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Abstract: There are some problems in the shifting process of hydraulic CVT, such as irregularity,
low stability and high failure rate. In this paper, the BP neural network and convolutional neural
network are used for fault diagnosis of the HMCVT hydraulic system. Firstly, through experiments,
120 groups of pressure and flow data under normal and four typical fault modes were obtained and
preprocessed; they were divided into 80 groups of training samples and 40 groups of test samples via
random extraction, using the BP neural network model and convolutional neural network model
for fault classification. The results show that compared with BP, PSO-BP and other models, the fault
diagnosis rate of the BAS-BP neural network model can reach 92.5%, and the average diagnosis
accuracy rate of the convolutional neural network can reach 97.5%, which can be effectively applied
to the fault diagnosis of the HMCVT hydraulic system and provide some reference for the shifting
reliability of hydraulic CVT.

Keywords: HMCVT; fault diagnosis; BP algorithm; CNN; attribute reduction

1. Introduction

Hydro-mechanical continuously variable transmission (HMCVT) [1–3] is highly auto-
mated, and its shifting process is completely carried out under its transmission control unit
(TCU) [4,5]. The fault of the position clutch or hydraulic control system will have a great
impact on its shifting quality [6,7]. Therefore, in order to discover potential faults in time
and improve the reliability of the shifting operation, the TCU needs to perform real-time
fault monitoring. However, in the current fault diagnosis related to it, most of the research
directions are mechanical traditional gearboxes, and few are specifically aimed at HMCVT.
With the wide application of HMCVT, improving the reliability of the shifting process will
become the direction of rapid development in the future [8,9].

The structure of the transmission system of HMCVT is complex, but overall it can
be divided into mechanical systems and hydraulic systems. Mechanical system faults are
mainly gear faults, and the current fault diagnosis methods for mechanical systems are
relatively mature, such as wavelet analysis [10,11], support vector machine [12], hidden
Markov model [13], etc. Hydraulic system faults include pump motor hydraulic system
failures and clutch hydraulic system failures, which can be identified by analyzing pressure,
flow, power and other data. Wang Guangming et al. studied gearbox speed ratio control and
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proposed a hydraulic system fault diagnosis method based on the Fisher criterion kernel
method for its clutch [14]; Grover Zurita et al. proposed a multi-channel deep support
vector classification method for gearbox fault diagnosis [15]; Lin Ruilin et al. proposed the
application of a robust residual support vector machine in fault diagnosis and realized
the leakage fault diagnosis of the electro-hydraulic servo system [16] and Han Zhengze
studied the fault diagnosis method of the rack rail hydraulic system, and constructed the
fault diagnosis rules of the pilot system based on the fault tree method [17].

From the aspect of BP neural network optimization, particle swarm optimization
(PSO), as a random search algorithm based on population, has been applied to BP neural
network optimization because of its high accuracy and fast convergence. Zou Lan and
others used the PSO algorithm to optimize the SOMBP neural network prediction model,
and the recognition rate of the optimized model increased from 90% to 95% [18]. However,
although the model recognition rate of the PSO algorithm’s optimization has been greatly
improved [19], the PSO algorithm also has some defects such as slow network convergence
speed and it being easy to fall into the local optimum with the increase in iteration times,
which means it is difficult to meet the use requirements. Therefore, PSO still has a lot of
room for improvement [20,21].

In recent years, many scholars have conducted a series of studies on the intelligent
diagnosis method of hydraulic system faults. Additionally, the BP neural network [22–24]
and convolutional neural network [25,26] are popular among them. In order to make up
for the shortcomings of previous research, the BP neural network optimization model and
the convolutional neural network model are applied to the fault diagnosis of the HMCVT
shift hydraulic system in this paper, and the classification results are compared.

