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Abstract: For existing problems, such as the complex interactions between a crop and a machine,
the measuring difficulty and the limited measurement precision of the feeding quantity within the
corn silage harvester, a method of feeding rate measurement based on key conditions data, working
data cleaning, and multiple variate regression is proposed. Non-destructive rotation speed, rotation
torque, and power consumption sensors are designed for the key mechanical components. The data
conditions, such as rotating speed, rotating torque, power consumption, hydraulic pressure, and
hydraulic flow for the key operation of parts including cutting, feeding, shredding, and throwing
are monitored and collected in real-time during field harvesting. The working data are screened
and preprocessed, and the Mann-Kendall boundary extraction algorithm is applied, as is multiple
component time lag correction analysis, and the Grubbs exception detection method. Based on a
Pearson correlation analysis results, one-factor and multiple-factor regression models are respectively
developed to achieve an accurate measurement of the corn feeding rate. The field validation tests
show that the working data boundary extraction results among the load-stabilizing components
such as shredding roller and throwing blower are highly reliable, with a correct rate of 100%. The
power monitoring data of the shredding roller and throwing blowers are significantly correlated
with the crop feeding rate, with a max correlation coefficient of 0.97. The determination coefficient of
the single-factor feeding rate model based on the shredding roller reaches 0.94, and the maximum
absolute error of the multi-factor feeding rate model is 0.58 kg/s. The maximum relative error is
±5.84%, providing technical and data support for the automatic measuring and intelligent tuning of
the feeding quantity in a silage harvester.

Keywords: feeding rate; silage harvester; power consumption; multi-variate fusion; Mann-Kendall;
data screening

1. Introduction

The feeding rate is an important factor affecting the overall performance of a silage
harvester. The increase in the feeding rate can significantly improve the harvesting ef-
ficiency of a silage harvester [1]. However, if the feeding rate is too high, on the one
hand, maize plants will be fed too fast, which may easily cause blockage and failure in
the working part, especially the header, and throwing components in the harvester [2].
In this way, the harvesting progress is affected by the follow-up manual fault clearing.
On the other hand, due to the excessive feeding volume, the whole machine will be in
overloaded harvesting conditions for a long time, which may cause fatigue damage to the
working parts and engine [3], thus reducing the overall machine service life. Conversely,
when the feeding rate is too small, apart from directly reducing the harvesting efficiency,
it may affect the shredding performance of the silage harvester, resulting in the average
length of silage cutting or the uniformity of the cutting length not meeting the expected
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requirements. The ideal field operation state of the silage harvester is to maintain a stable
and optimal feeding rate within the rated range on the premise of ensuring a sufficient
chopping performance [4].

Currently, scholars have carried out a significant amount of research on the detection
method of feeding rate in forage harvesters [5–7]. According to the detection principle,
this can mainly be divided into mass flow type and volume flow type. The mass flow
method mainly realizes the online detection of the feeding rate through indirect modeling
by monitoring the machine’s working conditions, such as speed, torque, power, pressure,
capacitance, etc. [8–11]. This method has been extensively studied on grain combine
harvesters and has achieved good field verification results [12–14]. However, for silage
harvesters, which use whole-plant intake, the material composition and machine-crop
interactions are more complex [15], and there is a lack of sufficient research on airborne
applications, the existing monitoring system for a forage harvester mainly realizes the
measurement of conventional parameters, such as location, rotation speed, cutter height,
engine data, feeding metal, blade sharpness, etc. Most of the research applications focus
on the display and early warning for the machine status, while the relationship among
monitoring parameters is relatively independent, and there is a need for a better feeding
rate monitoring method based on correlation analysis and multiple-parameter fusion
modeling [16,17]. The volume flow detection is mainly detected by the opening of the
feed inlet, without considering the influence of moisture content and material density on
the model, in which repeated calibration is required [18], and further research is required.
According to the model’s methodology, as for the mathematical relationship between the
power consumption and feeding rate for a crop combine harvester, the primary, quadratic,
and exponential regression models are frequently applied, and it was shown that the
measurement between feeding rate and working torque or working power is better modeled
by using the primary linear regression model [19].

