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Abstract: Monitoring fruit tree flowering information in the open world is more crucial than in the
research-oriented environment for managing agricultural production to increase yield and quality.
This work presents a transformer-based flowering period monitoring approach in an open world
in order to better monitor the whole blooming time of modern standardized orchards utilizing IoT
technologies. This study takes images of flowering apple trees captured at a distance in the open
world as the research object, extends the dataset by introducing the Slicing Aided Hyper Inference
(SAHI) algorithm, and establishes an S-YOLO apple flower detection model by substituting the
YOLOX backbone network with Swin Transformer-tiny. The experimental results show that S-YOLO
outperformed YOLOX-s in the detection accuracy of the four blooming states by 7.94%, 8.05%, 3.49%,
and 6.96%. It also outperformed YOLOX-s by 10.00%, 9.10%, 13.10%, and 7.20% for mAPALL, mAPS,
mAPM, and mAPL, respectively. By increasing the width and depth of the network model, the
accuracy of the larger S-YOLO was 88.18%, 88.95%, 89.50%, and 91.95% for each flowering state and
39.00%, 32.10%, 50.60%, and 64.30% for each type of mAP, respectively. The results show that the
transformer-based method of monitoring the apple flower growth stage utilized S-YOLO to achieve
the apple flower count, percentage analysis, peak flowering time determination, and flowering
intensity quantification. The method can be applied to remotely monitor flowering information
and estimate flowering intensity in modern standard orchards based on IoT technology, which
is important for developing fruit digital production management technology and equipment and
guiding orchard production management.

Keywords: intelligent agriculture; IoT technology; apple flowering monitoring; open world; swin
transformer; SAHI

1. Introduction

The quantitative gathering of information on the growing status of fruit trees using
current technology facilitates the digital management of orchard production and enhances
the precision of orchard production management [1]. Flowering information monitoring is
one of the basic techniques for digital orchard management, and it is extensively utilized
for orchard flower thinning, pest and disease control, and other management operations.
Pruning and intercutting are required to obtain more significant economic returns in the
apple-growing industry [2]. In the early stages of apple growth, proper flower and fruitlet
thinning may increase the fruit weight per fruit and the blooming yield [3]. Current
flower thinning methods mainly include manual thinning [4], chemical thinning [5–7], and
mechanical thinning [8].

Traditional flowering monitoring is achieved based on human observations of specific
fruit trees at specific times. That is, experts go into the orchard to randomly select a few
fruit trees and estimate the flowering state with the eye. After comprehensive consideration,
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the overall flowering state of the orchard is obtained. Thinning after 28 days of bloom is
ideal for obtaining larger, high-quality Fuji apples [3,9]. However, modern standardized
orchards often have large areas and variability in the flowering times of fruit trees in
different regions. It is difficult to dynamically adjust orchard flower thinning time and
measures for specific fruit tree flowering information, affecting the efficiency and accuracy
of modern standardized orchard flower thinning management decisions. Consequently,
there is an urgent need for a method that can monitor the various growth stages of apple
flowers and quantify the flowering intensity, establishing the groundwork for real-time
monitoring utilizing Internet of Things (IoT) technology.

The current apple blossom monitoring methods have not been effectively studied,
and most of them have been carried out in simple experimental environments, i.e., with
suitable light, shooting angle, and shooting distance, achieving close to 100% detection
results. Using closer imaging distances, a study on stamens in fully open flowers [10]
disregarded the predictive effect of early buds and semi-open flowers for fully open flowers
and found they were only appropriate for close detection. Other studies that have grouped
all stages of flowers into one category for detection, even for flower clusters [11,12], have
ignored the interaction effects between the flowers at different growth stages and could not
accurately monitor the complete flowering process. The division of flowers into three stages
of detection [13] ignored the end-flowering stage as a marker of the end of the flowering
stage for determining the flowering stage of fruit trees. Other studies have divided apple
flowers into 6–8 stages for detection [14,15], devising even more categories. However, the
similarity between flowers at different growth stages elevates the cost of data annotation
and the inability to count the number after clustering detection in the same category.

Images obtained from closer distances with a high proportion of apple blossom pixels
at various stages are simpler to recognize and perform better. However, with the develop-
ment of IoT monitoring devices, research based on high-resolution images of whole fruit
trees acquired at a distance has become an inevitable trend. Current studies have obtained
more complete images due to the long imaging distance, such as vehicle-based [16] and
uncrewed aerial vehicles [17,18]. However, the tiny area of individual flowers makes the
variability between flowers at different growth stages low, and only fully open flowers or
even flower clusters are recognized as detection objects. In addition, none of the above
studies have observed the entire growth cycle of apple blossoms or tested the models under
different weather conditions. The detection models obtained may not be suitable for a wide
range of weather conditions. The key to the above problem is that the current detection
algorithm cannot effectively detect tiny pixel flowers in high-resolution apple tree images,
let alone monitor the complete growth process in complex weather.

