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Abstract: Soil moisture time series data are usually nonlinear in nature and are influenced by multiple
environmental factors. The traditional autoregressive integrated moving average (ARIMA) method
has high prediction accuracy but is only suitable for linear problems and only predicts data with
a single column of time series. The gated recurrent unit neural network (GRU) can achieve the
prediction of time series and nonlinear multivariate data, but a single nonlinear model does not
yield optimal results. Therefore, a hybrid time series prediction model, BAG, combining linear and
nonlinear characteristics of soil moisture, is proposed in this paper to achieve the identification
process of linear and nonlinear relationships in soil moisture data so as to improve the accuracy of
prediction results. In BAG, block Hankel tensor ARIMA (BHT-ARIMA) and GRU are selected to
extract the linear and nonlinear features of soil moisture data, respectively. BHT-ARIMA is applied to
predict the linear part of the soil moisture, and GRU is used to predict the residual series, which is
the nonlinear part, and the superposition of the two predicted results is the final prediction result.
The performance of the proposed model on five real datasets was evaluated. The results of the
experiments show that BAG has a higher prediction accuracy compared with other prediction models
for different amounts of data and different numbers of environmental factors.

Keywords: nonlinear characteristics; block Hankel tensor; autoregressive integrated moving average;
gated recurrent unit; soil moisture prediction

1. Introduction

In the process of modernization, soil moisture forecast is very important for agricul-
tural planting. By automatically monitoring soil moisture data and establishing an effective
soil moisture prediction model, we can predict the trend of the soil moisture content at
different depths in advance in order to improve the utilization of water resources, which is
of certain significance for the scientific water supply of crops and sustainable development
of agriculture.

Changes in soil moisture can be predicted by a variety of methods, and the main
models commonly used are the empirical equation method, the water balance method [1,2],
the time series prediction method [3,4], and the neural network prediction method [5,6].
Among them Pignotti et al. [7] analyzed the target predicted changes by simulating soil
moisture through artificial perturbations and assessed the sensitivity of complex ecology
to soil moisture with the help of a water balance model. Although the equations of the
water balance method are simple and easy to understand, the measurement indicators
are numerous and complex. Figueroa et al. [8] used time series analysis methods for the
outlier detection and pattern recognition of soil moisture sensor data and improved soil
moisture prediction and irrigation systems. However, soil moisture data usually have
nonlinear characteristics, and traditional time series prediction models are linear models,
which provides some limitations in modeling soil moisture time series. Among them, are
physically based soil-vegetation-atmosphere transfer (SVAT) [9] schemes that address the

Agriculture 2023, 13, 379. https://doi.org/10.3390/agriculture13020379 https://www.mdpi.com/journal/agriculture

https://doi.org/10.3390/agriculture13020379
https://doi.org/10.3390/agriculture13020379
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://orcid.org/0000-0001-8946-3447
https://doi.org/10.3390/agriculture13020379
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture13020379?type=check_update&version=2


Agriculture 2023, 13, 379 2 of 20

nonlinear properties of the soil moisture time series. However, the operation of the SVAT
model usually requires data such as vegetation structure (including canopy height), optical
characteristics of soil and vegetation (such as reflectance), physiological characteristics of
vegetation (such as stomatal conduction), and so on. The existing SVAT model contains a
large number of parameters and empirical constants that need to be determined. Even a
fully equipped micro-meteorological test site that can fully control the plant environment
cannot fully provide the exact values of these constants. At the same time, neural networks
with nonlinear models are widely used in the field of time series prediction. Cai et al. [10]
proposed a deep learning regression network (DNRR) with a large data fitting capability
to construct soil moisture prediction models, and the relationship between features and
variables was clarified by Taylor diagrams, and meteorological parameters were selected to
provide effective weights for predicting moisture. However, a single nonlinear model does
not obtain optimal results for soil moisture time series data with both linear and nonlinear
characteristics. Guo et al. [11]. proposed a combined prediction method that first extracts
the linear part of the fitted wind speed data using the ARIMA model and then extracts
the fitted nonlinear components using least squares and support vector machine, and this
combined model improves the wind speed prediction accuracy.

Changes in soil moisture conditions are a complex nonlinear process. For example,
Peterson et al. [12] proposed a nonlinear transfer function noise model because existing
methods do not consider nonlinear soil drainage, and in a test of 84 nonlinear models and
two linear models, it was possible to obtain that the nonlinear time series model performed
significantly better in all observation holes during calibration and evaluation. Figure 1
shows the trend in the soil moisture content at depths 5 cm, 20 cm, 40 cm, and 60 cm in one
of the experiment areas from January 2010 to December 2010, respectively, and it can be
seen that soil moisture data usually are nonlinear time series data.

Agriculture 2023, 13, 379 2 of 21 
 

 

physically based soil-vegetation-atmosphere transfer (SVAT) [9] schemes that address the 
nonlinear properties of the soil moisture time series. However, the operation of the SVAT 
model usually requires data such as vegetation structure (including canopy height), opti-
cal characteristics of soil and vegetation (such as reflectance), physiological characteristics 
of vegetation (such as stomatal conduction), and so on. The existing SVAT model contains 
a large number of parameters and empirical constants that need to be determined. Even a 
fully equipped micro-meteorological test site that can fully control the plant environment 
cannot fully provide the exact values of these constants. At the same time, neural networks 
with nonlinear models are widely used in the field of time series prediction. Cai et al. [10] 
proposed a deep learning regression network (DNRR) with a large data fitting capability 
to construct soil moisture prediction models, and the relationship between features and 
variables was clarified by Taylor diagrams, and meteorological parameters were selected 
to provide effective weights for predicting moisture. However, a single nonlinear model 
does not obtain optimal results for soil moisture time series data with both linear and 
nonlinear characteristics. Guo et al. [11]. proposed a combined prediction method that 
first extracts the linear part of the fitted wind speed data using the ARIMA model and 
then extracts the fitted nonlinear components using least squares and support vector ma-
chine, and this combined model improves the wind speed prediction accuracy. 

Changes in soil moisture conditions are a complex nonlinear process. For example, 
Peterson et al. [12] proposed a nonlinear transfer function noise model because existing 
methods do not consider nonlinear soil drainage, and in a test of 84 nonlinear models and 
two linear models, it was possible to obtain that the nonlinear time series model per-
formed significantly better in all observation holes during calibration and evaluation. Fig-
ure 1 shows the trend in the soil moisture content at depths 5 cm, 20 cm, 40 cm, and 60 cm 
in one of the experiment areas from January 2010 to December 2010, respectively, and it 
can be seen that soil moisture data usually are nonlinear time series data. 

 
Figure 1. Map of soil moisture content at different depth change trends in a certain area. 