In consideration of the shortcomings in the existing research and the demands in feed
rate monitoring, this paper proposes a measurement method based on multi-power data
fusion regression for a maize silage harvester. The mechanism principle and operation
process of the silage harvesting machine is analyzed, and strain resistance principles and
pressure flow principles are used to design real-time power monitoring sensors for key
operation components. Highly reliable pre-processing algorithms for dynamic field data are
studied, a one-variable linear model and multiple-variable fusion regression model based
on a correlation analysis is established to measure the feeding rate, and field harvesting
experiments are carried out to validate the relevant sensors, processing algorithms, and
measurement models.

2. Materials and Methods
2.1. Feeding Rate Factors Analysis

The feeding rate of a silage harvester is the total quality of silage fed into the silage
harvester per second. During the harvesting operation, the silage feeding rate is influenced
by many factors, which can be divided into antecedent factors and subsequent factors
according to the time before and after the crop is fed into the machine. The antecedent
factors include the harvesting speed, crop density, feeding width, plant moisture content,
stubble height, etc. The subsequent factors include the relevant operating condition pa-
rameters of the silage harvester, such as the speed, torque, and power of the key working
components. The antecedent factors are largely dependent on crop characteristics and vary
considerably between land areas [20]; it is difficult to obtain precise data to support the
accurate measurement of the feeding rate in field experiments. The subsequent factors
can directly characterize the working load of the silage harvester along with the material
feeding, and can dynamically respond to the feeding rate change in real time. Therefore,
this paper constructs a detection model to automatically obtain the feeding rate through
the subsequent power data of multiple components of the maize silage machine.
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2.2. Power Measuring Principle
2.2.1. Parameter Symbol Definition

Variable symbols are defined as follows:
Pr—the power consumption of the mechanical-driven part, kW
nr—the rotation speed of the mechanical-driven part, r/min
vr—the rotation linear velocity of the mechanical-driven part, m/s
Tr—the rotation torque of the mechanical-driven part, N.m
F—the rotation force of the mechanical-driven part, r/min
R—the rotation radius of the mechanical-driven part, m
Ph—the power consumption of the hydraulic-driven part, kW
q—the output flow of the hydraulic pump, L/min
Po—the outlet pressure of the hydraulic pump, MPa
Pi—the inlet pressure of the hydraulic pump, Mpa
q—the output flow of the hydraulic pump, L/min
Po—the outlet pressure of the hydraulic pump, MPa
Pi—the inlet pressure of the hydraulic pump, MPa
V0—the rated flow of the hydraulic pump, L/min
ηv—the volumetric efficiency of the hydraulic pump
n0—the engine speed, r/min
k—the transmission ratio the hydraulic pump and the engine

2.2.2. Measuring Principle Analysis

According to the machine power roadmap of the maize silage harvester, the power
sources of key operation parts include both mechanical drive and hydraulic drive.

For mechanically-driven working parts, the operating power can be acquired by
measuring the rotational speed and rotating torque. For rotation torque measurement, the
principle of torsion resistance strain gauge is used, and the strain gauge is attached to the
rotating elastic shaft to form a strain bridge detection circuit, which outputs a frequency
signal proportional to the torsion value, and thus the working torque is obtained. For
rotation speed measurement, a speed sensor is mounted on the fixed part of the torque
sensor, and an encoder with multiple detection positions is installed on the rotating part of
the torque sensor. When the encoder rotates with the working shaft, the sensor outputs
a series of speed pulse signals, and the working speed is measured. According to the
definition of mechanical torque, the torque can be calculated by Formula (1).

Tr = FR (1)

The relationship between linear speed and rotational speed is shown as follows:

vr =
nr

60
2πR (2)

The power consumption of the mechanical rotating parts is then given as follows:

Pr =
1

1000
Fvr =

1
1000

× Tr

R
× nr

60
× 2πR =

nrTr

9549.3
(3)

For hydraulic-driven working parts, the operating power can be obtained by the
differential pressure between the outlet and inlet and the hydraulic flow of the hydraulic
pump, and the power of the hydraulic parts is calculated as follows.

Ph =
(po − pi)

60
q =

n0kV0ηv

60
(po − pi) (4)
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2.3. Power Sensor Design

On the basis of not changing the original body structure, the torque and speed sensors
are designed to meet the power detection requirements of different installation locations in
the silage harvester.