Convolutional neural networks are the standard model in computer vision. The re-
lated models are categorized into two groups based on whether they directly implement
the classification and localization process: the Faster RCNN [19–21] series of two-stage
algorithms, the SSD [22], and the YOLO series [23,24] of one-stage algorithms. The current
apple flower detection algorithms are primarily separated into mask-based semantic seg-
mentation and box-based object detection. Studies using semantic segmentation algorithms
in apple blossom detection have included DeepLab-ResNet [11], Mask R-CNN [12,13], and
fully convolutional neural networks [16]. Although these algorithms can segment flowers,
they cannot count the number of flowers and are less effective in detecting large aggrega-
tions of flowers. The box-based apple flower detection algorithm can count the number of
flowers and enable further data analysis. In work using this type of algorithm, the YOLO
family, especially YOLO v4 [25], has been widely improved and achieved better detection
results [10,15,26,27]. However, these studies have only examined flowers at certain times,
lacking the monitoring of the whole flowering process and quantitative analysis of the
flowers. Therefore, a method is needed that can accurately detect tiny apple blossoms in
high-resolution images and enable multi-stage flower monitoring in the open world.

As the most advanced model in the widely used YOLO family, YOLOX [28] has
superior detection performance and has been effectively implemented for similar intensive
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detection applications [29,30]. Although CNN models, including YOLOX, have a long
history of success in target detection using translation invariance and local correlation,
CNN has a restricted field of vision, making it challenging to gather global information. In
contrast, Transformer does not have translational invariance and local correlation but can
capture long-range dependencies. So Vision Transformer [31] performs better than pure
convolutional models for large datasets, especially when massive datasets can be obtained
through IoT technology.

Since the introduction of Vision Transformer, many works have tried combining CNN
and Transformer to motivate the network to inherit the advantages of CNN and Trans-
former and retain the global and local features to the maximum extent. As a landmark work,
Swin Transformer [32], with shifted windows as a prominent feature, was created. With
self-attention at its foundation, Swin Transformer gathers global contextual information
to establish long-range dependency on targets and extract more robust features, demon-
strating the potential to replace traditional convolutional networks as the new backbone
network in computer vision.

In order to achieve information monitoring of the complete flowering process using
IoT technology, research based on high-resolution images of apple trees taken in complex
weather is essential. However, such images are not only tough to obtain, but also the
typical characteristics, such as a complex and changeable environment, a tiny proportion
of flower pixels, and hazy texture and color detail information, provide obstacles for flower
detection and monitoring. This study took high-resolution images of apple blossoms at
the complete growth stage in the open world as the research object and used the Slicing
Aided Hyper Inference (SAHI) algorithm to generate mixed datasets containing global
and local information. Then an S-YOLO model was designed based on Swin Transformer,
achieving the accurate detection of apple blossoms at four growth stages. An analysis
model for the number and number share of apple blossoms at each stage was established,
realizing the flowering intensity and flowering monitoring of the orchard or even specific
fruit trees. This work gives further theoretical and technological support for monitoring
orchard flowering growth using IoT technology.

2. Materials and Methods
2.1. Experimental Design

As shown in Figure 1, the specific workflow of the apple flowering stage monitoring
method is as follows: Step 1: obtain images of complete apple trees in the experimental
area of the orchard at the flowering stage. Step 2: label the obtained images according to
bud, half-open, fully open, and end-open using labelimg, and obtain the labeled image file.
Step 3: slice the annotated image using the SAHI algorithm and blend it with the original
image. Step 4: build the S-YOLO model and use the blended dataset for model training
and validation. Step 5: use the trained model for apple blossom detection. Step 6: perform
data analysis on the detection results. Step 7: implement flowering intensity estimation
and flowering period monitoring.
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Figure 1. Workflow for monitoring the flowering state of modern standardized apple orchards.

2.2. Image Data Acquisition

The images utilized in this research were captured between 3 April 2020 and 16 April
2020, in the First Asian Alpine Orchard in Shihe Township, Lingbao City, Henan Province
(E 111◦4′2.6976′′, N 34◦27′1.44′′), while the whole orchard was in the first flowering stage.
The subjects were 115 red Fuji apples from 5-year-old trees in rows 4.2 m apart with
2.1 m between the plants. To simulate IoT devices to acquire images of apple trees, the
investigator stood 2.5 to 3 m away from the tree’s roots and used a mobile phone to capture
photographs of the blooming stage of the apple trees.

The camera was operated from 10:00 am to 12:00 pm on the 13 days of shooting, and
115 images were obtained daily. A total of 1494 images of 3000 × 3000 pixels of apple trees
under different weather conditions, including sunny, cloudy, and rainy days, were obtained
in this study. Table 1 presents the precise weather information.

Table 1. Weather on various dates of shooting.