2. Construction of HMCVT Shift Hydraulic System Test Platform

The structure of the test platform of the HMCVT shift hydraulic system is shown in
Figure 1. In the hydraulic oil circuit system, the external motor, 1, drives the oil pump, 2, to
supply oil to the system, and the overflow valve, 4, adjusts the pressure of the oil circuit into
the clutch; the five electromagnetic directional valves, 8, are all installed on the integrated
valve plate, 9, to control the pressure oil of the wet clutch to be turned on or off to realize
the shifting operation; the oil flow of the clutch is controlled and regulated by the flow
speed regulating valve, 7; at the same time, in order to detect the oil pressure fluctuations
that occur during the engagement and disengagement of each clutch, a pressure sensor,
6, is installed in each clutch oil circuit; the flow sensor, 5, installed in the main oil passage is
used to detect changes in hydraulic oil. Table 1 shows the relevant parameters of the main
components in the clutch oil circuit control system. The HMCVT overall bench test system
is shown in Figure 2. To increase the objectivity and comparability of the data calculation,
when calculating statistics, the starting point is the first sampling point after the controller
sends the segment change command, and the end point is the sampling point with a time
of 1 s from the start point. That is, the length of the data set is measured in time and the
scale is 1 s.

Table 1. Main components of the test bench for the shift hydraulic system.

Number Part Name Model Main Performance Parameters

1 Asynchronous motor JO2-22-4 Rated speed: 1450 r/min
2 Vane pump YB1-6.3 Displacement: 6.3 mL/r
3 Relief valve 2FRM5/10QB Adjustment range: 0~10 L/min

4 Pressure sensor NS-F Measuring range: 0~10 MPa
Output signal: 0~5 V

5 Flow sensors LWGB-4 Turbine
flow sensor

Measuring range: 0~0.4 m3/h
Output signal: 4~20 mA
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Figure 1. HMCVT shift hydraulic control system. 1. Motor. 2. Oil pump. 3. Check valve. 4. Relief 
valve. 5. Flow sensors. 6. Pressure sensor. 7. Control valve. 8. Electromagnetic valve. 9. Integrated 
valve plate. 

 
Figure 2. HMCVT overall test bench. 1. Diesel engines. 2. Front speed torque meter. 3. Transmission. 
4. Hydraulic fixed motor. 5. Hydraulic variable pump. 6. Rear speed torque meter. 7. Loader. 8. 
Measurement and control platform. 9. Shift hydraulic control system. 

3. Obtaining Test of Fault Sample of HMCVT Shift Hydraulic System 
3.1. Typical Failure Type 

According to the operation record of the HMCVT test platform, the fault of the shift 
hydraulic system of the HMCVT can be defined as five types of modes to be identified, 
namely: 

(1) Normal mode (Fault Type 1): all of the parameters of the shift hydraulic system 
are in the normal working range, and there is no abnormality in the shifting process. 

(2) The clutch piston is stuck (Fault Type 2): The clutch will always be in a different 
degree of slipping state. The lighter can change the segment but cannot load (the slip will 
stall as soon as it is loaded), and the heavy will directly burn the clutch. 

(3) The seal ring at the rotary joint is damaged (Fault Type 3): Local internal leakage 
occurs in the oil passage, but this leakage occurs inside the oil passage. When the oil pas-
sage is filled for the first time, the oil pressure is difficult to establish. As the oil channel is 
filled with hydraulic oil, its influence on the establishment of the shift section hydraulic 
pressure is no longer significant, and this fault has an impact on the shift section quality 
of the transmission. 

(4) The outlet oil passage of the governor valve is blocked (Fault Type 4): The oil 
filling flow of the clutch is reduced, and the sliding time between the main and driven 
friction plates is extended. This not only deteriorates the quality of the shift, but also 

Figure 1. HMCVT shift hydraulic control system. 1. Motor. 2. Oil pump. 3. Check valve. 4. Relief
valve. 5. Flow sensors. 6. Pressure sensor. 7. Control valve. 8. Electromagnetic valve. 9. Integrated
valve plate.

Agriculture 2023, 13, 461 3 of 18 
 

 

 
Figure 1. HMCVT shift hydraulic control system. 1. Motor. 2. Oil pump. 3. Check valve. 4. Relief 
valve. 5. Flow sensors. 6. Pressure sensor. 7. Control valve. 8. Electromagnetic valve. 9. Integrated 
valve plate. 