2.3.1. Header Power Sensor

The header is driven by a spline shaft. Under normal operating conditions, the corn
silage harvester works in the way of full-width without row-control. Theoretically, it
is believed that the operating power of the left header and the right header are equal.
Considering the installation space on the header shaft, the original T-shaped driving shaft
on the right side of the header is selected as the installation position of the sensors. Two
sensors are designed to measure the dynamic power of the header in the shaft-mounting
type, where the power sensor of the inside shaft is used to measure the power at the
small and fixed rotary cutter disk, while the power sensor of the outside shaft is applied
to measure the dynamic power of the large folding and rotary cutter disk, as shown in
Figure 1.
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Figure 1. Physical view of header power sensor. 1: power sensor of inside shaft 2: T-type drive shaft
3: power sensor of outside shaft.

2.3.2. Shredding Power Sensor

The shredding rollers are driven by the pulley. The original drive pulley is made
of cast iron, and its elastic properties cannot meet the requirements of accurate torque
measurement. According to the mechanical dimensions of the original cast iron pulley,
40CrNiMoA high-strength alloy steel material with better inherent elastic properties is
selected to design a pulley-type shredding torque and speed sensor, as shown in Figure 2.
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Figure 2. Physical view of shredding power sensor. 1: elastic pulley; 2: mounting base; 3: torque
sensor; 4: speed sensor.

The sensor mainly consists of three parts: an elastic pulley, a torque-sensing compo-
nent, and a speed-sensing component. The elastic pulley is utilized to replace the original
cast iron pulley, providing the mechanical connection and power transmission for shred-
ding rollers. The torque sensor component includes a resistive torsion strain bridge, a signal
acquisition circuit, a signal output circuit, etc. The speed sensor component includes an
inductive speed sensor mounted with tiny round screw threads, a speed probe mounting
hole, and a speed measuring panel with 30 detection points equally distributed along the
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circumference. The inductive speed sensor is fixed on the sensor shell at a distance of
1.0 mm from the speed panel, and while as the disc rotates, the speed sensor continuously
outputs pulses.

2.3.3. Blowing Power Sensor

The throwing blower is driven by the pulley. The pulley-type throwing blower torque
and speed sensor are designed according to the original mechanical dimensions. The torque
measurement is implemented in a similar structure as the shredding rollers. As for the
speed detection, due to the small size of the throwing pulley, the outward structure of
the speed panel is designed to achieve real-time acquisition of speed pulse signals, while
30 measuring points are evenly arranged along the end face of the pulley, as shown in
Figure 3.

Agriculture 2023, 13, x FOR PEER REVIEW 5 of 16 
 

 

1.0 mm from the speed panel, and while as the disc rotates, the speed sensor continuously 
outputs pulses. 

2.3.3. Blowing Power Sensor 
The throwing blower is driven by the pulley. The pulley-type throwing blower 

torque and speed sensor are designed according to the original mechanical dimensions. 
The torque measurement is implemented in a similar structure as the shredding rollers. 
As for the speed detection, due to the small size of the throwing pulley, the outward struc-
ture of the speed panel is designed to achieve real-time acquisition of speed pulse signals, 
while 30 measuring points are evenly arranged along the end face of the pulley, as shown 
in Figure 3. 

1

2

3

4

5  
Figure 3. Physical view of blowing power sensor. 1: elastic pulley; 2: velocimetric panel; 3: mount-
ing base; 4: torque sensor; 5: speed sensor. 

2.3.4. Power Sensor Accuracy 
The YD322 oil pressure sensor with ±0.1% precision produced by Xian Yunyi Instru-

ment Co., Ltd., Xi’an, China. is applied in the hydraulic power measurement. While the 
PY-M5S1.5N-L2M hall-type speed sensor with ±0.1% precision manufactured by Delan 
Electronics Co., Ltd., Dongguan, China. and the HX-900 Rotary Torque Sensor produced 
by Sanhe Yanjiao Huaxin Mechanical & Electrical Co., Ltd., Langfang, China. is used in 
the mechanical power measurement. Meanwhile, the CX8525 torque calibrator is used for 
static torque calibration and measurement, where the loading torque was set to 0%, ±20%, 
±40%, ±60%, and ±100% of the full scale of the sensor by electromagnetically controlling 
the standard loading weights, and it was determined through testing that the static error 
of the torque sensors was lower than ±0.3%. 