Date Weather Light Intensity Temperature Windy

0403 Overcast Weak 8–16◦ No
0404 Sunny Strong 8–18◦ Yes
0405 Sunny Strong 9–20◦ Yes
0406 Sunny Strong 9–20◦ Yes
0407 Sunny Strong 9–20◦ Yes
0408 Sunny Hazy 11–25◦ No
0409 Sunny Normal 8–24◦ Yes
0410 Light rain Weak 5–10◦ Yes
0411 Light rain Weak 5–15◦ Yes
0412 Sunny Strong 5–20◦ Yes
0413 Sunny Strong 9–23◦ No
0415 Sunny Normal 12–25◦ No
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The flowering status of apple trees is divided into four stages: the first flowering stage,
the middle flowering stage, the full flowering stage, and the last flowering stage, which
correspond to the four growth statuses of apple flowers. The first stage of the apple flower
is the bud (Figure 2a, red arrow), and they become half-open at the second stage (Figure 2a,
green arrow and Figure 2b, green arrow) when the buds swell into white or light pink
blooms that look like balloons. Once the petals have unfurled in the bud, the flower enters
the fully open stage (Figure 2c, blue arrow), and the end-open stage is when the petals
drop completely (Figure 2d, purple arrow). This experiment labeled 39,980 instances of the
four flowering stages on 317 3000 × 3000 pixels images of Fuji apple trees using labelimg
(Table 2), fulfilling the criterion that at least 3000 to 4000 instances of each class must be
labeled in complicated agricultural contexts, as suggested in [27].
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Figure 2. Flower images of apple tree at four flowering stages (300 × 300 pixels). (a) First flowering
stage; (b) middle flowering stage; (c) full flowering stage; (d) last flowering stage.

Table 2. Unprocessed annotation data information.

Class Bud Half-Open Fully Open End-Open

Number 11,865 10,885 12,288 4942
Aspect ratio (pixels) 17.08:17.23 22.32:22.30 49.36:48.61 27.68:27.13

Average area (pixels2) 318.86 541.71 2586.45 798.06
Area ratio (%) 0.0035 0.0060 0.0287 0.0088

Table 2 displays the raw annotation category information, including the number of
annotations, the aspect ratio of various flowers, and the ratio of the area occupied in the
image. The number of flower annotations in the first three growth stages was close, except
for the last bloom. The aspect ratio is the ratio of the labeled flower length to the width,
with the same category of flowers possessing a length-to-width pixel ratio near 1:1 and
an average pixel size ratio among the different flower stages of 17:22:49:27. Therefore, the
order of the size of the average area is fully open > half-open > end-open > bud. The fully
open stage has the highest number of annotations and largest average area. However, its
ratio in the image was less than 0.03 %, and the other three flowering stages made up less
than 0.01 %, making accurate flower detection more challenging.

From the overall view of the annotation information, the image data utilized in the
experiment and the annotated data were of high quality, which provided practical support
for the training and validation of the model. This dataset has the following characteristics:

• The dataset used for the experiment covered a range of weather conditions, the apple
tree’s growth postures, and the complete flowering process.

• The original image was a high-resolution image of 3000 × 3000 pixels, where the vast
majority of flowers were almost always smaller than 50 × 50 pixels.

• The flowers at each growth stage were manually labeled with sufficient numbers
and fineness. All factors affecting apple flower detection, such as biometric features,
gestures, shadows, and light, were considered at the human level.
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2.3. Slicing Using SAHI

The high-resolution apple tree images used in this study contained a large and dense
number of tiny pixel flowers. The higher resolution made directly inputting the photos
into the network to extract features too computationally costly. However, reducing the
resolution would result in losing information on details related to the flowers.

Multiple solutions have been developed to address the problem of small, dense objects
in high-resolution photographs. The traditional method of filling and then segmenting
images [6] and the method of copying and enhancing [33] images after oversampling require
segmenting a large number of annotations, which results in a large number of features
being altered to the point of being incompatible with the original dataset. Enlarging the
target region [34] can enrich small object features, but it will add additional computational
volume and is challenging to adapt to the demand for detection speed in some agricultural
fields. To preserve image detail information and reduce the model calculation costs, the
SAHI slicing algorithm was used to increase the model detection accuracy.

The SAHI [35] algorithm is a slicing-assisted inference approach for object detection
models that perform inference by cropping the images and performing inference on them.
The most notable benefit of SAHI is that it can be used in any object detection inference
method, considerably enhancing the detection level of small targets while just linearly
lengthening the computation time in slices. The SAHI algorithm effectively increases the
precision of YOLO series detection [36].

Considering the efficacy of SAHI in small object detection applications, the SAHI
algorithm was applied with a 20% coverage to the dataset utilized in this study, yielding
640 × 640 pixel images (Figure 3).
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Figure 3. The process of SAHI splitting the original image.

The SAHI algorithm divides the original image of 3000 × 3000 pixels into 640 × 640
pixels, which can be directly fed into the network, eliminating the computational overhead of
huge images without scaling, and minimizing the loss of detail information due to resizing by
approximately five times. The dataset created by combining the original and sliced images is
guaranteed to contain large images (3000 × 3000) with high semantic information and small
images (640 × 640) with detailed local information. Additionally, there is a 20% overlap area
between the sliced images which can also facilitate information fusion.