 
Figure 2. HMCVT overall test bench. 1. Diesel engines. 2. Front speed torque meter. 3. Transmission. 
4. Hydraulic fixed motor. 5. Hydraulic variable pump. 6. Rear speed torque meter. 7. Loader. 8. 
Measurement and control platform. 9. Shift hydraulic control system. 

3. Obtaining Test of Fault Sample of HMCVT Shift Hydraulic System 
3.1. Typical Failure Type 

According to the operation record of the HMCVT test platform, the fault of the shift 
hydraulic system of the HMCVT can be defined as five types of modes to be identified, 
namely: 

(1) Normal mode (Fault Type 1): all of the parameters of the shift hydraulic system 
are in the normal working range, and there is no abnormality in the shifting process. 

(2) The clutch piston is stuck (Fault Type 2): The clutch will always be in a different 
degree of slipping state. The lighter can change the segment but cannot load (the slip will 
stall as soon as it is loaded), and the heavy will directly burn the clutch. 

(3) The seal ring at the rotary joint is damaged (Fault Type 3): Local internal leakage 
occurs in the oil passage, but this leakage occurs inside the oil passage. When the oil pas-
sage is filled for the first time, the oil pressure is difficult to establish. As the oil channel is 
filled with hydraulic oil, its influence on the establishment of the shift section hydraulic 
pressure is no longer significant, and this fault has an impact on the shift section quality 
of the transmission. 

(4) The outlet oil passage of the governor valve is blocked (Fault Type 4): The oil 
filling flow of the clutch is reduced, and the sliding time between the main and driven 
friction plates is extended. This not only deteriorates the quality of the shift, but also 

Figure 2. HMCVT overall test bench. 1. Diesel engines. 2. Front speed torque meter. 3. Transmission.
4. Hydraulic fixed motor. 5. Hydraulic variable pump. 6. Rear speed torque meter. 7. Loader.
8. Measurement and control platform. 9. Shift hydraulic control system.

3. Obtaining Test of Fault Sample of HMCVT Shift Hydraulic System
3.1. Typical Failure Type

According to the operation record of the HMCVT test platform, the fault of the shift hy-
draulic system of the HMCVT can be defined as five types of modes to be identified, namely:

(1) Normal mode (Fault Type 1): all of the parameters of the shift hydraulic system are in
the normal working range, and there is no abnormality in the shifting process.

(2) The clutch piston is stuck (Fault Type 2): The clutch will always be in a different
degree of slipping state. The lighter can change the segment but cannot load (the slip
will stall as soon as it is loaded), and the heavy will directly burn the clutch.

(3) The seal ring at the rotary joint is damaged (Fault Type 3): Local internal leakage
occurs in the oil passage, but this leakage occurs inside the oil passage. When the
oil passage is filled for the first time, the oil pressure is difficult to establish. As the
oil channel is filled with hydraulic oil, its influence on the establishment of the shift
section hydraulic pressure is no longer significant, and this fault has an impact on the
shift section quality of the transmission.

(4) The outlet oil passage of the governor valve is blocked (Fault Type 4): The oil filling
flow of the clutch is reduced, and the sliding time between the main and driven
friction plates is extended. This not only deteriorates the quality of the shift, but also
increases the risk of power interruption and clutch burnout. This fault mode has
a gradual characteristic and is not easy to detect.
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(5) Leakage of the branch of the oil pipeline (Fault Type 5): the fault generally occurs at
the place of the pipe joint of the branch oil pipeline, and a partial external leakage
occurs in the oil pipeline.

The oil pressure may be established normally, but the steady-state pressure of the
clutch branch oil circuit is reduced, and it will cause air to mix in, causing cavitation and
vibration of the hydraulic oil during the circulation process. This situation also reduces the
shift section quality of the transmission.

