%), YOLOv4-lighted + SENet
(90%), and YOLOv4-lighted + ECA (91%) models. The YOLOv4-lighted + ICBAM model
was slightly better than the YOLOv4-lighted + CBAM in the AP comparison, by about 0.4%.
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In comparing model parameter sizes, the sizes of the five YOLOv4-lighted-based
models were reduced to about 23% (ranging from 22.99% to 23.28%) of the size of the
baseline YOLOv4 model (see Table 3 and Figure 7). The reduced model size could mean
smaller memory usage during inferences. The processing time of each model was also
compared in terms of frame rate (frames per second, FPS), to ensure that the reduced
model size also resulted in a shorter inference time on the test set (see the red curve in
Figure 9). Overall, the FPS of the five YOLOv4-lighted-based models was higher by 1.66 FPS
on average than the 26.77 FPS of the baseline YOLOv4. Although the YOLOv4-lighted
model showed the fastest inference, with 29.11 FPS, our focus was to determine which one,
between YOLOv4-lighted + CBAM and YOLOv4-lighted + ICBAM, was faster, because
these two models were the best candidate models from the accuracy evaluation. Note
that YOLOv4-lighted + CBAM was slightly better than YOLOv4-lighted + ICBAM in the
detection accuracy test measured by precision, recall, and F1 score, whereas YOLOv4-
lighted + ICBAM was better than YOLOv4-lighted + CBAM in the AP test. Considering
the smaller model size and shorter inference time, the YOLOv4-lighted + ICBAM model
was selected as the best tea bud detection model in this paper.

Figure 10a shows weighted heat map images extracted from three feature layers
of the YOLOv4-lighted + ICBAM, where detected targets were hotter (red color) than
less important pixels (cool blue color). As shown in Figure 10a, the feature layer of
104× 104× 128 pixels mainly detected small-sized objects, the second feature layer of
52× 52× 256 pixels mainly detected medium-sized targets, and the final feature layer
of 26 × 26 × 512 pixels mainly detected large-sized targets. So, the feature layer with
smaller data dimensions was more sensitive to larger-sized objects. The feature layer and
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the confidence score layer were combined, to provide visualized images about how the
confidence score and feature layers interacted, before determining the best locations of the
bounding boxes for the targets.
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Figure 11 shows the target detection results of the YOLOv4-lighted + ICBAM (best)
and the YOLOv4 (baseline) models on the test dataset, where the blue boxes are the missed
tea buds. Qualitatively, the detection performance of the YOLOv4-lighted + ICBAM model
was better than that of YOLOv4, that missed small-sized tea buds or ones in densely
populated areas. The attention mechanism used in the improved network models resulted
in better sensitivity for the detection of tea buds in areas of densely populated tea leaves,
and the use of multiscale feature layers enabled the detection of small tea buds. In addition,
the adaptive histogram equalization made the target detection relatively robust to the effect
of different lighting conditions.
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location of each detected tea bud is described by a bounding box. A red box means a hit, whereas a
blue box means a miss.

3.2. Position of Picking Points

Note that an RGB color image, and its corresponding depth image, were obtained with
a stereo vision camera, such that both images were matched spatially in pixel coordinates.
The detection process of picking points started with the RGB images, where tea buds were
detected and localized by bounding boxes with the YOLOv4-lighted + ICBAM model, as
shown in Figure 12a. Because the color image and its corresponding depth image were
spatially registered, the same bounding boxes found over the color image could be applied
to the depth image without modification, as in Figure 12b.
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Then, the boundary coordinates of each bounding box were used to crop out a sub-
image, showing only one single tea bud in each sub-image while still showing other
background and/or foreground clutter, as in Figure 13a. Each cropped sub-image was
preprocessed by filtering for the increased contrast and sharpness, as in Figure 13b, to make
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the tea buds’ color greener and the contrast between tea buds and the background greater.
Then the greener tea bud images were preprocessed by thresholding for the segmentation,
to remove the background clutter, as in Figure 13c. The segmented sub-images still suffered
from inaccurate results, because other leaves with a similar color to the color of tea buds
appeared in the 2D sub-image. This problem happened due to the depth ambiguity in the
2D image, which was solved by applying a depth threshold filter to the depth sub-image,
assuming that the tea buds were standalone and not being touched by other leaves in the
3D space. The images numbered 0, 1, 2, 3, and 4 in Figure 13d show that the incorrect
segments of tender leaves behind the identified tea buds, were removed with a depth
filter. The last processing step was to remove the scattered small segments and detect the
remaining largest segment, whose inside holes were filled in. Figure 13e shows the color
images, masked with the final segmentation masks, showing tea buds only. Finally, the
major axes of the segmented object in Figure 13f were found and the lowest point along the
major axes was marked (with a blue dot) as the picking point.
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filter; (e) Masked color image after size filtering; (f) Localization of picking points as the lowest pixel
of each contour.