2.4. S-YOLO Detection Model
2.4.1. Model Construction

Swin Transformer can better capture global semantic information than traditional
convolutional neural networks and can better fuse global and local information and extract
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more powerful features. To reduce the number of model parameters to almost the same
level as that of the pure convolutional backbone network to ensure the fairness of the
experimental results, Swin Transformer-tiny was substituted for the YOLOX backbone
network to generate the S-YOLO model. The overall architecture of the S-YOLO is shown
in Figure 4.
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S-YOLO is separated into four distinct size models based on the varying depths and
widths of the neck and head channels. The corresponding depth and width ratios for
different versions of the model are S-YOLO-tiny (S-YOLO-t: 0.33, 0.375), S-YOLO-small (S-
YOLO-s: 0.33, 0.50), S-YOLO-middle (S-YOLO-m: 1.00, 1.00), and S-YOLO-large (S-YOLO-l:
1.33, 1.20).

The backbone network consists of five parts. The first part is the patch partition,
and the last four parts are composed of two consecutive Swin Transformer blocks, where
patch partition and linear embedding are equal to Patch Merging, which plays the role of
downsampling. Swin Transformer substituted the conventional multi-head self-attention
(MSA) module with the window-based multi-head self-attention (W-MSA) module and the
shifted window-based multi-head self-attention (SW-MSA) module. Each Swin Transformer
block consists of three components linked by a residual structure: a LayerNorm (LN) layer,
a W-MSA/SW-MSA module, and a multilayer perceptron (MLP) with two completely
connected layers and GELU nonlinearity. Using alternating transformations of W-MSA and
SW-MSA to conduct all attention actions in a given window, the Swin Transformer block
minimizes the computing volume of the model.

Detail information, such as color and texture, is crucial for flower detection. There-
fore, retaining and extracting as much shallow information as possible becomes a vital
consideration while building a feature extraction network. The neck part used a PAnet
structure [37] to accomplish a twofold sampling of the features and to improve the net-
work’s capacity to fuse features. The CBS module, which comprises a convolutional layer
(Conv), a batch normalization layer (BN), and an activation function called SiLU, is the
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primary module for feature extraction in the S-YOLO neck and head sections. The CSPlayer
layer, using the idea of residuals, consists of two parallel CBS modules and multiple resid-
ual units in a series, which will play a role in PAnet for better image features and fusion
capability extraction.

The design of the detecting head module is centered on efficiently employing the
characteristics gathered from global and local information. The YOLOHead part employs
decoupled heads with quicker convergence and greater precision. The decoupled head is
controlled via CBS modules with varying channel counts and partitioned into classification
and regression subnetworks. The classification subnetwork calculates the probability of de-
tecting flowers belonging to distinct classes (Cls) of flower labels. In contrast, the regression
subnetwork predicts the feature points’ classes (Obj) and positions (Reg). Combining three
sets of YOLOheads designed to detect flowers of various sizes produced a considerable
number of suggestion boxes, and the anchor-free SimOTA algorithm provided the final
detection results.

The hybrid dataset generated using SAHI was fed into the S-YOLO network for train-
ing and validation after data enhancement via the Mosaic [25] and MixUp [38] algorithms.

2.4.2. Model Training and Validation Environment

The mixed dataset was divided into a training set, a validation set, and a test set, at
a ratio of 64:16:20. The training and validation sets were resized to 640 × 640 pixels for
input to the network for training and validation. The test set was used for the network
assessment and testing. The model training process was carried out using the Ubuntu 18.04
Cloud operating system (Cuda 11.0, Cudnn 8.0.4, Python 3.8, Pytorch 1.8, 4 × NVIDIA
RTX 3090). The model assessment process was performed using the Windows 11 operating
system (Cuda 11.3, Cudnn 8.2.1, Python 3.8, Pytorch 1.10.2, 1 × NVIDIA RTX 1650).
During the experiments, the freezing and unfreezing training process was conducted with
100:200 epochs, with primary batch sizes of 128:32 and 16:16 when the SAHI algorithm was
not utilized. The other critical hyperparameters are listed in Table 3.

Table 3. The primary hyperparameters of the model training process.

Hyperparameter Value

Initial learning rate 0.01
Minimum learning rate 0.0001

Optimizer sgd
Momentum 0.937

Weight decay 0.0005
Learn rate decay type cos

2.4.3. Evaluation Indicators

Precision (P), recall (R), average precision (AP), and different types of mean average
precision (mAP) are the main indicators used to assess the efficacy of the model for detecting
apple flowers. The experimental outcome measures can be presented by calculating various
combinations of positions within the confusion matrix: true positive (TP) is the accurate
forecast for positive samples, true negative (TN) is the correct prediction for negative
samples, false positive (FP) is the erroneous prognosis for positive samples, and false
negative (FN) is the incorrect prediction for negative samples. In addition, the precision–
recall (P–R) curve forms corresponding points between the horizontal axis, representing
recall (R), and the vertical axis, representing precision (P) (with an IoU threshold equal to
0.5). Different intersections over the union (IoU) values were obtained by setting a certain
degree of overlap between the prediction and the ground truth. Other specific metrics were
calculated as follows:

AP: Average precision for a single category (IoU threshold from 0.5 to 0.95 in steps of 0.05),
including bud, half-open, fully open, and end-open apple flowers;
mAPALL: Mean average precision of apple flowers of the four stages (all pixels);
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mAPS: mAP for small objects whose area is smaller than 322 pixels;
mAPM: mAP for medium objects whose area is between 322 pixels and 962 pixels;
mAPL: mAP for large objects whose area is bigger than 962 pixels.