Soil moisture is influenced by the properties of the soil itself (texture, composition, 
permeability, organic content, etc.) [13–15] and by environmental factors (temperature, 
precipitation, evaporation, etc.) [16,17]. Niu et al. [18] found that the GEP model based on 
temperature, barometric pressure, humidity, wind speed, ground temperature, rainfall, 
and initial temperature values as model inputs could better achieve soil moisture predic-
tion. Fu et al. [19] used the ensemble Kalman filter (EnKF) and simple biosphere model 
(SiB2) for soil moisture assimilation prediction to study the initial state values at different 
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Soil moisture is influenced by the properties of the soil itself (texture, composition,
permeability, organic content, etc.) [13–15] and by environmental factors (temperature,
precipitation, evaporation, etc.) [16,17]. Niu et al. [18] found that the GEP model based on
temperature, barometric pressure, humidity, wind speed, ground temperature, rainfall, and
initial temperature values as model inputs could better achieve soil moisture prediction.
Fu et al. [19] used the ensemble Kalman filter (EnKF) and simple biosphere model (SiB2) for
soil moisture assimilation prediction to study the initial state values at different assimilation
frequencies and rainfall on soil moisture prediction and found that soil moisture prediction
was influenced by precipitation during the prediction period. In response to the above
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characteristics of soil moisture, a hybrid prediction model BAG was proposed in this paper
combining linear and nonlinear characteristics of soil moisture, which uses the multiple
short time series prediction of block Hankel tensor ARIMA [20] (BHT-ARIMA) and gated
recurrent unit(GRU) [21], and is able to identify and process environmental factors affecting
soil moisture to improve the accuracy of prediction results. First of all, BAG analyzes the
collected time series data to grasp the time series characteristics of the soil moisture and,
after correlation analysis, selects multiple environmental factors related to them as inputs;
then, BHT-ARIMA is used to reveal the linear pattern of soil moisture data; finally, the
residual series of BHT-ARIMA were modeled and predicted by GRU, a neural network
with nonlinear characteristics, to obtain the nonlinear variation pattern of soil moisture.
The superposition of the two predicted results is the final predicted result of BAG.

2. Materials and Methods

This section describes the BAG proposed in this paper. Firstly, the dataset used in
this paper is introduced. Afterward, the main idea of BAG and the underlying principles
involved are described in detail. Finally, the experimental design is described.

2.1. Datasets

The data used in this study are the long-term positioning observation data of basic
ecological elements provided by the Ecological Positioning Station of Zhejiang Province,
including meteorological factors, soil moisture, and temperature. The study areas were
five regions in Zhejiang Province, and their locations (latitude and longitude) with their
climatic characteristics are given in Table 1. The soils in the five experimental areas were
red loam soils with high hematite content, the red color of iron and aluminum oxides, and
acidic reaction. Additionally, the clay grain content is very high, and the texture is sticky
and heavy, but the structural body formed by the iron oxide and alumina colloids results in
a relatively good infiltration of the soil and less severe water stagnation; its soil is highly
weathered and poor in plant nutrients.

Table 1. Experimental data information.

Dataset Position Climate

DataA 28◦54′~29◦29′ N, 118◦01′~118◦37′ E Subtropical monsoon climate

DataB 29◦55′–30◦15′ N, 121◦38′–122◦15′ E Oceanic monsoon climate in the south
margin of the north subtropical zone

DataC 29◦11′–30◦02′ N, 118◦20′–119◦20′ E Subtropical monsoon climate
DataD 28.49′~29.19′ N, 120.17′~120.47′ E Subtropical monsoon climate
DataE 30◦10′~30◦16′ N, 120◦4′~120◦10′ E Subtropical monsoon climate

The data in this study spanned from January 2010 to December 2010, and the data
collection device measured every hour and took daily average records, and a total number
of 1825 sets of samples were obtained from the five experimental areas. Each data set
included soil temperature, humidity, and meteorological data for one day. The data were
collected at a depth of 0~60 cm, and the corresponding sensors were buried at 5 cm, 20 cm,
40 cm, and 60 cm to collect them. The details are described as follows.

(1) Soil moisture variables include soil moisture at 5 cm, 20 cm, 40 cm, and 60 cm, where
soil moisture data is the volumetric water content of the soil at different depths, i.e.,
units.

(2) Other environmental variables refer to meteorological data and soil temperature data
at different depths, where meteorological data include rainfall, atmospheric temper-
ature, vegetation temperature, relative air humidity, wind speed, wind direction,
sunshine duration, daily evaporation, and solar radiation intensity. Soil temperature
data at different depths include soil temperature at 5 cm, 20 cm, 40 cm, and 60 cm.
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2.2. Problem Definition

Soil moisture prediction, which is based on input soil moisture time series data and
multiple environmental factor time series data, predicts the data for the next time point of
the soil moisture time series. The symbols are defined here as follows.

t: The length of the time series, i.e., the number of rows of input data.
m: The sum of soil moisture and the number of types of environmental factor data, i.e., the
number of columns of input data.
n: The sum of soil moisture and the number of types of environmental factor data actually
used, i.e., the number of columns for the preprocessed data.
S = {s1, s2, . . . , st}: The data of daily average soil moisture time series to be predicted for
the next data.
F = {{f1,1, f1,2, . . . , f1,t}, {f2,1, f2,2, . . . , f2,t}, . . . , {fn-1,1, fn-1,2, . . . , fn-1,t}, . . . , {fm-1,1, fm-1,2, . . . ,
fm-1,t}}: Denoted as the time series data of m-1 environmental factors.
X = {x1, x2, . . . , xt}, X ∈ Rn×t: The actual values after the analyzed and processed time
series data.
χ̂: The denotation of soil moisture and multiple related environmental factors data using a
multi-way delay embedding transform, i.e., the soil Hankel tensor.
Y = {y1, y2, . . . , yt}, Y ∈ Rn×t: The linear predicted result after BHT-ARIMA prediction.
γ̂: The core tensor of the soil used the Hankel tensor of the soil obtained in the previous
step and used Tucker decomposition to obtain a new identity.
R = {r1, r2, . . . , rt}, R ∈ Rn×t: The residual series of the actual value X and the linear part of
the predicted result Y after the analyzed and processed time series data.

Based on the definitions above, the problem to be resolved in this paper is designing a
time series prediction model; the use of a predicted value ˆst+1 for the next data st+1 of the
soil moisture time series can be obtained for the input data of soil moisture time series data
S and multiple environmental factor time series data F.

2.3. BAG Model
2.3.1. Main Idea

The variation in soil moisture is a complex nonlinear process which is greatly affected
by environmental factors such as temperature, rainfall, and evaporation. A single soil
moisture prediction model is only able to extract one of the linear or nonlinear relationships
in complex data, making the prediction results more inaccurate. Therefore, a time series pre-
diction model, BAG, is proposed in this paper, which combines the characteristics of linear
and nonlinear models to achieve the identification and processing of linear and nonlinear
relationships of soil moisture data in order to improve the accuracy of prediction results.