It was trivial to locate the coordinates of the detected picking points in the original
RGB image (Figure 14) because the coordinates of the sub-images originated from the
original image. The accuracy of the detected points’ coordinates for picking tea buds was
evaluated with the ground truth picking areas (not single points), that were manually
determined in each RGB image by a human expert. Figure 14 shows the optimal pick-
ing areas denoted as orange rectangular boxes. The evaluation metric was as follows:
(1) If a detected picking point fell in its optimal picking area, the positioning was successful,
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with a score of 1; (2) otherwise, it was a failed positioning, with a score of 0. Table 5
shows the results of the picking point positioning test. The positioning success rate was the
proportion of the number of correctly positioned picking points within the targeted picking
areas among the correctly identified tea bud objects. The average success rate, and time for
picking point positioning, were 87.10% and 0.12 s, respectively. The results showed that
the tea bud detection method proposed in this paper, and the localization of the picking
points, would be feasible in practice, when the output would be combined with a picking
machine. When a tea bud was obstructed by objects in the foreground, it could not be
identified and the depth filter was used. If the foreground obstruction was other tea buds,
the obstructed tea buds would be detected in the next detection, when the tea buds in the
front had been picked.
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Table 5. Results of picking point positioning test.

Experiment
Number

Number of
Tea Buds

Detected
Tea Buds

Correct
Picking Points

Correct
Positioning

Rate (%)

Average
Positioning

Time (s)

1 24 22 19 86.36 0.12
2 30 27 24 88.88 0.15
3 47 43 38 88.37 0.10

Average 34 31 27 87.10 0.12

4. Discussion

In this paper, an improved YOLOv4 object detection model was proposed, to accu-
rately and quickly detect small targets (tea buds) in tea plant images, with the complex
background of other tea leaves, and predict their picking points. The improved hybrid
attention mechanism was introduced to make the tea bud detection model better adapt to
the feature information of tea buds, and the low-dimensional feature layer was introduced
to make the model more suitable for detecting tea buds, that were typically smaller than
other leaves. The accuracy, recall, and AP values of the proposed model were 93.77%,
93.87%, and 97.95%, respectively. Compared with the original YOLOv4 network, the size
of the proposed model was reduced by 75.18%, and the frame rate was increased by 7.21%.
At the same time, this paper proposed an improved tea bud detection method, based on
the idea of a depth filter. The average localization success rate and the average localization
time of each image using this method are 87.10% and 0.12 s, respectively. The methods
proposed in this paper can meet the needs of real-time operation.

The results of this study were compared with other studies, as summarized in Table 6.
Yang et al. [49], Zhang et al. [20], and Wu et al. [21] used traditional machine learning to
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segment tea buds, which took a long time and thus was not suitable for recognition in
real-time. Xu et al. [24] and Chen et al. [50] proposed deep learning to detect tea buds
only, without detecting picking points. Yang et al. [28] proposed a method of extracting
picking points by a thinning algorithm on a white background, which was not suitable
for the outdoor environment of tea plantations. Wang et al. [29] and Chen et al. [31] used
instance segmentation and two-stage target detection algorithms to extract tea buds and
picking points, but their identification results were not better than the method proposed in
this paper. Overall, our method showed the highest detection accuracy and the shortest
processing time, with over 86% accuracy in the positioning of picking points.

Table 6. Results in this paper compared with results from other state-of-the-art models.

Paper Background Method/Model Picking
Point Precision Recall F1-Score Accuracy Time

Yang et al. [49] Simple Color and shape characteristics — — — — 0.94 0.45
Zhang et al. [20] Complex Bayesian discriminant principle — — — — 0.90 1.21

Wu et al. [19] Complex K-means clustering method — — — — 0.94 8.79
Xu et al. [24] Complex DenseNet201 — 0.99 0.89 0.95 — —

Yang et al. [28] Simple improved
YOLO-V3 and K-means method

√
0.92 0.91 0.92 — —

Wang et al. [29] Complex Mask-RCNN
√

0.94 0.92 — — —
Chen et al. [50] Complex Faster R-CNN — — — — 0.86 0.13
Chen et al. [31] Complex Faster R-CNN and FCN

√
0.79 0.90 — 0.85 —

Our method Complex YOLOv4-lighted + ICBAM
√

0.94 0.94 0.94 0.98 0.12

5. Conclusions

We proposed an innovative deep-learning technique to detect and recognize Biluochun
tea buds, using 15,600 images obtained from videos taken in different light conditions.
Image preprocessing was applied to the images, to minimize the different light effects, with
adaptive histogram equalization, before applying the input images to the deep learning
models. The YOLOv4-lighted + ICBAM model was determined as the best deep learning
neural network for the detection of tea buds, compared with YOLOv4 and other YOLOv4-
lighted models using SENet, ECA, or CBAM. The model used multiscale feature layers to
increase the detectability of small tea buds. The depth ambiguity in 2D object detection
was decreased by adopting the depth information obtained by a stereo vision camera,
such that the accuracy of finding the tea bud picking points was increased. The test result
suggested that the developed method would be suitable for finding the spatial locations
of picking points in commercial tea plantations. In conclusion, the results obtained by the
methods for tea bud detection and picking point localization suggested that the developed
methods would meet the speed and accuracy requirements for commercial tea bud harvest
machines and laid a technical foundation for the realization of an automated harvest
machine. However, there are still research gaps for future work, in that an actual picking
test was not conducted yet, and only one tea variety was used in this study. The general
adaptability of the detection model to different types of tea needs to be established through
further studies. The developed tea bud detection and recognition technique needs to be
tested with a picking machine for the intelligent picking of tea buds.
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