3. Algorithms and Models 
3.1. Data Pre-Processing Algorithm 

The field data acquisition system collects real-time machine-state data continuously. 
In order to avoid the interference of invalid data to the power-feeding model, only the 
data collected during the silage harvesting period should be selected as the original data 
input of the model. 

3.1.1. Effective Data Filtering 
The shredding roller and throwing blower are the key operating components of the 

silage harvester, which have more than 60% of the power consumption of the whole ma-
chine and have more significant data variation characteristics. Therefore, the monitoring 
data of these two components are used as the screening basis, and combined with the 
time-lag analysis model based on material flow, the screening of all measurement data is 
realized. The main process is as follows. 

Figure 3. Physical view of blowing power sensor. 1: elastic pulley; 2: velocimetric panel; 3: mounting
base; 4: torque sensor; 5: speed sensor.

2.3.4. Power Sensor Accuracy

The YD322 oil pressure sensor with ±0.1% precision produced by Xian Yunyi Instru-
ment Co., Ltd., Xi’an, China. is applied in the hydraulic power measurement. While the
PY-M5S1.5N-L2M hall-type speed sensor with ±0.1% precision manufactured by Delan
Electronics Co., Ltd., Dongguan, China. and the HX-900 Rotary Torque Sensor produced
by Sanhe Yanjiao Huaxin Mechanical & Electrical Co., Ltd., Langfang, China. is used in
the mechanical power measurement. Meanwhile, the CX8525 torque calibrator is used for
static torque calibration and measurement, where the loading torque was set to 0%, ±20%,
±40%, ±60%, and ±100% of the full scale of the sensor by electromagnetically controlling
the standard loading weights, and it was determined through testing that the static error of
the torque sensors was lower than ±0.3%.

3. Algorithms and Models
3.1. Data Pre-Processing Algorithm

The field data acquisition system collects real-time machine-state data continuously.
In order to avoid the interference of invalid data to the power-feeding model, only the data
collected during the silage harvesting period should be selected as the original data input
of the model.

3.1.1. Effective Data Filtering

The shredding roller and throwing blower are the key operating components of the
silage harvester, which have more than 60% of the power consumption of the whole
machine and have more significant data variation characteristics. Therefore, the monitoring
data of these two components are used as the screening basis, and combined with the
time-lag analysis model based on material flow, the screening of all measurement data is
realized. The main process is as follows.
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(1) Define a collection of data categories, D = {d1, d2, d3, d4} = {1, 2, 3, 0}. Where d1, d2,
d3, and d4 represent pre-acceleration data, field harvesting data, harvesting stopped data,
and non-experimental suspended data, respectively.

(2) Preliminary classification is carried out depending on the rotation speed of the
shredding roller, where the experimental and non-experimental data segments are obtained.

Di =

{
0 nc < 0.5nce
1, 2, 3 nc ≥ 0.5nce

(5)

where Di is the data category of the ith sampling. nc and nce are the real-time shredding
speed and rated shredding speed, respectively.

(3) The Mann-Kendall algorithm is used to detect the boundary points of field har-
vesting data [21]. Mann-Kendall is a non-parametric time-series rank test method which
has good applicability to field data with anomalous interference and unknown sample
distribution. However, it is not appropriate for multiple mutation detection. Thus, the
experiment samples in the original torque detection sequence are segmented into two data
subsets, which are independently used to detect the loaded mutation boundary points and
the unloaded mutation boundary points. In the case of a subset X = {x1, x2, x3 . . . ,xn} with n
torque detection sequences, first, a forward rank sequence Sk is constructed by forwarding
traversal and calculation of the cumulative count of torque values at the ith time greater
than that at the jth time in the sequence, as shown in Formula (6).

Sk =
k
∑

i=1
pk ( k= 2, 3, · · · , n )

pk =
k
∑

j=1
mkj ( j= 1, 2, · · · , k )

mkj =

{
1, xk > xj
0, xk ≤ xj

(6)

Secondly, based on the sequence mean E(Sk) and sequence variance var(Sk), the for-
warding statistics sequence UFk is calculated by Formula (7).