Changes in the parameters of the hydraulic system can have a greater impact on the
quality of the change section. Therefore, if the fault is not diagnosed in time, when this
change reaches a certain level, it will inevitably have a significant impact on the shift section
quality, thereby affecting driving comfort and threatening driving safety.

3.2. Fault Simulation and Data Obtained

Before the test operation, the standard of the experimental parameters needs to be
determined first. After a number of optimization experiments on the shift section of the
continuously variable transmission, it was found that when the oil pressure is 4 MPa and
the flow rate is 5 L/min, the overall performance of the shift section is the best. Therefore,
all of the following experiments were conducted under this parameter index.

Among the aforementioned fault modes, the T1 mode does not require special pro-
cessing, and can directly collect oil pressure and flow data; the T2 mode can be simulated
when the clutch is in the state of oil drain disconnection, by filling the joint gap between
the clutch’s main and driven shafts with sandpaper. At this time, the clutch piston was
completely unable to extend and was forced to be stuck in place; the T3 mode can be
simulated by installing seal rings with different degrees of wear on the rotary joint; T4 can
be used to conduct simulation tests while reducing the opening of the governor valve.
Additionally, because the characteristic component of the T4 mode is the gradual fault, the
flow level can be controlled within the range of 0~4 L/min, while ensuring the interval of
1 L/min for the test. The T5 mode can be simulated by unscrewing the branch pipe joint.

The data to be measured in the test are the flow data of the clutch main oil circuit and
the pressure data of the clutch branch oil circuit. Due to the strict proportional relationship
between the observed value and the actual value of the original data, the original data
can be directly identified without conversion. The data recording cycle of the data and
programs obtained through the high-speed data acquisition system is 16 ms. The test
was conducted 120 times in total, 24 times for each fault simulation test. In addition, we
considered that the original data points of the flow and pressure of the hydraulic system
were huge in the shifting process, so its characteristic attributes were calculated based on
the following six statistics:

X f =

√√√√ 1
N f

N

∑
i=1

x2
f i (1)

C f =
max

(∣∣∣x f i

∣∣∣)
X

(2)

K f =
∑N

i=1 x4
f i

N f X4 (3)

I f =
max

(∣∣∣x f i

∣∣∣)
1

N f
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i=1
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∣∣∣ (4)
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1
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∣∣∣x f i

∣∣∣ (5)
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Xp =

√√√√ 1
Np

N

∑
i=1

x2
pi (6)

In the formula, Xf, Cf, Kf, If and Sf are flow statistics, respectively, representing the
root mean square value of flow, peak factor, kurtosis factor, pulse factor and form factor
during the transition period; Xp is the pressure statistic, which represents the root mean
square pressure of the pressure during the transition; xfi and xpi represent the data of the
i-th sampling point of flow and pressure, respectively, and Nf and Np represent the total
number of data sampling points of flow and pressure, respectively. After the attribute
calculation, a sample set of 120 fault data characteristic attributes was obtained. Randomly,
we set 80 of them as training samples and 40 of them as test samples.

4. BP Method for FAULT Diagnosis of HMCVT Shift Hydraulic System
4.1. Fault Diagnosis of Shift Hydraulic System Based on BP Neural Network

The BP neural network is mainly composed of an input layer. The output layer and
hidden layer are composed of three parts, in which the number of input layers is determined
by the eigenvalue of fault data and the number of output layers is determined by the fault
diagnosis result. In the data collection, this paper collects the flow and pressure fault signals
of the HMCVT hydraulic system as characteristic values, and takes the corresponding
working state as output characteristics. The structure of the neural network is constructed
according to the actual training results. Therefore, the number of neurons in the input layer
of the neural network is set to six, the number of neurons in the output layer is one and the
number of hidden layer neurons is as follows.