Calculating the P, R, AP, and mAP for a given IoU threshold is defined in Equations (1)–(4).

P =
TP

TP + FP
(1)

R =
TP

TP + FN
(2)

AP =
N

∑
k=1

max
k̃≥k

[
P(k̃), P(k)

][
R(k̃)− R(k)

]
(3)

mAP =
∑M

i=1 APi

M
(4)

where k and k̃ represent the point serial numbers before and after interpolation; N is the
number of images under a category; M is the number of categories; i is the category label;
and P(k) and R(k) are the precision and recall of the kth point. APi is the average precision
of class i.

2.5. Apple Flowering Monitoring

In this experiment, the trained model was applied to 1494 images of apple trees taken
at different times to detect flowers at different stages. The prediction of each apple tree
image using S-YOLO-s to obtain the boxes corresponding to the four stages of flowers in
each image and accumulating the number of boxes in the same category in all images on
the same date obtained the total number of flowers in the four stages. On this basis, the
total number of apple blossoms at each stage was divided by the number of images to
obtain the average number of flowers at each stage in each image.

It is possible to determine the relative number share by evaluating the proportional
relationships between the various stages of flowers within a single image. When the
percentage of flowers at a particular stage in an image surpasses fifty percent, the fruit tree
is deemed at the corresponding flowering stage. The day with the highest number of apple
blossoms at a particular stage of the growth cycle is the peak time for apple blossoms at
that stage. Among all images of fruit trees under a specific date, the average number of
flowers in the four stages can be used to determine the flower proportion, and thus, the
overall flowering status of the orchard. The percentages of fully open flowers correspond
to the flowering intensities from 0 to 100, and this precise quantitative index will provide
data support for flower-thinning decisions.

3. Results and Discussion
3.1. Image Slice Results

The flower images were sliced using the SAHI algorithm and combined with the
original images to create a hybrid dataset (Table 4). The relevant feature changes were
recorded before and after the slicing (Table 5).

Table 4. Annotated data information after slicing using the SAHI algorithm.

Class Bud Half-Open Fully Open End-Open

Number 32,060 29,402 34,703 13,648
Aspect ratio (pixels) 17.55:17.70 22.64:22.68 48.51:47.85 27.97:27.46

Average area (pixels2) 334.50 557.75 2485.52 813.22
Area ratio (%) 0.0542 0.0894 0.3934 0.1312
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Table 5. Changes in annotated data information after SAHI algorithm slicing.

Class Bud (%) Half-Open (%) Fully Open (%) End-Open (%)

Number +170.21 +170.11 +182.41 +176.16
Aspect ratio +2.76: +2.73 +1.43: +1.70 −1.72: −1.56 +1.05: +1.27
Average area +4.90 +2.96 −3.90 +1.90

Area ratio +1428.91 +1385.91 +1268.89 +1379.58

Following the SAHI algorithm slice, the percentages of flowers in each category grew
by 170.21%, 170.11%, 182.41%, and 176.16%, respectively, resulting in 109,813 high-quality
labeled data (a 150% increase) to the network. While allowing for a higher batch size for
training, the changes in the aspect ratio and average area were within 3.00% and 5.00%,
and the corresponding change in the area ratio was at least 1268.89%. In addition, the fully
open stage had the largest average single flower area, which was 7.43 times bigger than
the bud stage, 4.46 times bigger than the half-open stage, and 3.06 times bigger than the
end-open stage. The high area of full blooms prompted the SAHI algorithm to split the
fully open flowers that were at the boundary of the cut area into multiple parts and to
consider them as newly fully open. This split came at the cost of a 3.90% reduction in the
average areas, prompting the most significant increase in the number of fully open flowers.
Fully open was the only flower growth stage with a negative average area increase.

3.2. Flower Detection with S-YOLO
3.2.1. Comparison with YOLOX-s

In the COCO dataset, the superiority of YOLOX over sophisticated models, such as
PPYOLO [39], YOLOv3, and EfficientDet [40], was established [28]. YOLOv4 was proven
to have greater precision and mAP than Faster R-CNN and SSD 300 for detecting apple
pistils [10]. Consequently, the comparison experiment portion of this study was performed
on the original YOLOX-s model and the modified S-YOLO-s, and the pertinent data were
collected (Table 6).

Table 6. Comparison of the effects of YOLOX-s and S-YOLO-s on flowering detection in apples.