UFk =

{
0 ( k= 1 )
(Sk−E(Sk))√

var(Sk)
( k= 2, 3, · · · , n )

E(Sk) =
k(k−1)

4
var(Sk) =

k(k−1)(2 k+5)
72

(7)

Thirdly, the reverse statistic sequence UBk is calculated by reconstructing the reverse
detection sequence XB = {xn, xn-1, . . . , x1}, repeating the above traversal process, and taking
the negative. Then, under the assumption that the statistic follows the standard normal
distribution [22], the solution in Equation (8) under the U0.05 significance level constraint is
the rising or falling boundary of the effective data segment.{

UFk(i)−UBk(i) = 0
s.t.UFk(i) ∈ U0.05, i = 2, 3, · · · n (8)

(4) Through the steps above, the data screening for shedding rollers and throwing
blowers can be achieved. However, as for header and feeding parts, the data variation
characteristics are not sufficient to enable precise boundary extraction. Thus, we locate the
harvesting data segment of these two parts by the material’s time-delay model in the silage
harvester, as shown in Figure 4.
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As the silage is fed into the harvester at the time th, there is almost no time delay for
header torque change; After the collection of the header, the silage then reaches the feeding
conveying rollers at the time tf, while a time lag of ∆t1 exists for the feeding power. After
the silage is compacted and conveyed by the feeding rollers, it arrives at the shedding
rollers at the time tc, and there is a time lag of (∆t1 + ∆t2) for the shredding torque change.
Finally, after the crop is shredded, it reaches the blower at the time tb, while the blower
load data has a time delay of (∆t1 + ∆t2 + ∆t3). ∆t1 and ∆t2 are calculated by Formula (9).
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Thus, the effective data segments of the header, feeding unit, shredding rollers, and
throwing blows are Xh, Xf, Xc, and Xb respectively, as shown in the Formula (10).

Xh = [x(tcs − ∆t1 − ∆t2), x(tcs − ∆t1 − ∆t2 + T), . . . , x(tcs − ∆t1 − ∆t2 + iT), . . . , x(tce − ∆t1 − ∆t2)]
X f = [x(tcs − ∆t2), x(tcs − ∆t2 + T), . . . , x(tcs − ∆t2 + iT), . . . , x(tce − ∆t2)]
Xc = [x(tcs), x(tcs + T), . . . , x(tcs + iT), . . . , x(tce)]
Xb = [x(tbs), x(tbs + T), . . . , x(tbs + iT), . . . , x(tbe)]

(10)

where S1 and S2 are the moving distance of the crop at the header and the feeder, re-
spectively. Rh and Rf are the radii of the header cutting disk and the upper feed roller,
respectively. nh and nf are the rotation speed of the header and the upper feed roller,
respectively. tcs and tce denote the rising edge and descending edge of the filtered data in
the shedder. tbs and tbe express the rising edge and descending edge of the filtered data in
the blower.

3.1.2. Exception Data Handling

There are inevitably some anomalous data among the field monitoring samples.
Anomalous data include outliers value and the missing value. The outliers are generally
evaluated based on the statistical principle. In this study, the Grubbs criterion is applied to
verify data and reject outliers one by one with a confidence level of 0.05, while the Grubbs
criterion has a more rigorous result [23,24], particularly suitable for this application, within
a sample size of 25 to 185 [25]. Taking the screened shedding unit data Xc = [x(tcs), x(tcs+T),
. . . ,x(tcs+iT), . . . , x(tcs+pT)] as an example, the process of data exception handling is as
follows.
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(1) the sample mean and standard deviation are calculated by the Bessel Formula (11).
x =

p
∑

i=1
x(tcs + iT)

σ =

√
1

p−1

p
∑

i=1
(x(tcs + iT)− x

)2 (11)

(2) Reorganize the samples in order of numerical size {x(t)1, x(t)2 . . . , x(t)p}, where
x(t)1 ≤ x(t)2 ≤ . . . x(t)p. The residual error of suspicious outliers vi is calculated by the
Formula (12).

vi = max{(|x(t)1 − (x)|), (|x(t)p − (x)|)} (12)

(3) Compare the suspicious residual error vi with the critical value of Grubbs coefficient
G0. If Formula (13) is satisfied, the data is determined to be an outlier and removed from
the data sequence. The new sequence is then retested until there are no outliers in the data
series. vi

σ
> G0(n, α = 0.05) (13)

(4) Stuff the rejected outliers and missing values by the nearest neighbor method [26],
as shown in Formula(14).

xi =
1
2

xi−1 +
1
2

xi+1 (14)

3.2. Power Feeding Rate Model
3.2.1. Single-Variable Regression Model

Taking the real-time power consumption of each key operating component in the maize
silage harvesting process as the input of the model, a one-dimensional linear regression
model between the single power data and the feeding quantity is established, as shown in
Formula (15). {

qm = a + bx + ε
ε ∈ N(0, σ2)

(15)

where qm is the feeding rate of the silage harvester. x represents the power of a key
component. a and b are model regression parameters. ε is residual in the single regression.