N = 2n + 1 (7)

N =
√

n + m + α (8)

N = log2n (9)

In the formula, N—the number of neurons in the hidden layer; n—the number of
neurons in the input layer; m—the number of neurons in the output layer; α—the constant
from 1 to 10. After many neural network trainings, the number of neurons in the hidden
layer of this paper was selected as 10. Its network structure is shown in Figure 3.
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The BP neural network established in this paper comprises the following: one input
layer, one hidden layer and one output layer. The BP neural network established in this
paper comprises the following: one input layer, one hidden layer and one output layer, in
which the number of neurons in the input layer is six, the number of neurons in the hidden
layer is ten and the number of neurons in the output layer is one. The transfer function of
the hidden layer uses the tansig function, and the output layer uses the purelin function.
We inputted 40 groups of test samples into the unoptimized BP neural network model, and
the resulting diagnosis results of the test samples are shown in Figure 4.
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It can be seen from Figure 4 that the unoptimized BP neural network model has a good
recognition ability for the normal mode (Fault Type 1), the clutch piston being stuck (Fault
Type 2) and branch oil pipeline joint leakage (Fault Type 5).

4.2. Fault Diagnosis of Shift Hydraulic System Based on PSO-BP Neural Network

Number of population particles and population particle number: The determination
of particle number mainly depends on the complexity of fault type. If the total number of
particles is small, it is not conducive to the overall optimization, and if the total number of
particles is large, it will increase the calculation of the population. According to relevant
data, generally, when the number of particles is maintained in the range of 20–40, the
optimization result will be relatively good. If the problem is very complicated, the number
of particles can be increased to more than 100 [27]. Aiming at the problem of fault diagnosis
of the shift hydraulic system, this paper sets the number of population particles to 20.

The dimension of the particle: The value of the problem can be determined by the
dimension of the problem. According to the fault diagnosis and data characteristics of the
hydraulic system, the selected dimension is 81 in this paper.

The range of the particles: From the characteristics of the optimized problem, different
change intervals for each dimension can be determined. According to the characteristics of
the flow and pressure data of the shift hydraulic system, the range selected in this paper
is (−5, 5).

Maximum speed Vmax: In general, the range of particles will be represented by Vmax,
which is an important basis for determining the maximum distance that particles can move
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in each iteration. According to the characteristics of the flow and pressure data of the shift
hydraulic system, the range is selected as (−1, 1).

Learning factor c: generally, the learning factors c1 and c2 take the value of two.
Forty groups of test samples were inputted into the BP neural network optimized

by particle swarm, and the resulting diagnosis results of the test samples are shown in
Figure 5. The BP neural network optimized by the particle swarm has a strong ability to
recognize the five fault modes of the shift hydraulic system. It mainly has deviations in
the identification process of seal ring damage (Fault Type 3) and oil passage blockage fault
(Fault Type 4), but it has a more obvious improvement in fault recognition compared to the
unoptimized BP neural network model.
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4.3. Fault Diagnosis of Shift Hydraulic System Based on BAS-BP Neural Network Model

Beetle antennae search (BAS) is more effective than particle swarm optimization.
Because the beetle antenna search can accurately find the expected target without specific
function form and gradient information, it is applied to various optimization models to
improve the efficiency of fault diagnosis [28].

Combining the beetle antennae search algorithm with the neural network, the global
search capability of the beetle antennae search algorithm was used to optimize the initial
weights and thresholds of the neural network. Moreover, compared with the particle
swarm algorithm, the beetle antennae search algorithm is much simpler, because it only
requires one beetle, which greatly reduces the amount of calculation. Its specific process
roadmap is shown in Figure 6.

The beetle antennae search algorithm only has two parameters that need to be set,
namely, the distance, d0, between the two whiskers and the ratio constant, c, between the
step size and the distance of the two whiskers. In this paper, d0 = 1 and c = 5.

When applying the BP neural network model optimized by the beetle antennae search
algorithm to the fault diagnosis of the shift hydraulic system, the fitness curve of samples
is shown in Figure 7.
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It can be seen from Figure 7 that when using the beetle antennae search algorithm to
optimize the BP neural network, the optimization speed of its fitness value is slow, which
is mainly caused by its lesser parameters and lesser calculation amount. Although the
optimization speed of the beetle antennae search algorithm must be slow, its optimization
calculation process is faster.