In the BAG proposed in this paper, block Hankel tensor ARIMA (BHT-ARIMA) and
the gated recurrent unit neural network (GRU) was selected to extract linear and nonlinear
characteristics of soil moisture data, respectively. Among the time series forecasting models,
ARIMA [22–24] is a very classical time series forecasting model with high prediction
accuracy and a good fit for the linear part of the data, but it can only predict data with time
series in a single feature. Therefore, BAG chose to incorporate BHT-ARIMA, which uses a
multiway delay embedding transform (MDT) along the time direction, which is capable of
converting multiple time series into a higher-order block Hankel tensor for the prediction of
multiple environmental factors and soil moisture. GRU enables the better prediction of time
series and nonlinear data but soil moisture time series data have both linear and nonlinear
characteristics, and optimal results are not obtained using a single nonlinear model GRU.
The BAG proposed in this paper uses a hybrid model for soil moisture prediction, and its
structure is shown in Figure 2.
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The main idea of the BAG model for soil moisture data which has strong nonlinear
characteristics consists of three components, which are as follows.

(1) The analysis and processing of time series data. The collected soil moisture data S
and multi-environmental factor data F were analyzed for normality and correlation
to comprehensively grasp the time series characteristics of soil moisture data. The
input time series data were then processed to obtain the normalized data x1, . . . , xt,
which reduces the problem of the large relative variability of the data due to the unit
differences of different sample data.

(2) The prediction of linear components of soil moisture. Linear features of soil moisture
time series were extracted using a BHT-ARIMA. BHT-ARIMA uses a multiway delay
embedding transform (MDT) [25,26] to represent soil moisture and multiple relevant
environmental factor data, such as a soil higher-order Hankel tensor χ̂1, . . . , χ̂t̂. Tucker
decomposition [27,28] can be applied to project the higher-order tensor onto the
compressed soil core tensor γ̂1, . . . ,γ̂t̂. At the same time, the generalized tensor. The
autoregressive integrated moving average (ARIMA) was explicitly used to predict a
continuous core tensor to obtain the prediction of the linear part yt+1, which improved
the intrinsic correlation between the soil moisture and several environmental factors.

(3) Prediction of nonlinear components of soil moisture. A GRU network was established
to model the residual series r1, . . . , rt between the predicted results y1, . . . , yt and
the actual values x1, . . . , xt of the BHT-ARIMA to obtain the nonlinear part of the
prediction result rt+1 to solve the nonlinear problem of soil moisture data.

2.3.2. Analysis and Processing of Time Series Data

The analysis and processing of time series data mainly include the following aspects.

(1) Data outlier correction. As the acquisition system for data usually has coarse error
data, outliers in the data need to be processed. Based on the fact that soil moisture
data are fixed interval time series data, the mean value of the data before and after
the time of the outliers is used to correct for outliers in the data and to maintain the
integrity of the data.
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(2) Data dimensionality reduction includes two steps the normality test and correlation
analysis. The correlation analysis of different data series was used to determine the
association between the data of each dimension, and the data with a strong correlation
was selected near subsequent processing. Among them, the larger the absolute value
of the correlation coefficient, the stronger the correlation. The closer the correlation
coefficient is to 1 or −1, the stronger the correlation is, and the closer the correlation
coefficient is to 0, the weaker the correlation is. In order to express the correlation
of the data, it is necessary to test the normality of the data and select corresponding
correlation evaluation indicators according to whether the data are normal or not.

(3) Data normalization. Because of the large range of relative variation in values between
soil moisture and other environmental factor data, direct input is not conducive to
model convergence, so the input data for soil moisture needs to be standardized.

In the above three aspects, a relatively general method was used for the first one, so
we do not introduce it in any more detail. The second one mainly included two steps: the
normality test and correlation analysis. They are introduced in the following part, along
with the third aspect, data normalization.

(1) Normality test

The test to determine whether the overall population follows a normal distribution
using observed data is called a normality test and is an important special goodness-of-fit
hypothesis test in statistical judgments. Common methods of testing the normality of data
are graphical, statistical, and descriptive methods. The statistical tests include the K-S test
(Kolmogorov–Smirnov test) and the S-W test (Shapiro–Wilk test), etc. The use of statistical
plots for normality analysis relies too much on the subjective judgment of the analyst and
is prone to biased results. Additionally, soil moisture data are usually small sample data.
Thus, the S-W test was chosen to analyze whether the soil data had normally distributed
qualities. By calculating the test statistic W, referencing a specific table of critical values for
the normality W test, and comparing their magnitudes, the hypothesis was accepted that
the overall population obeys the normal distribution if the conditions are met, and vice
versa, and Equation (1) is the expression of its test statistic W.

W =

(
∑n

i=1 αix(n)
)2

∑n
i=1(xi − x)2 (1)

where xi is the i-th sample of the data, α is the determined significance level, and the
corresponding coefficient αi according to the sample size of n.

(2) Correlation analysis

Correlation analysis refers to the analysis of two or more elements of variables that
have a correlation so as to measure the closeness of the correlation between two factors.
By eliminating some environmental factors that play a smaller role, it can reduce the
dimensionality of the soil moisture prediction model and save the time of model application,
and it allows the calculation of strongly correlated environmental factors to reduce crossover
and facilitate the experimental results. The correlation coefficient measures the degree
of agreement between two variables, and the more commonly used ones are the Pearson
correlation and Spearman correlation coefficient. Among them, the Pearson correlation
coefficient is used to determine the degree of linear correlation between two variables
and describe the closeness of the association between two fixed-distance variables. The
Spearman correlation coefficient is a non-parametric rank statistical parameter that is a
non-parametric measure of the statistical correlation between two variables. The Pearson
correlation coefficient is chosen if the data are continuous variables and conform to a normal
distribution, and the Spearman correlation coefficient is chosen otherwise. Equations (2) and (3)
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are the formulae for the Pearson correlation coefficient and Spearman correlation coefficient
of the x and y variables, respectively.

Pearson =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

(2)

Spearman = 1− 6 ∑n
i=1(xi − yi)

2

n(n2 − 1)
(3)

where x, y are the sample means of x, y, respectively, and n is the number of samples for
both x and y variables.

(3) Data normalization

Since the input data of soil moisture at different depths and other environmental
factors have a large range of relative variation in values with each other, direct input is
not conducive to the convergence of the model. To eliminate these effects, this paper
normalized the input data of the soil moisture, i.e., changed the distribution of the data
without changing the data attributes, and made the data conform to a distribution with
a mean of 0 and a variance of 1 by transformation so that the data were compared with
each other. The input data are formed into an input sequence separately, and the data are
normalized using z-score normalization: a method that normalizes the data based on the
mean and standard deviation of the original data. Normalizing the original value x of the
data to x′, and using the z-score, the transformation function (4) is shown below,

x′ =
x− µ

σ
(4)

where µ is the mean of all the sample data and σ is the standard deviation of all the
sample data.