3.2.2. Multi-Variable Regression Model

Through preferentially selecting the main factors affecting the feeding rate by cor-
relation analysis in the silage harvester, the least squares multiple regression model [27]
between multi-power data and feeding quantity is developed to achieve multi-parameter
calibration and fused feeding rate detection, as shown in Formula (16).{

qm = b0 + b1x1 + · · ·+ b2xi + · · ·+ bnxn + εm
εm ∈ N(0, σ2)

(16)

where b0, b1, . . . , and bn are model regression parameters, εm is the residual of the multi-
regression.

4. Results and Discussion

To verify the availability of the feeding rate detection model, harvesting tests are
carried out in Rizhao, Shandong Province with a self-propelled silage harvester. First, the
real-time power monitoring sensors are integrated into the test prototype, covering both the
mechanical driving parts and hydraulic driving parts. Secondly, by adjusting the harvesting
speed between 1 km/h and 4 km/h, seven groups of field experiments are designed and
conducted under different feeding rates, where condition monitoring data under different
operating status is simultaneously collected and stored. Thirdly, the raw monitoring data
is preprocessed by the combination of the Mann-Kendall data filtering algorithm and the
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Grubbs exception handling algorithm. Finally, the univariate and multivariate model based
on the power data is applied to realize the feeding rate measurement.

4.1. Field Experiment Design

Field experiments are realized group by group, as shown in Figure 5, while the
harvested crops are upright maize at the wax ripeness stage with a moisture content of
65–70%.
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As shown in Figure 5A, during each group, the silage harvester is adjusted to a pre-
determined harvesting velocity under the rated working state in the pre-acceleration area 
(the area between position a and position b in test group no.1). After that, the normal 
harvesting progress is carried out in the harvesting area (the area between position b and 
position c in test group no.1) according to the setting velocity and cutting height of 150 
mm, while simultaneously all of the silage materials thrown from the outlet of the throw-
ing cylinder were collected manually. Reaching point c, the harvester was parked and 
shut down in the stopping area (the area between position c and position d in test group 
no.1). As shown in Figure 5B, the raw material harvested and processed by the silage har-
vester all falls on the aggregate canvas. After manual collection, it is weighed with a plat-
form scale with an accuracy of 0.01 kg to obtain the cumulative mass of the harvested 
material. After that, the true value of the feeding rate is calculated with the harvesting 
time.  
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Figure 5. The experiment process of harvesting in the field(where R1, R2, . . . , and Rn are harvesting
crop rows); (A) Grouping schematic; (B) Picture of the field test.

As shown in Figure 5A, during each group, the silage harvester is adjusted to a
predetermined harvesting velocity under the rated working state in the pre-acceleration
area (the area between position a and position b in test group no.1). After that, the normal
harvesting progress is carried out in the harvesting area (the area between position b and
position c in test group no.1) according to the setting velocity and cutting height of 150 mm,
while simultaneously all of the silage materials thrown from the outlet of the throwing
cylinder were collected manually. Reaching point c, the harvester was parked and shut
down in the stopping area (the area between position c and position d in test group no.1).
As shown in Figure 5B, the raw material harvested and processed by the silage harvester
all falls on the aggregate canvas. After manual collection, it is weighed with a platform
scale with an accuracy of 0.01 kg to obtain the cumulative mass of the harvested material.
After that, the true value of the feeding rate is calculated with the harvesting time.

4.2. Test Results Analysis
4.2.1. Data Pre-Processing Results

First, the Mann-Kendall algorithm is used to screen the effective data segments. The
detection results of the mutation boundary on both sides of the data area are shown in
Figure 6. It can be seen that the algorithm can accurately capture the rising and falling edge
of the torque monitoring value. Moreover, the data fluctuations related to the dynamic load
changes during the harvesting have less influence on the mutation boundary detection.