Model P-Bud 1

(%)
P-Half-Open

(%)
P-Fully Open

(%)
P-End-Open

(%)
mAPALL

(%)
mAPS

(%)
mAPM

(%)
mAPL

(%)

YOLOX-s 2 79.19 81.27 85.21 83.90 27.40 21.40 36.00 58.90
S-YOLO-s 87.13 89.32 88.70 90.86 37.40 30.50 49.10 66.10

1 Represents the precision of the bud, the same as below. 2 Note: The SAHI algorithm was used in S-YOLO by
default and YOLOX by contrast.

Figure 5a shows the loss curves during the training of the S-YOLO-s model. After
the 100th epoch, the backbone started to thaw, and the losses of the training set and the
validation set fell. The validation set loss was higher than the training set after the 170th
epoch, and when the decreasing trend was smaller than the training set, the model started to
overfit. Figure 5b shows the P–R curves with IoU = 3. The AP of the fully open flowers was
significantly higher than the other three stages, and the differences among the AP values of
the three stages were not significant. This phenomenon was significantly correlated with
the higher pixel proportion of the fully open flowers.

The precision of S-YOLO-s was enhanced by 7.94%, 8.05%, 3.49%, and 6.96%, and
different types of mAP by 10.00%, 9.10%, 13.10%, and 7.20%, respectively, compared to
YOLOX-s at each flowering stage. By comparing the experimental results, it was found
that the improved model’s apple flower detection precision was significantly higher than
the original model and indirectly higher than EfficientDet, Faster R-CNN, and SSD 300.
Therefore, it is practical and feasible for the model to accurately detect apple flowers
with high resolution. The detection results of YOLOX-s and S-YOLO-s for the apple tree
blossoming images under four typical weather conditions of overcast, sunnier, foggy, and
sunny days (Figure 6a,b) provide further proof of the model’s superiority.
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Figure 6. Detection of four growth stages of apple blossoms with red, green, blue, and purple boxes
using different models. (a) YOLOX-s detection results; (b) S-YOLO-s detection results; (c) YOLOX-l
(add SAHI) detection results; (d) S-YOLO-l detection results.
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3.2.2. The Results of Different Versions of Models

The results of the comparison experiments demonstrate that the S-YOLO model per-
formed better in detecting apple flowers at various growth stages. An ablation experiment was
designed to gain a deeper understanding of how the two improvements of adding the slicing
algorithm and replacing the backbone network contributed to the results and to determine
how both improvements could be used more effectively to produce better results.

Table 7 shows the results of the ablation experiments. Using YOLO-s as the baseline,
the SAHI algorithm improved the precision by 0.70%, 0.04%, 1.04%, and 3.38% for each
flowering stage and by 6.70%, 5.50%, 7.20%, and 7.70% for the different types of mAP,
respectively. The results indicate that the SAHI algorithm can successfully enhance the
detection impact of the model, and the degree of enhancement was proportional to the
object’s pixel size. After replacing the original backbone network with Swin Transformer-
tiny, the model parameters took up 35.79 MB, the FLOPs took up 95.57 GB, the precision
improved by 7.24%, 8.01%, 2.45%, and 3.58%, and the mAP improved by 3.30%, 3.60%,
5.90%, and −0.50%. After rebuilding the backbone, the results indicate that S-YOLO was
more sensitive to detecting small objects of varying length and breadth. The promotion
of detection precision by using Swin Transformer as a backbone network was negatively
correlated with the object size, and the enhancement of the mAP showed an inverted
U-shape with flower size, which led to negative growth of the mAPL.

Table 7. Results of ablation experiments.

Model P-Bud
(%)

P-Half-Open
(%)

P-Fully Open
(%)

P-End-Open
(%)

mAPALL
(%)

mAPs
(%)

mAPm
(%)

mAPl
(%)

Parameters
(M)

FLOPs
(G)

YOLOX-s 79.19 81.27 85.21 83.90 27.40 21.40 36.00 58.90 8.94 26.64
YOLOX-s
(+SAHI) 79.89 81.31 86.25 87.28 34.10 26.90 43.20 66.60 8.94 26.64

S-YOLO-s 87.13 89.32 88.70 90.86 37.40 30.50 49.10 66.10 35.79 95.57
S-YOLO-t 79.38 80.50 83.02 84.02 32.40 25.60 41.50 57.10 30.80 80.58

S-YOLO-m 81.95 83.48 86.96 86.86 35.10 28.20 45.40 65.70 45.89 135.35
S-YOLO-l 88.18 88.59 89.50 91.95 39.00 32.10 50.60 64.30 51.37 157.68

Swin-S 82.35 84.02 85.60 87.37 34.50 27.60 44.10 65.70 57.07 165.84

While replacing various backbones and detection heads extended the model, the
detection effect exhibited a non-linear correlation with the model size. Different sizes of
S-YOLO were obtained by adjusting the channel depth and width variation of YOLOX
while maintaining increased data using SAHI. The mAP values from S-YOLO-t to S-YOLO-l
were 32.40%, 37.40%, 35.10%, and 39.00%. This phenomenon, where the mAP did not grow
as the model grew, resulted from the uncoordinated channel change between the network’s
backbone and neck. Swin-S replaced the YOLOX-s backbone with Swin Transformer-small.
Although the number of parameters and FLOPs of the Swin-S model were higher than
S-YOLO-l, the precision and mAP were smaller than S-YOLO-s. Therefore, the appropriate
ratio of the number of structural parameters and the channel variation are necessary factors
for the S-YOLO variant to achieve higher detection results.