2.3.3. Prediction of Linear Components of Soil Moisture

In BAG, BHT-ARIMA is used to extract linear features of soil moisture time series
and to mine the relationship between multiple environmental factors associated with
soil moisture. ARIMA is one of the popular and widely used linear models but requires
multiple predictions of soil moisture time series data on a case-by-case basis and does not
take into account the intrinsic relationships between relevant environmental factors. BHT-
ARIMA combines the analyzed and processed time series data incrementally broadened
into higher-order tensor with the help of the multi-way delay transform (MDT) technique
and combines the tensor decomposition with the classical time series forecasting model
ARIMA to achieve forecasting that is applicable to multiple time series data [29,30]. BHT-
ARIMA utilizes the low-rank structure of the block Hankel tensor in the embedding space
and is able to capture the intrinsic correlation of multiple environmental factors to improve
the prediction results. It mainly consists of the following steps.

(1) Model parameters determination

Before forecasting using BHT-ARIMA, the number of autoregressive order, differences,
and moving average order, i.e., (p, d, q), need to be determined, where p is the AR model
parameter, q is the MA model parameter, and d is the number of differences made to make
the time series data a stationary series.

Fitting BHT-ARIMA requires that the time series data of the response inputs are all
stationary series, so the remaining relevant environmental factors are tested according to
the requirement of judging stationarity. It is more accurate to apply statistical tests for the
stationarity of the time series using statistics in addition to judging it visually through
graphs. The augmented Dickey–Fuller test (ADF) is a test commonly used in statistical tests:
the original hypothesis is rejected when the obtained p-value is less than the significance
level of 0.05, and the original time series is considered stable, and when the p-value is less
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than or equal to the level of 0.99 and greater than 0.5, the original hypothesis is not rejected
and the time series is considered unstable. Therefore, the soil moisture data and the rest
of the environmental factors undergo stationarity judgment, and if it is unstable, the time
series is the first-order difference; that is, d = 1. Then, the ADF test is carried out, and a
significant p-value can be obtained to judge the stationarity until the input variable is in a
stable sequence.

The parameters of ARIMA (autocorrelation order p and moving average order q) were
estimated based on autocorrelation plots (ACF) and partial autocorrelation plots (PACF)
with the coefficient of certainty (R2), Akaike information criterion (AIC) [31], the Schwarz
criterion (SC) [32], the HQ information criterion (HQ), Durbin Watson test (DW), and
other information criterion value criteria to select the optimal model parameters for the
BHT-ARIMA prediction model. In the experimental part of this paper, AIC is selected
as the basis for determining the optimal model parameters. It is based on the concept of
entropy and can measure the complexity of the evaluated model and the goodness of this
model data. Among them, the model corresponding to the minimum AIC value is the
optimal choice. It is shown in Equation (5).

AIC = e
(

2k
T

)
∑T

t=1 e2
t

T
(5)

where e
(

2k
T

)
is the penalty factor, k is the number of sample parameters, and T is the

number of samples.

(2) BHT MDT. Soil moisture and multiple related environmental factors are transformed
into higher-order multidimensional data along the time dimension using a multi-way
delay embedding transform (MDT). The resulting higher-order multidimensional
tensor is called “Block Hankel Tensor (BHT)”. Equation (6) is the formula for the MDT
of time series data along the time dimension.

χ̂ = Hτ(X) = Hτ{x1, x2, . . . , xt} (6)

(3) Tucker decomposition. The obtained Hankel tensor χ̂1, . . . , χ̂t̂ of the soil block is
used to obtain a new feature, called the core tensor γ̂1, . . . , γ̂t̂, using the Tucker
decomposition [33], and the (p, d, q)-order classical ARIMA is extended to the tensor
form so that it can directly deal with multiple environmental factors and better capture
the correlation between the time series. Equation (7) is its main expression.

∆dγ̂t = ∆dχ̂t ×1 Û(1)t
· · · ×n Û(n)t

(7)

(4) ARIMA predictor. The tensor ARIMA was trained using the soil core tensor γ̂1,
. . . , γ̂t̂ to predict the new core tensor γ̂t̂+1, and then the predicted values yt+1 of all
soil moisture and environmental factors were obtained simultaneously by Tucker’s
inverse transform and MDT inverse transform, and the interrelationship between the
soil moisture and multiple environmental factors time series was used in the model
construction process to improve the prediction accuracy. Equation (8) is its expression.

∆dγ̂t̂+1 =
p

∑
i=1

αi∆dγ̂t̂−i −
q

∑
i=1

βi ε̂ t̂−i (8)

Here, t̂ = t− τ + 1, The soil Hankel tensor χ̂1, . . . ,χ̂t̂ is derived from the input soil
data X = {x1, x2, . . . , xt}. Using the soil block Hankel tensor, its order difference is calculated

to obtain
{

∆dχ̂t

}T̂

t=d
. By using the joint orthogonal factor matrix Û(n) to project ∆dχ̂t onto

the soil kernel tensor ∆dγ̂t. αi and βi is the coefficient of AR and MA, ε̂t−i is the random
error of past q observations.
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2.3.4. Prediction of Nonlinear Components of Soil Moisture

Soil moisture conditions are complex and variable, containing both linear and nonlin-
ear trends, and it is difficult to fully fit the prediction using only a single model. Therefore,
this paper selects the gated recurrent unit (GRU), which is more suitable for extracting the
nonlinear part of the data for the feature extraction of the nonlinear part.

GRU is a simplification of the LSTM neural network [34] and was also proposed to
solve problems such as long short-term memory and gradients in backpropagation for
processing and predicting sequential data. Compared with LSTM, GRU are simpler to
compute, easier to implement, have fewer parameters, and are less prone to overfitting.
Additionally, in terms of the number of iterations needed and convergence time GRU
are better.

The GRU network introduces two gate structures: the update gate and the reset
gate. The update gate is used to describe the degree of influence of the soil characteristic
information of the previous moment, and a larger threshold value indicates that the soil
characteristic information of the previous moment has more influence on the current
moment; the reset gate is used to control the degree of ignoring the soil characteristic
information of the previous moment, and a smaller threshold value indicates more ignoring
of the past information. Equations (9) and (10) represent the calculation formulae for the
update gate and reset gate, respectively.

zt = σ(Wz · [ht−1, Rt]) (9)

rt = σ(Wr · [ht−1, Rt]) (10)

After calculating the update gate zt and the reset gate rt, the new candidate hidden
state h̃t uses the reset gate to store the soil information related to the past. Finally, the
update gate is used to calculate ht, which retains the soil information of the current cell and
passes it to the next cell. The mapping relationship is shown in Equations (11) and (12).

h̃t = tan h(Wh · [rt ∗ ht−1, Rt]) (11)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (12)

Here, Rt is the soil error input data at the current moment; ht−1 is the hidden state
passed down from the previous moment; zt and rt denote the update gate and reset gate,
respectively; ht is the current suitable error output and h̃t−1 is the new candidate hidden
state. The tanh function is used to change the data to a value in the range [−1, 1]. Wz,
Wr, and Wh are the weight matrices of the update gate, reset gate, and candidate hidden
state, respectively.