Meanwhile, the power data of all components are subjected to effective boundary
detection, and the test results are shown in Table 1. The boundary extraction accuracy of the
shedding data and blowing data are 100%, while that of the inside header, outside header,
and feeding part are 64.3%, 71.4%, and 85.7%, respectively. The reason for the analysis
is that the header and the feeding part are the front-end mechanisms in plant feeding,
which have the characteristics of strong operating vibration, frequency data fluctuations,
and small amplitude changes between different working conditions; the accuracy of edge
detection is lower compared with the rear-end mechanism. Considering that, the time-
delay model described in Formula (10) is applied to achieve data filtering for front-end
mechanisms.

Then, through Grubbs Criterion anomaly detection and neighborhood interpolation,
the processing results of field test data are finally obtained, as shown in Table 2.
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Table 1. Results of boundary detection for data filtering.

Part Name

Rising Detection
(Number)

Descending Detection
(Number) Accuracy Rate (%)

Real Detected Real Detected

Inside header 7 5 7 4 64.3

Outside header 7 5 7 5 71.4

Feeding part 7 6 7 6 85.7

Shredding rollers 7 7 7 7 100

Throwing blower 7 7 7 7 100

Table 2. Pre-processed data of field harvesting.

Group No. Velocity
/m·s−1

Feeding Rate
/kg·s−1

Inside
Header

Power/kW

Outside
Header

Power/kW

Feeding
Power
/kW

Shredding
Power
/kW

Throwing
Blower

/kW

1 2.38 11.69 1.37 0.71 17.26 24.3 34.56
2 1.70 9.15 1.3 0.55 16.55 18.83 29.07
3 3.06 17.30 1.7 0.8 19.62 35.03 51.43
4 2.04 11.41 1.74 0.74 15.87 25.49 31.29
5 2.23 12.42 1.68 0.72 14.71 26.14 33.25
6 2.50 14.88 1.47 0.71 15.78 35.67 40.94
7 3.29 18.48 1.79 0.87 17.52 39.26 43.06
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4.2.2. Correlation Analysis Results

Correlation analysis between the monitored variables and feeding rate is performed
based on the field trial data, and the correlation R is calculated by Formula (17) through the
Pearson correlation coefficient [28].

R =

n
∑

i=1
xiyi −

n
∑

i=1
xi

n
∑

i=1
yi

n√√√√
(

n
∑

i=1
x2

i −
(

n
∑

i=1
xi)

2

n )(
n
∑

i=1
y2

i −
(

n
∑

i=1
yi)

2

n )

(17)

where X = {x1, x2 . . . , xn } and Y = {y1, y2 . . . , yn } are the sampled data sets of the two
monitored variables respectively; R is the correlation coefficient between the variable X and
Y; and n is the sample set size.

The heat map of the correlation among variables is shown in Figure 7. The results
show that the influence of each operating part on the feeding rate, in descending order,
is the shredding rollers, the throwing blower, the outside header, the inside header, and
the hydraulic feeding part. The correlation coefficient of the outside header, the shred-
ding rollers, and the throwing blower relative to the feeding rate is 0.87, 0.97, and 0.90,
respectively. All of the above correlation coefficients are greater than 0.85, presenting a
strong correlation relationship with the feeding rate. The correlation coefficient of the
inside header and the feeding part relative to the feeding rate is 0.63 and 0.54, respectively,
showing a weak correlation with the feeding rate.
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4.2.3. Feeding Rate Measurement Results

(1) single-variable regression results
The univariate linear regression models between the feeding rate and the power

data of key components in maize silage harvester are respectively established by using
the single factor analysis method, and the model results are shown in Figure 8. Along
with the increase in feeding rate, the power of each working part shows an increasing
trend. According to the modeling performance, they are ranked into shredding roller,
throwing blower, outside-header, inside-header, and hydraulic feeding part power, which
are consistent with the correlation analysis results. The linear relationship between the
shredding power and the feeding rate is the most significant, with a model coefficient of
determination R2 of 0.94, while the coefficient of determination R2 for the feeding rate



Agriculture 2023, 13, 391 12 of 15

model based on the blowing power is 0.82. Therefore, if a single-factor measurement
is considered, a shredding-power-based feeding rate model can achieve better detection
results.
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Figure 8. Results of the single-variable regression model; (A) The model between inside-header
power and feeding rate; (B) The model between outside-header power and feeding rate; (C) The
model between feeding power and feeding rate; (D) The model between shredding power and
feeding rate; (E) The model between blowing power and feeding rate.