In summary, S-YOLO-s outperformed the original model in detecting each flower
stage at a high resolution, which resulted from the combined effect of the SAHI algorithm
increasing the percentage of flower pixels while keeping the image features unchanged
and the Swin Transformer being used as the backbone network. The high-resolution
local information provided by SAHI without scaling was fed to the network along with
the global information of the scaled original image. This information was fused via the
Swin Transformer and subsequently fully used by the network, prompting the model to
produce state-of-the-art experimental results. Moreover, S-YOLO is exceptionally sensitive
to the size of the detected object, and larger detected objects will get a minor boost or
even negative growth in the mAP compared to other objects of smaller length and width.
Ablation experiments revealed the superiority of the S-YOLO performance and illustrated
that appropriate channel depth variation and balanced parameter scaling will provide
better results than arbitrarily expanding the model. This experiment provides data to
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support the replacement of the larger Swin Transformer as the backbone to obtain greater
experimental results.

3.2.3. Comparing the Effects of Other Measures

The detection results on the mixed dataset (Table 8) show that the improved S-YOLO-l
was slightly less effective than YOLOX-l with the comparable sizes of parameters and
FLOPs on the mixed dataset, but this does not mean that the improvement of the model
was unsuccessful. The dataset used for model evaluation in this experiment consisted of a
640 × 640 pixel image after slicing and the original 3000 × 3000 pixel image. However, the
actual detection object in the natural environment should be 3000 × 3000 pixels, so the data
in the test dataset were replaced with the raw dataset and the experiment was conducted
again to obtain the new results.

Table 8. Comparison results of YOLOX-l and S-YOLO-l with similar parameters (54.15 M and
51.37 M) on mixed and raw datasets (all using SAHI).

Model Datasets P-Bud
(%)

P-Half-Open
(%)

P-Fully Open
(%)

P-End-Open
(%)

mAPALL
(%)

mAPS
(%)

mAPM
(%)

mAPL
(%)

S-YOLO-s Mixed 87.13 89.32 88.70 90.86 37.40 30.50 49.10 66.10

YOLOX-l Mixed 85.27 88.66 92.02 92.92 41.70 35.60 55.40 74.60
S-YOLO-l Mixed 88.18 88.59 89.50 91.95 39.00 32.10 50.60 64.30

YOLOX-l Raw20% * 81.00 85.80 90.30 90.00 34.30 28.30 48.20 71.80
S-YOLO-l Raw20% 84.30 87.78 90.56 91.88 34.40 28.40 48.20 70.60

* The proportion of the test set used for all datasets was 20%.

The results in Table 8 show that S-YOLO-l significantly outperformed YOLOX-l in
precision and achieved better results in all types of mAP after adjusting the test set per-
centage to 20%. Therefore, the improved model still outperformed the original model in
the high-resolution task of detecting the growth stage of apple blossoms, even when the
gain from the SAHI algorithm was ignored. In addition, if the SAHI algorithm is not used,
YOLOX-l will not be trained properly due to the low number of input images. Notably, the
backbone network utilized in this investigation was Swin Transformer-tiny. With enough
computing resources, labeled data, and disregarding the negative impact of a bigger model,
a bigger S-YOLO network with the proper parameter scaling and number of channels
would produce superior detection results.

Figure 6c,d shows the detection results of YOLOX-l (add SAHI) and S-YOLO-l for the
apple tree flowering images under four typical weather conditions: cloudy, more sunny,
foggy, and sunny days. The image presentation results indicate that YOLOX-l, with the
inclusion of the SAHI algorithm, may have performed marginally better than S-YOLOX-l at
several detection locations. Notably, the initial annotation volume utilized in the experiment
was 39,980, which grew to 109,813 after slicing using the SAHI technique and mixing with
the original dataset, but was significantly less than the COCO dataset. Therefore, S-YOLO-l
cannot fully exploit its strengths. With the development of IoT technologies, the issue of a
too-small training dataset will be resolved, and it will also be possible to use bigger Swin
Transformer models to obtain better detection results. By observing Table 8 and Figure 6,
it is possible to infer that the enhanced S-YOLO-l beat YOLOX-l in an identical situation
using the SAHI method but that the existing quantity of data did not cause S-YOLO to
demonstrate an overwhelming advantage.