The actual values of the input soil moisture time series data x1, . . . , xt are subtracted
from the predicted results y1, . . . , yt and measured by the linear part of BHT-ARIMA to
obtain the residual data r1, . . . , rt. The residual data r1, . . . , rt is the input data of GRU.
GRU training for nonlinear prediction is set up in three layers, as shown in Figure 3. The
first layer is a GRU layer, which sets the input and output dimensions and the parameter
return_sequences. If the return_sequences are false, the value of the hidden state for a
single time step is returned; if it’s true, the value of all hidden states is returned. The
Dropout, which is the random deactivation rate, is set to randomly discard some neural
nodes during the training process to prevent overfitting. The second layer is also a GRU
layer, where the input dimension is the output dimension of the previous layer, and the
values of return_sequences and the parameter Dropout are set. The third layer is the fully
connected dense layer, which maps the feature space calculated in the previous layer to
the sample label space to improve the robustness of the whole network. In the training
process of the model, the value of the loss function of the model is calculated to determine
whether the model meets the accuracy requirements. The mean square error (RMSprop) is
selected as our optimization algorithm. The smaller the loss is, the better the robustness
of the model. When the model meets the accuracy requirements, the GRU model with
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good robustness is selected for the final output after setting the model learning rate and
the number of iterations. If the model does not meet the accuracy requirement, the model
needs to be continuously corrected by error backward transfer update until the model
meets the prediction accuracy requirement.
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2.4. Design of Experiments
2.4.1. Software and Hardware Configuration

To evaluate the performance of BAG, it was implemented using the deep learning
framework PyTorch with the hardware and software configurations shown in Table 2.

Table 2. Software and hardware configuration of experiments.

Item Detail

CPU 11th Gen Intel® CoreTM i5-1135G7 @ 2.40 GHz
RAM 16 GB

Operating system 64-bit Windows 11
CUDA CUDA11.3

Data processing Python 3.6

2.4.2. Parameters of Experiments

The pre-processed time series data were processed and divided into a 90% training set
and a 10% test set. There are 365 × 5 data labels in the five data sets of dataA~dataE, and
364 data labels were selected for each data set, including 364 × 90% data for the training
set and 364 × 10% data for the test set. The optimal hyperparameters of the model were
selected using a grid search method during the experiments and are shown in Table 3.

Table 3. The optimal hyperparameters.

Parameter Value Meaning

taus [5,12] MDT tensorization
Rs [5,5] Tucker decomposition
K 10 Training iteration of BHT-ARIMA

GRU_D1 50 The first layer GRU input dimension
GRU_D2 40 The second layer GRU input dimension
Dropout 20% Random inactivation rate of neural nodes

Loss RMSprop Loss function of GRU
Optimizer Adam The optimizer algorithm of GRU

Learning rate 0.01 Controling the rate of parameter update
Batch-size 32 Batch size

epoch 100 Training iteration of GRU



Agriculture 2023, 13, 379 11 of 20

2.4.3. Evaluation Metrics

In this paper, the performance of BAG was evaluated using relative error (RE). The
relative error refers to the value obtained by multiplying the ratio of the absolute error
caused by the prediction and the predicted true value by 100% and is expressed as a
percentage. Generally speaking, the relative error better reflects the degree of confidence in
the measurement. The formula for the relative error is as follows.

RE = δ =
x− µ

µ
× 100% (13)

where x is the predicted value and µ is the true value.

2.4.4. Schemes of Experiments

The experiment in this paper consists of five parts, one of which is for the performance
of soil moisture prediction, three of which are about the influence factors of soil moisture
prediction, and the last part of which is ablation experiments.

(1) Soil moisture prediction. Using the time series data of DataA~DataE, BAG, and several
other prediction models such as Prophet [35], LSTM, DeepAR [36], XGBoost [37], and
DeepState [38] were used to conduct the soil moisture prediction comparison experi-
ments. For each prediction model, the average of the prediction results of five datasets
was calculated, and the performance of each model was evaluated accordingly.

(2) The effect of the input sequence length on prediction performance. In the process of
moisture monitoring and prediction, reasonable sampling intervals are very important
for data modeling. Therefore, DataA~DataE were selected to conduct comparisons
between the prediction and their actual measured values for three-time spans. The
data were sequentially divided according to continuous, every other day, and every
two days, and the resulting amounts of data were 365, 182, and 121, respectively,
which constitute the three sets of input data for BAG to predict the predicted results
at different depths for these three sets of data.

(3) The effect of the number of environmental factors on prediction performance. To
verify the effects of different environmental factors on BAG, environmental factors
within different correlation thresholds were selected for the comparative analysis of
DataA~DataE time series data based on the correlation analysis results.

(4) Correlation between soil depth and performance of prediction. BAG was used to
predict different depths of DataA~DataE to analyze the performance of the model at
different depths. A total of 364 data items were used for all five data to predict soil
moisture at different depths for the next time point.

(5) Ablation experiments. The ablation experiment is one of the key factors for assessing
the quality of the model. In this paper, we used DataA~DataE time series data to re-
duce the improvement features on BAG and verify the necessity of the corresponding
improvement features.

3. Results and Discussion

This section validates the BAG proposed in this paper. First, the data are analyzed
and processed. Then, BAG is compared with other prediction models. Finally, a series of
simulations and ablation experiments are performed for this model, and the experimental
results and analysis are conducted.

3.1. Data Analysis and Processing

Correlation analysis and normal distribution test were performed on the soil mois-
ture data and environmental factor data after error processing to fully grasp the serial
characteristics of DataA, DataB, DataC, DataD, and DataE.
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3.1.1. Normality Test

The Shapiro–Wilk test was performed on the 17 impact factors of the time series data to
check their significance. When the obtained p-value was less than 0.01, the null hypothesis
was rejected, and the sample data was considered to be from the normal distribution. On
the contrary, the null hypothesis was not rejected, and the sample data was not normally
distributed. Table 4 shows the results of the normality test for each environmental factor, it
can be obtained that the significance p-value for each environmental factor is less than 0.01,
the level presents significance, and the original hypothesis is rejected, so the time series
data does not satisfy the normal distribution. In Table 4 and other following tables, SM-5
cm means soil moisture at the depth of 5 cm, and ST-5 cm means soil temperature at the
depth of 5 cm.