Forty groups of test samples were inputted into the BP neural network optimized by
the beetle antennae search algorithm, and the resulting diagnosis results of the test samples
are shown in Figure 8.
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It can be seen from Figure 8 that the BP neural network model optimized by the
beetle antennae search algorithm must have the strongest ability to recognize the five fault
modes of the shift hydraulic system. Compared with the unoptimized BP neural network
model and the particle-swarm-optimized BP neural network model, the fault recognition
accuracy rate of the oil channel blockage fault (Fault Type 4) can reach 100%. However,
it has a large deviation in the process of identifying the seal ring fault (Fault Type 3). Its
recognition accuracy rate for pipeline joint leakage (Fault Type 5) is no higher than that of
the unoptimized BP neural network model and the particle-swarm-optimized BP neural
network model.

From the above analysis, it can be seen that the optimized BP neural network model is
better than the unoptimized BP neural network model for fault recognition. Additionally,
the BAS-BP neural network model has the strongest ability to identify the fault of the
oil channel blockage fault T4, which is conducive to further analysis to determine and
eliminate the fault.

The comparison of the fault diagnoses of the test samples of the three neural net-
work models is shown in Figure 9 and the test sample fault diagnosis correct rate of the
three neural network models is shown in Table 2.
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Table 2. The accuracy of test samples fault diagnosis.

Modes
Models
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5. CNN Method for Fault Diagnosis of HMCVT Shift Hydraulic System
5.1. Convolutional Neural Network Overview

The convolutional neural network (CNN) is a hierarchical neural network. Its advan-
tage is that the network model is simple, and the image can be directly used as the input of
the network, which reduces the workload. These characteristics make the convolutional
neural network have obvious advantages in identifying two-dimensional graphics [29].

5.1.1. Convolutional Layer

The convolution layer uses the convolution kernel to convolute the input image.
Additionally, the activation function is used to extract the texture features of the image to
enhance the features. The convolution operation can be expressed as:

xl
j = f

 ∑
i∈Mj

xl−1
i ∗ kl

ij + bj

 (10)

where l represents the current layer number, kij is the weight matrix of the convolution
kernel and Mj represents the set of input feature maps; bj is an offset term corresponding
to each feature in the convolution layer.



Agriculture 2023, 13, 461 11 of 17

5.1.2. Pooling Layer

The pooling layer is also called a sub-sampling layer. It is usually located after
the convolution layer. Using the sub-sampling function can reduce redundant features,
further avoid overfitting and reduce network parameters. The mathematical model can be
described as:

xl
j = f

(
βl

j down
(

xl
j − 1 + bl

j

))
(11)

where down(.) represents the sub-sampling function. Generally, this function sums each
different nxn block in the input image, so that the output image is n times smaller in both
spatial dimensions. Each output map has its own multiplication bias β and addition bias b.

5.1.3. Fully Connected Layer

The fully connected layer is located at the end of the convolutional neural network
and it is used to calculate the output of the entire network. After the downsampling is
completed, many corresponding feature maps can be obtained. At this time, all of its pixels
must be arranged in columns to form a feature vector, and then all of them are connected
to the output layer to serve as a fully connected layer. Additionally, Softmax was used as
the classifier.

5.1.4. Convolutional Neural Network Structure

Convolutional neural networks can determine the basic parameters of the correspond-
ing structure of the network by analyzing specific problems. Figure 10 shows the structure
of a basic convolutional neural network. Its overall architecture is similar to the convolu-
tional neural network model corresponding to the CNN code in Deep Learning Toolbox.
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It can be clearly seen from Figure 10 that the number of input layers, output layers and
feature vector layers is one, and the number of convolutional layers and downsampling
layers is two. They connect and cooperate with each other to construct a complete network.
In this process, when a pixel value of p× p is used as an input layer signal, m convolution
kernels of type k1× k1 start to perform the corresponding convolution operation with a step
size of one. Additionally, through the activation function m (p− k1 + 1)× (p− k1 + 1),
feature maps are obtained to form the convolution layer C1. Then, it completes the entire
pooling process through the pooling area of model size c × c, so as to obtain the sam-
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pling layer S2. At this time, there are still m feature maps, and the side length becomes
(p− k1 + 1)/c. Next, the S2 layer and the n convolution kernels of all models of k1 × k1
each start to perform the corresponding convolution operation, and then use the activation
function to obtain the convolution layer C3. After completing the pooling process again,
the sampling layer S4 can be obtained. Then, arrange all of its n feature maps in columns
to obtain the feature vector layer V5 that was originally required. V5 is fully connected to
the output layer to obtain the output.