(2) multiple-variable regression results
The first three factors that affect the feeding rate, including the inside-header power,

the shredding power, and the blowing power, are selected as model inputs to develop
a multivariate least squares regression model for the detection of the feeding rate. The
result is shown in Formula (18), where the parameter b0 is −4.0326 within the confidence
interval of [−12.0817, 4.0165], the parameter b1 is 7.9867 within the confidence interval
of [−8.5042, 24.4776], the parameter b2 is 0.2353 within the confidence interval [−0.0564,
0.5271], and the parameter b3 is 0.1315 within the confidence interval [−0.0817, 0.3446].
While the model coefficient of determination R2 is 0.9792, the model statistic F is 73.8684,
and the significance factor P is 0.00035 (far less than 0.05). The multiple-variable model is
reliable.

qm = −4.0326 + 7.9867 · p2 + 0.2353 · p4 + 0.1315 · p5 (18)

where p2, p4, and p5 are the power of the outside header, shredding rollers, and blower,
respectively.

Furthermore, a residual analysis is made for the model and the results are shown in
Figure 9. The residual value of the data in the samples is close to zero, while the confidence
interval of the residual includes zero and there are no exceptions, indicating that the model
can better fit the original data.

Meanwhile, the accuracy of the multiple regression feeding rate model is analyzed,
and the results are shown in Table 3. The maximum absolute error of the model is 0.58
kg/s, and the maximum relative error is ±5.84%, which meets the requirements of the
field feeding rate measurement and evaluation. Furthermore, the influence factors of
feeding rate measurement accuracy are analyzed. There are primarily two aspects that
contribute to the detection error. Firstly, as the compositions of maize forage plants in
the machine vary, the working power of key components changes dynamically during
harvesting, and the feeding rate measurement is modeled based on the average value
of the power consumption, which introduces detection errors. Secondly, although the
variation range in the crop moisture content during the field harvesting is slight with a
range of 65%~70%, the crop moisture content has a direct influence on chopping power
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consumption, which is the core parameter of feeding rate detection, and thus increases the
measurement error.
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Table 3. Results of the multi-variable regression model error analysis.

Group No. Actual Feeding Rate
/kg·s−1

Detected Feeding Rate
/kg·s−1

Absolute Error
/kg·s−1

Relative Error
/%

1 9.15 8.61 −0.53 −5.84
2 11.41 11.99 0.58 5.12
3 11.69 11.90 0.21 1.79
4 12.42 12.24 −0.18 −1.45
5 14.88 15.41 0.53 3.58
6 17.30 17.36 0.06 0.36
7 18.48 17.82 −0.67 −3.60

5. Conclusions

A feed rate measurement method based on multi-component power monitoring,
effective data automatic screening, and multivariate data fusion regression was studied in
this paper, and field experiments were carried out to validate the model. The conclusions
are as follows:

(1) The Mann-Kendall algorithm is applied to realize the automatic boundary extrac-
tion in the condition data filtering, which is highly applicable in the shredding rollers and
throwing blower with a stable load. The data screening and pre-processing for the whole
condition data are then achieved effectively in combination with the material-flow time lag
correction model.

(2) The Pearson correlation analysis shows that the correlation coefficients between
the feeding rate and the power data of the outside header, throwing blower, and shedding
roller are all higher than 0.85, indicating a strong relation, which can be used to build a
multivariate fusion feeding rate model.

(3) The multivariate least squares feeding rate model is obtained with excellent signifi-
cance verification results. The maximum absolute error is 0.58 kg/s, while the maximum
relative error is ±5.84%.

(4) As for the feeding rate measurement means of the maize silage harvester, if a
single parameter methodology is considered, it is proposed to take shredding power as the
input of the model, which provides good measurement accuracy. If a multiple conditions
parameter methodology is used, the model based on the fusion of cutting power, shredding
power, and blowing power can achieve a better detection result. Furthermore, there is still
much room for the improvement of model accuracy and robustness by integrating crop
characteristics.
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