Table 4. Results of normality test for environmental factors.

Median Average Standard Deviation Partial Degrees Kurtosis p-Value

SM-5 cm (%) 22.565 22.211 3.325 −0.459 −0.304 9.76 × 10−4

SM-20 cm (%) 13.295 13.288 1.971 0.291 0.969 9.87 × 10−4

SM-40 cm (%) 14.2 15.306 5.24 3.263 10.95 5.81 × 10−4

SM-60 cm (%) 17.515 19.72 6.159 1.75 1.902 7.26 × 10−4

ST-5 cm (◦C) 18.43 17.748 7.275 −0.09 −1.293 9.41 × 10−4

ST-20 cm (◦C) 18.305 17.565 6.629 −0.073 −1.316 9.38 × 10−4

ST-40 cm (◦C) 18.275 17.469 5.981 −0.067 −1.345 9.34 × 10−4

ST-60 cm (◦C) 18.185 17.608 5.41 −0.054 −1.367 9.32 × 10−4

Atmospheric temperature (◦C) 17.405 16.438 8.549 −0.193 −1.153 9.53 × 10−4

Rainfall (mm) 0.05 5.003 12.311 4.841 37.366 4.58 × 10−4

Wind Speed (m/s) 0.05 0.077 0.088 1.706 3.63 8.18 × 10−4

Wind direction (◦) 142.3 172.923 130.836 0.01 −1.726 8.48 × 10−4

Solar radiation intensity (kw/m2) 0.1 0.109 0.07 0.361 −0.959 9.48 × 10−4

Vegetation temperature (◦C) 18.695 17.641 9.543 −0.208 −1.011 9.64 × 10−4

Air Relative Humidity (%) 80.5 80.28 10.078 −0.581 0.576 9.7 × 10−4

Daylight hours (h) 2.73 2.918 2.693 0.219 −1.518 8.55 × 10−4

Daily evaporation (mm) 0.91 10.922 21.946 2.931 11.203 5.66 × 10−4

3.1.2. Correlation Analysis

In order to screen the key environmental impact factors, the correlation analysis of
soil moisture and environmental factors for the five datasets was conducted in this study.
From Section 3.1.1, DataA~DataE does not satisfy the normal distribution, so the Spearman
correlation coefficient was chosen. The results of the analysis are shown in Tables 5 and 6.
The correlation coefficients of the soil moisture at the depths of 5 cm, 20 cm, 40 cm, and 60
cm for the same environmental factor varied, but the deviation was small. Therefore, taking
the average value of the same environmental factor at different depths, it can be concluded
that the correlation between the soil moisture and soil temperature at the depths of 5 cm,
20 cm, 40 cm, and 60 cm, and atmospheric temperature, rainfall, solar radiation intensity,
vegetation temperature, air relative humidity and daylight hours are 0.874, 0.784, 0.899,
0.885, −0.323, −0.345, −0.369, −0.394, −0.314, 0.383, −0.341, −0.322, 0.344, and −0.328,
respectively. The value of the correlation between the above 14 environmental factors and
soil moisture is above 0.3, which means that these 14 environmental factors have a high
correlation with soil moisture. The correlations between soil moisture, rainfall, air relative
humidity, and soil moisture at the depths of 5 cm, 20 cm, 40 cm, and 60 cm were positive,
and when rainfall and air relative humidity became larger, soil moisture increased. The
correlation between the remaining environmental factors, such as soil temperature, solar
radiation intensity, and daylight hours at different depths and soil moisture was negative;
when the soil moisture increase, the other environmental factors became smaller and were
negatively correlated. Therefore, the 14 variables of soil moisture and its different depths,
such as soil temperature and humidity, atmospheric temperature, rainfall, solar radiation
intensity, vegetation temperature, relative air humidity, and daylight hours, were initially
determined as key influencing factors.
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Table 5. Spearman correlation coefficients of environmental factors (Part I).

SM-5 cm SM-20 cm SM-40 cm SM-60 cm ST-5 cm ST-20 cm ST-40 cm ST-60 cm

SM-5 cm 1 0.76 0.904 0.832 −0.345 −0.367 −0.394 −0.421
SM-20 cm 0.76 1 0.73 0.747 −0.437 −0.453 −0.465 −0.476
SM-40 cm 0.904 0.73 1 0.964 −0.273 −0.296 −0.322 −0.35
SM-60 cm
Average

0.832
0.874

0.647
0.784

0.965
0.899

1
0.885

−0.237
−0.323

−0.265
−0.345

−0.298
−0.369

−0.332
−0.394

Table 6. Spearman correlation coefficients of environmental factors (Part II).

Atmospheric
Temperature Rainfall Wind Speed Wind

Direction

Solar
Radiation
Intensity

Vegetation
Temperature

Air Relative
Humidity Daylight Hours Daily

Evaporation

SM-5 cm −0.345 0.497 −0.087 −0.07 −0.446 −0.362 0.468 −0.442 0.121
SM-20 cm −0.43 0.328 −0.213 −0.042 −0.395 −0.43 0.282 −0.304 −0.367
SM-40 cm −0.266 0.378 −0.096 −0.055 −0.303 −0.275 0.349 −0.316 0.076

SM-60
cmAverage

−0.218
−0.314

0.331
0.383

−0.091
−0.121

−0.058
−0.056

−0.222
−0.341

−0.223
−0.322

0.278
0.344

−0.253
−0.328

0.083
−0.021

3.2. Soil Moisture Prediction

A single dataset may have randomness, and in order to better explore the model,
five-time series data from DataA~DataE were predicted according to the steps of BAG.
First, the data were judged by the ADF test to determine whether the data was a stationary
series. Then, the autocorrelation order p and moving average order q were determined
according to ACF and PACF, and the optimal model was selected for prediction by AIC.
The (p,d,q) parameters of the five-time series data with different depths were determined,
and their AIC values are shown in Table 7. The determined model parameters and data
were substituted into BAG. Figure 4 shows the error comparison of the prediction results
of five prediction models, Prophet, LSTM, DeepAR, XGBoost, and DeepState, with the
model in this paper under the same dataset. Among them, ground truth refers to labels in
data samples that have been processed but not standardized. Table 8 shows the prediction
results of DataA in the five prediction models with the model in this paper, and the optimal
results are shown in bold.

Table 7. DataA~DataE parameters and AIC values.