5.2. Attribute Reduction Based on Rough Set

The aforementioned six sets of sample attributes Xf, Cf, Kf, If, Sf and Xp have different
abilities to distinguish the fault mode. In order to reduce unnecessary attribute calculation,
on the premise of ensuring the correct rate of fault diagnosis, the attributes that contribute
less to fault diagnosis can be deleted. This paper is based on the rough set theory [30–32]
for attribute reduction.

For a fixed decision system S = (U, C ∪ D, V, f ), once there is B1 ⊆ B2 ⊆ C, then there
is
∣∣PosB1(D)

∣∣ ≤ ∣∣PosB2(D)
∣∣ ≤ |PosC(D)|, while

∣∣γB1(D)
∣∣ ≤ ∣∣γB2(D)

∣∣ ≤ |γC(D)|, that is,
the dependence formula intuitively shows that the dependence degree and the attribute set
have an inverse proportional relationship. Additionally, the calculation method based on
attribute dependency is as follows [33,34]:

(1) Calculation method in the case of deleting attributes: for a fixed decision system
DS = (U, C ∪ D, V, f ), ∀B ⊆ C; once the attribute a ∈ B, then the calculation method of
the importance of the conditional attribute a for the decision attribute D is as follows:

Sig(a, B, D) = γB(D)− γB−{a}(D) (12)

According to the formula, it can be seen that when the attribute is removed from the
condition attribute set, the weakened dependence of the decision attribute on the condition
attribute can be used as the basis for the meaning of the attribute to the decision attribute.

(2) Calculation method in the case of adding attributes: for a fixed decision system
DS, once the attribute a ∈ C, but a /∈ B, the expression of the importance of the conditional
attribute a relative to the conditional attribute set B for the decision attribute D is as follows:

Sig(a, B, D) = γB∪{a}(D)− γB(D) (13)

In the same way, when the attributes in the conditional attribute set are greatly added,
the size of the increased dependence of the decision attribute on the condition attribute can
be used as the basis for the meaning of the attribute to the decision attribute.

In this paper, the attribute reduction in the neighborhood rough set was applied to
the fault diagnosis of the shift hydraulic system, and the attribute reduction in the training
sample set collected by the experiment was performed.

After calculation, the attribute importance values of the characteristic attributes are
shown in Table 3. Obviously, after attribute reduction, mode T1 retains one characteristic
attribute of Xp; mode T2 retains two characteristic attributes of Xf and Xp; mode T3 retains
two feature attributes of Xf and Xp; mode T4 retains three feature attributes of Xf, Sf and Xp
and mode T5 retains two feature attributes of Sf and Xp.

Table 3. Calculated results of attributes’ importance values.

Modes Xf Cf Kf If Sf Xp

T1 0 0 0 0 0 1
T2 0.0278 0 0 0 0 0.9722
T3 0.2222 0 0 0 0 0.7778
T4 0.0217 0 0 0 0.3478 0.6304
T5 0 0 0 0 0.4324 0.5676
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As can be seen from Table 3, among the six characteristic attributes of the five failure
modes, after the attribute reduction, the attribute importance of the root mean square
value of the pressure Xp exceeds 50%, which are common and indispensable characteristic
attributes in the fault modes. That is to say, compared with the flow data, the pressure
data has the greatest influence on the recognition of the fault mode of the shift hydraulic
system. Therefore, on the premise of ensuring a high accuracy of fault diagnosis, it can
be considered to use only the original pressure data of the shift hydraulic system as the
input to train the convolutional neural network model, and then to obtain a fault diagnosis
model with an ideal effect.