3.3. Apple Flowering Monitoring Results

A total of 1494 fruit tree images (3000× 3000 pixels) were fed into S-YOLO-s for flower
prediction to obtain the number variation and proportional variation under a time series
(Figure 7b). Except for the decline in the number of buds caused by the late shooting date,
the number of flowers in all three categories showed arching characteristics in line with the
natural pattern for time variation. The average flower density at the peak of each stage was
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55.687 on 3 April, 47.565 on 6 April, 118.183 on 9 April, and 17.522 flowers/tree on 15 April
(Figure 7a) corresponding to 75.7%, 46.7%, 82.26%, and 49.58% of all flowers, respectively
(Figure 7b). The flowering intensities of the orchard on different dates were 1.13%, 3.94%,
19.54%, 37.34%, 57.57%, 72.18%, 82.26%, 81.59%, 75.74%, 77.04%, 76.59%, 47.83%, and
12.18%. The experimental results show that the orchard was in the first flowering stage on
3 April, the middle flowering stage on 5 April, the full flowering stage on 7 April, and the
last flowering stage on 15 April. In addition, based on the trend of the number of end-open
flowers, it was predicted that only these would remain in the orchard from 17 to 18 April,
which means that the orchard would be in the last flowering stage completely.
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This experiment demonstrated that with the help of an S-YOLO-s high-performance
detector, it was possible to obtain time-series changes in the number and proportion of
flowers. At the same time, it was possible to achieve the daily flowering intensity estimation
and flower peak time determination at each stage, and finally, flowering information
monitoring was realized. Notably, the results mentioned above were achieved by counting
the detection results of single fruit trees; thus, S-YOLO-s is adequate for identifying the
blooming phases of single fruit trees.

4. Conclusions

This study proposes a Transformer-based apple flowering monitoring method for
monitoring the whole flower growth process of full fruit trees in the open world. In this
work, the non-pure convolutional S-YOLO was model used to detect the four growth stages
of apple blossoms accurately and to analyze the changes in the numbers and percentages of
blossoms at each growth stage in order to estimate the peak flowering time and flowering
intensity and to complete the monitoring process. The main conclusions are as follows.

1. Based on the combination of YOLOX and Swin Transformer, the SAHI algorithm was
added to form the S-YOLO model. S-YOLO-s improved the precision compared to
the original YOLOX-s by 7.94%, 8.05%, 3.49%, and 6.96% for the four flowering states
and by 10.00%, 9.10%, 13.10%, and 7.20% for the mAPALL, mAPS, mAPM, and mAPL,
respectively. S-YOLO-l resulted in 88.18%, 88.95%, 89.50%, and 91.95% precision at
each flowering state and 39.00%, 32.10%, 50.60%, and 64.30% for each type of mAP,
respectively. Without considering the SAHI algorithm boost, the non-pure convo-
lutional S-YOLO-l model slightly outperformed the YOLOX-l model with similar
parameters and FLOPs in the original dataset, with improvements of 3.30%, 1.98%,
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0.26%, and 1.88% in detection precision. In addition, using a bigger Swin Transformer
as the backbone, designing an appropriate percentage of structural parameters, and
collecting more training data may have resulted in improved experimental outcomes.

2. The SAHI algorithm made the object-detected aspect ratio and average area vary
between 3.00% and 5.00%, respectively, while increasing the image area ratio by
1250%. The SAHI algorithm increased the number of annotations of flowers in the
four growth stages by 170.20%, 170.11%, 182.41%, and 176.16%, respectively, and the
total amount of annotated data increased by 150% to 109,813, providing more quality
data for the model training process. The experimental results show that the SAHI
algorithm improved the precision by 0.70%, 0.04%, 1.04%, 3.38%, and the mAP by
6.70%, 5.50%, 7.20%, 7.70% for each flowering stage, respectively, and the larger the
object detected, the more the detection effect was improved.

3. Using the results of S-YOLO, the quantity and percentage of apple flowers and the
flowering intensity were estimated daily for each stage of the orchard during the
flowering period, and the peak time was identified. The average flower density at the
peak of each stage was 55.687 on 3 April, 47.565 on 6 April, 118.183 on 9 April, and
17.522 flowers/tree on 15 April, corresponding to 75.7%, 46.7%, 82.26% and 49.58% of
all flowers. On the various dates, the flowering intensities of the orchard were 1.13 %,
3.94 %, 19.54 %, 37.34 %, 57.57 %, 72.18 %, 82.26 %, 81.59 %, 75.74 %, 77.04 %, 76.59 %,
47.83 %, and 12.18 %. In addition, the orchard was at its first flowering stage on
3 April, its middle flowering stage on 5 April, its full flowering stage on 7 April, and
its last flowering stage on 15 April.

The apple flower monitoring method proposed in this study is applicable to orchard
environments in the open world. Based on the detection of four stages of tiny flowers in
complete fruit tree images, the quantitative analysis of data and the assessment of blossom
intensity were realized, and then the flower information monitoring was realized. It is
important to note that the existence of diverse viewing angles, illumination fluctuations,
occlusions, uncertain stances, low pixel ratio, complicated backdrops, etc., makes it chal-
lenging for models trained on the source dataset to achieve high performance. This method
establishes the foundation for the proper use of IoT technology for the remote monitoring
of flowering information in modern orchards.
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