DataA DataB DataC DataD DataE

SM-5 cm
(p,d,q) (1,1,1) (1,1,1) (0,1,2) (0,1,1) (1,1,1)
AIC −1117.463 −1250.764 −1050.055 −1164.823 −1356.41

SM-20 cm
(p,d,q) (1,1,1) (2,1,3) (1,1,1) (2,1,1) (1,1,1)
AIC −1459.317 −1452.934 −1171.537 −1086.214 −1507.423

SM-40 cm
(p,d,q) (2,1,1) (1,1,1) (1,1,1) (0,1,1) (0,1,1)
AIC −718.706 −1396.386 −1217.633 −1035.812 −1404.259

SM-60 cm
(p,d,q) (2,1,0) (1,1,1) (1,1,1) (2,1,1) (1,1,1)
AIC −648.05 −1537.424 −1285.633 −438.881 −1487.736
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have small sample characteristics, while the deep learning algorithm model requires a 
large amount of data training and a long training time. Therefore, in the case of small data, 
the relative error of LSTM is higher compared with BAG; DeepAR uses probabilistic pre-
diction to improve prediction accuracy, but it cannot capture information such as cycles 
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Table 8. Comparison of different prediction models of DataA.

Prophet LSTM DeepAR XGBoost DeepState BAG

SM-5 cm
Ground truth (%) 23.16 23.16 23.16 23.16 23.16 23.16

Prediction (%) 22.139 22.323 23.772 24.704 23.990 23.442
RE (%) −4.405 −3.61 2.642 6.666 3.583 1.218

SM-20 cm
Ground truth (%) 14.35 14.35 14.35 14.35 14.35 14.35

Prediction (%) 14.982 12.896 12.786 12.550 14.291 14.341
RE (%) 4.405 −10.13 −10.895 −12.541 −0.411 −0.060

SM-40 cm
Ground truth (%) 14.34 14.34 14.34 14.34 14.34 14.34

Prediction (%) 13.060 15.851 14.004 16.339 14.526 14.319
RE (%) −8.923 10.54 −2.342 13.937 1.298 −0.144

SM-60 cm
Ground truth (%) 17.57 17.57 17.57 17.57 17.57 17.57

Prediction (%) 16.939 20.074 17.668 19.877 17.536 17.470
RE (%) −3.590 14.25 0.556 13.128 −0.196 −0.569

Compared with Prophet, LSTM, DeepAR, and XGBoost prediction models, the relative
error of BAG was significantly reduced in all four depths, which shows that BAG has
obvious advantages for soil moisture prediction. Among them, Prophet can estimate each
time series well based on additive patterns, but the model is still the traditional modeling
idea of time series analysis, resulting in the difficulty of learning complex patterns during
model training and affecting the prediction accuracy. In terms of data volume, time series
have small sample characteristics, while the deep learning algorithm model requires a
large amount of data training and a long training time. Therefore, in the case of small
data, the relative error of LSTM is higher compared with BAG; DeepAR uses probabilistic
prediction to improve prediction accuracy, but it cannot capture information such as cycles
and seasons; XGBoost is fast and effective in dealing with large-scale datasets, but a suitable
deep learning model can obtain more accuracy. DeepState combines the state space model
with deep learning, which can learn similar patterns from a large number of sequences and
features, and also makes the model somewhat interpretable, but the accuracy in the short-
term prediction range is slightly lower than the model in this paper. BAG, in this paper,
satisfies BHT-ARIMA and can effectively compensate for the nonlinear characteristics of the
time series while making full use of the valid information of the data, thus outperforming
other methods in terms of prediction accuracy.
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3.3. Effect of Input Sequence Length on Prediction Performance

The information of soil moisture conditions at different depths for three-time spans
of continuous, every other day, and every two days of DataA~DataE time series data
were selected as inputs, i.e., the lengths of the time series data t were 364, 182, and 121,
respectively. A BAG model was established. The ADF test and ACF, and PACF were used
to determine the autocorrelation order p and moving average order q. The parameters
of the three-input series at different depths and their AIC values were obtained, and the
prediction results and their relative errors were obtained by building the model based on
the parameters. Figure 5 shows the error comparison of the prediction results of the BAG
prediction model in five datasets with different input sequence lengths, and Table 9 shows
the prediction results of DataA soil data in three input sequence lengths, and the optimal
results are shown in bold.
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Table 9. Prediction results of DataA at different depths with different input sequence lengths.

t = 364 t = 182 t = 121

SM-5 cm
Ground truth (%) 23.16 23.16 23.16

Prediction (%) 23.442 23.457 24.035
RE (%) 1.218 1.281 3.778

SM-20 cm
Ground truth (%) 14.35 14.35 14.35

Prediction (%) 14.341 14.389 15.218
RE (%) −0.060 0.275 6.052

SM-40 cm
Ground truth (%) 14.34 14.34 14.34

Prediction (%) 14.319 11.307 15.429
RE (%) −0.144 −21.148 7.591

SM-60 cm
Ground truth (%) 17.57 17.57 17.57

Prediction (%) 17.470 17.125 14.989
RE (%) −0.569 −2.532 −14.691

As can be seen from Figure 5 and Table 9, the relative error values of BAG at the same
depth tended to increase with the length of the input series, showing the uncertainty of the
prediction. In general, due to the time-sensitive nature of the soil moisture and the large
influence of environmental factors, the differences between predicted and measured soil
moisture values at different depths gradually increased with the increase in the number of
prediction interval days, which is in line with the development of short-term soil moisture
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prediction and its deviation was within the acceptable range. The predictions of the three
short-term time span basically reflect the real change trends.

3.4. Effect of the Number of Environmental Factors on Prediction Performance

To verify the influence of different environmental factors on BAG, the soil moisture and
environmental factor variables with correlation thresholds of 0, 0.3, and 0.7 or more were
selected as key influencing factors for prediction according to the Spearman correlation
analysis in Section 3.1.2, and the corresponding numbers of environmental factors n were
17, 14, and 4. The ADF test and ACF PACF were used to determine the autocorrelation
order p and the moving average order q, and the BAG was established according to the
parameters to obtain the prediction values and relative errors. Figure 6 shows the error
comparison for the prediction results of BAG for different numbers of environmental factors
on DataA~DataE time series data, and Table 10 shows the prediction results of DataA soil
data in three numbers of environmental factors, and the optimal results are shown in bold.
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Table 10. Prediction results of DataA at different depths with a different number of environmental factors.

n = 17 n = 14 n = 4

SM-5 cm
Ground truth (%) 23.16 23.16 23.16

Prediction (%) 23.018 23.442 23.259
RE (%) −0.611 1.218 0.427

SM-20 cm
Ground truth (%) 14.35 14.35 14.35

Prediction (%) 14.298 14.341 14.408
RE (%) −0.363 −0.060 0.402

SM-40 cm
Ground truth (%) 14.34 14.34 14.34

Prediction (%) 10.259 14.319 13.853
RE (%) −28.457 −0.144 −3.394

SM-60 cm
Ground truth (%) 17.57 17.57 17.57

Prediction (%) 14.697 17.470 17.114
RE (%) −16.352 −0.569 −2.595

As can be seen from Figure 6, the relative errors for the number of environmental
factors n = 17 are both greater than n = 14 and above n = 4. Therefore, eliminating the
environmental factors with weak correlations can improve the accuracy of BAG prediction.
However, as can be seen from Table 10, the prediction accuracy does not change accordingly
with the strength of correlation. When the number of environmental factors is n = 14, the
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prediction accuracy of the soil moisture at 20 cm, 40 cm, and 60 cm are better than that at
n = 4.