5.3. Fault Diagnosis Results Based on CNN and Neighborhood Rough Set

Convolutional neural network training generally requires a large number of data
sets, and the input datum is a two-dimensional image, so this paper uses the transla-
tion transformation method to amplify the data of 1000 original pressure data in each of
the five modes obtained by the experiment. That is to say, in each mode, 400 data are
continuously taken as a group for each of the 1000 data at intervals of five to generate
a 20× 20 size two-dimensional grayscale image in PNG format. After translation trans-
formation, 120 grayscale images were generated in each fault mode, 80 groups were set
as training samples and 40 groups were set as test samples using a random method. The
two-dimensional grayscale image under the five fault modes is shown in Figure 11.
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Figure 11. Two-dimensional gray image under five types of fault modes. (a) Normal mode T1,
(b) spring fault T2, (c) seal ring fault T3, (d) blockage of oil passage T4 and (e) cavitation seal T5.

This paper used an eight-layer neural network, an input layer, three convolutional
layers, two pooling layers, a fully connected layer and an output layer to establish a convo-
lutional neural network model. We used Softmax as the classifier to obtain the classification
results and fault diagnosis accuracy. The specific flowchart is shown in Figure 12.

In Figure 12, the fault signal is the oil pressure signal during the shifting process col-
lected by the clutch branch oil pressure sensor. We transformed the oil pressure signal data
to generate a two-dimensional gray image and adjusted the two-dimensional image using
a size of 20× 20 as the input training sample. After training the established convolutional
neural network model, we inputted the test samples to obtain the sample classification
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and its fault recognition rate via the Softmax classifier. The diagnosis results are shown in
Figure 13.
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It can be seen from Figure 13, compared with the shallow optimized BP neural network
model, that the hydraulic system fault diagnosis model based on the convolutional neural
network can make the average diagnosis accuracy rate of each failure mode reach 97.5%
with few iterations. This not only shows that it is feasible to use the pressure data of the
hydraulic system as the only input parameter to identify the fault mode of the HMCVT
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shift hydraulic system, but also it is proved that the convolutional neural network as a deep
learning algorithm is significantly better than the shallow optimized BP neural algorithm
in the application effect of fault diagnosis of the shift hydraulic system.

6. Conclusions

Aiming at the problems existing in the BP neural network and convolutional neural
network, the BP neural network optimization model and convolutional neural network
model were established, respectively. They were applied to the fault diagnosis of the
shifting hydraulic system of hydraulic continuously variable transmission. The results
show the following:

(1) Various types of faults have greater separability after nonlinear transformation by
the BP network, the overall similarity is low and the model fault classification effect
is good.

(2) The optimized BP neural network model is better than the unoptimized BP neural net-
work model for fault recognition. Its average diagnostic accuracy rate reached 92.5%.

(3) The BAS-BP neural network model has the strongest ability to identify the fault of the
oil channel blockage fault T4, which is conducive to further analysis to determine and
eliminate the fault.

(4) The experiment shows that the pressure data has the greatest influence on the recog-
nition of the fault mode of the shift hydraulic system. It is feasible to use the pressure
data of the hydraulic system as the only input parameter to identify the fault mode of
the HMCVT shift hydraulic system.

(5) The convolutional neural network under the same test conditions is significantly better
than the shallow optimized BP neural network in the application of the fault diagnosis
of the shift hydraulic system, and its fault diagnosis accuracy can reach 97.5%.

For the follow-up research, there is still room for further improvement. In the optimiza-
tion of the BP network, a better algorithm model can be proposed. In the selection of data
sets, more complex and fault data can be collected, and the comprehensive verification can
be carried out through the simulation and experimental data sets to improve the reliability
of the algorithm. In the data feature extraction, more optimized feature extraction can be
carried out to improve the accuracy of fault diagnosis.
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