3.5. Correlation between Soil Depth and Performance of Prediction

The determined model parameters and DataA~DataE time series data were substituted
into BAG, and the predicted results obtained for different depths were compared with their
corresponding actual values and the relative errors, as shown in Table 11. Figure 7 takes
the average absolute value of the relative errors of the obtained prediction values.

Table 11. Prediction results of DataA~DataE at different depths.

DataA DataB DataC DataD DataE

SM-5 cm
Ground truth (%) 23.16 25.2 31.1 15.5 19.7

Prediction (%) 23.442 25.266 31.171 15.849 19.566
RE (%) 1.218 0.263 0.227 2.254 −0.679

SM-20 cm
Ground truth (%) 14.35 24.2 25.5 39 18.83

Prediction (%) 14.341 24.134 25.491 38.361 18.951
RE (%) −0.060 −0.274 −0.034 −1.638 0.642

SM-40 cm
Ground truth (%) 14.34 25.6 20 30 25.54

Prediction (%) 14.319 25.681 20.123 29.218 25.409
RE (%) −0.144 0.371 0.615 −2.608 −0.515

SM-60 cm
Ground truth (%) 17.57 20.2 20 42.5 32.85

Prediction (%) 17.470 20.281 20.013 42.273 32.943
RE (%) −0.569 0.402 0.067 −0.534 0.282
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As can be seen from Table 11, among the four different depths of soil moisture, the
relative errors of DataB, DataC, and DataE were low; none of them exceeded 1%, which
can better reflect soil moisture at different depths. The relative errors of DataD were
higher than the other four datasets, where the relative errors at the depths of 5 cm and
40 cm were 2.254% and 2.608%, and the predicted values showed a large difference. The
graph for the average absolute value of the relative error of the five datasets was made at
different depths (Figure 7) to explore the association of different depths on the prediction
performance. It can be seen that the average absolute values of the errors at different
depths were relatively stationary, and they were all below 1%. Therefore, for soil moisture
prediction, the difference in depth did not highly affect the prediction performance of BAG.

3.6. Ablation Experiments

To evaluate the effectiveness of each module of BAG, this paper used DataA~DataE
time series data and reduced the improvement components of this prediction model. The
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comparison results and relative errors between the model in this paper and the model with
the corresponding module removed are shown in Table 12. Among them, the individual
models are described as follows.

A: Only ARIMA prediction was retained without the block Hankel tensor decomposition
and prediction of nonlinear model GRU.
G: Only the nonlinear part, i.e., the GRU neural network, was retained, and the linear part
of BHT-ARIMA was not used for prediction.
BA: Only the linear part, i.e., the BHT-ARIMA forecasting model, was retained, and no
GRU nonlinear forecasts were used.
AG: The linear part of the ARIMA prediction and the nonlinear part of the GRU neural
network were retained without the block Hankel tensor decomposition.
BAG-Pre: The linear part of BHT-ARIMA prediction and the nonlinear part of GRU neural
network prediction were retained without the analysis and processing part of the data.
BAG: The model in this paper used analysis and processing of data, the linear part of
BHT-ARIMA forecasting, and the nonlinear part of GRU forecasting.

Table 12. Comparison results of different prediction models.

A G BA AG BAG-Pre BAG

SM-5 cm
Ground truth (%) 23.16 23.16 23.16 23.16 23.16 23.16

Prediction (%) 24.291 24.520 22.586 24.196 23.317 23.442
RE (%) 4.881 5.871 −2.478 4.473 3.268 1.218

SM-20 cm
Ground truth (%) 14.35 14.35 14.35 14.35 14.35 14.35

Prediction (%) 13.450 12.663 14.202 13.666 14.165 14.341
RE (%) −6.274 −11.758 −1.030 −4.768 −1.287 −0.060

SM-40 cm
Ground truth (%) 14.34 14.34 14.34 14.34 14.34 14.34

Prediction (%) 16.327 21.390 13.765 17.0 10.633 14.319
RE (%) 13.86 49.165 −4.010 18.547 −25.848 −0.144

SM-60 cm
Ground truth (%) 17.57 17.57 17.57 17.57 17.57 17.57

Prediction (%) 17.475 20.066 17.438 19.285 14.257 17.470
RE (%) −0.540 14.208 −0.752 9.760 −18.859 −0.569

Because BHT is an improvement on ARMIA, it is not possible to use only BHT without
ARMIA, so the two solutions of B and BG were not considered.

As can be seen from Table 12, the relative error of A, which only retains ARIMA pre-
diction, was greater than that of BA, indicating that the block Hankel tensor decomposition
on ARIMA could improve the prediction accuracy of the model; the relative error of G,
which only retained the nonlinear model, was greater than that of AG, indicating that for
data with nonlinear characteristics, the prediction of the model with linear and nonlinear
extraction is better than that of the single nonlinear model; BAG-pre, which does not use
the analysis and processing of data, had poorer accuracy compared with BAG in this paper,
indicating that the analysis and processing of data could improve the prediction accuracy.

The BAG proposed in this paper showed decreased accuracy after removing nonlinear
components, linear components, block Hankel tensor, and data processing and analysis,
respectively. Therefore, BAG addresses the nonlinear characteristics of soil moisture data
and the association of multiple environmental factors to achieve the improvement of soil
moisture prediction accuracy.

4. Conclusions

In this paper, a time series prediction model with a mixture of linear and nonlinear
models, BAG, was proposed for soil moisture prediction with nonlinear characteristics.
Compared with a single linear or nonlinear model, BAG has higher accuracy for soil
moisture prediction and can capture the intrinsic correlation between the environmental
factors associated with it, improving the prediction capability. In addition, the results of
experiments show that the performance of BAG may be influenced by the input sequence
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length and the number of environmental factors, so the input data need to be sufficient
from two aspects of the sequence length and the number of correlated environmental
factors in order to achieve the better prediction accuracy of soil moisture. However, soil
depth has little influence on the accuracy of soil moisture prediction. The result of ablation
experiments shows that the BAG model is better than all the other compared models, which
means that the BAG model is well designed to incorporate the nonlinear characteristics of
the soil moisture prediction. Although the performance of soil moisture prediction on the
nonlinear and multiple environmental factors correlation characteristics of soil moisture
data can be improved using BAG, the influence of seasonal and climatic factors on the
prediction results of soil moisture data has not been deeply analyzed and considered, which
will be further studied in our future work. Using the BAG model to predict other nonlinear
time series data, such as soil temperature, rainfall, and atmospheric temperature, also need
to be studied in the future.
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