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Abstract: In crop and livestock management within the framework of precision agriculture, scenarios
full of sensors and devices are deployed, involving the generation of a large volume of data. Some
solutions require rapid data exchange for action or anomaly detection. However, the administration
of this large amount of data, which in turn evolves over time, is highly complicated. Management
systems add long-time delays to the spatio-temporal data injection and gathering. This paper
proposes a novel spatio-temporal semantic data model for agriculture. To validate the model,
data from real livestock and crop scenarios, retrieved from the AFarCloud smart farming platform,
are modeled according to the proposal. Time-series Database (TSDB) engine InfluxDB is used to
evaluate the model against data management. In addition, an architecture for the management of
spatio-temporal semantic agricultural data in real-time is proposed. This architecture results in the
DAM&DQ system responsible for data management as semantic middleware on the AFarCloud
platform. The approach of this proposal is in line with the EU data-driven strategy.

Keywords: precision agriculture; real-time systems; data engineering; middleware; database systems;
spatio-temporal databases (TSDB); big data; Internet of Things (IoT)

1. Introduction

The agricultural sector is being driven by innovation and scientific research. Among the
projects developed in the field of farming and livestock management, the inclusion of nu-
merous solutions in the IoT framework stands out. In innovation projects, monitoring
and decision-making systems, process automation, and even analysis or planning tools
are implemented, among others. The deployment of new technological solutions in the
agricultural sector aims to meet the Sustainable Development Goals (SDG) [1] and animal
welfare [2]. With this aim, the Food and Agricultural Organization [3] and the Interna-
tional Fund for Agricultural Development (IFAD) [4] arise to promote research, investment,
and sustainability in agriculture.

Since 2015, the number of people suffering from hunger has increased, reaching
a percentage of almost 9% of the world’s population. If the current trend continues,
the Zero Hunger Goal [5] will not be achieved by 2030. Targets 2.3 and 2.a of the Zero
Hunger goal aim to double agricultural productivity and increase agricultural research.
To achieve this, precision agriculture solutions can offer increased productivity and sustain-
able food production.

In the field of farming, the deployment of sensors allows continuous monitoring of
the state of crops. Some actuators allow the automation of processes, as in the case of
intelligent greenhouses [6]. Data collection and post-processing allow inclusion in the flow
of decision-making algorithms and artificial intelligence (AI) [7,8] to recognize the best stage
for harvesting, or the different stages of irrigation and drying of crops. In addition, these
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scenarios include different types of robots, autonomous and semi-autonomous vehicles
(such as tractors), as well as unmanned aerial vehicles (UAVs). For monitoring, mission
management systems are implemented for these devices or vehicles. Missions enable the
automation of tasks such as harvesting, crop irrigation, or data collection in scenarios with
transmission difficulties.

In the field of livestock management, the installation of devices, such as collars,
on cattle allows a large amount of information to be extracted. In many fields, cattle
movement is restricted by delimiting plots of land or even by electrical stimulation. These
types of techniques do not allow for precise control of the animal and cause discomfort to
the animal itself. However, equipping cattle with devices in the form of collars allows them
to be constantly monitored. Some of the developments and research on cattle collars are
presented in [9,10].

The use of collars provides geolocation, temperature, acceleration, and certain semantic
data on cow identification. Geolocation makes it possible to extract a large amount of
information, and tracking applications can be developed. It allows for observing whether
an animal has been lost or has wandered away from the group. It is possible to observe the
route described or the geographical conditions sought by the herd according to the annual
season. In addition, thanks to sensors such as temperature, the animal’s state of health
can be monitored. An accelerometer will make it possible to detect sudden movements
repeated with a certain frequency in the animal’s head, which offers the detection of stress
or discomfort of the animal.

However, these scenarios present a common problem: collecting and analyzing huge
data volumes. It implies high delays and the need for computationally powerful equipment.
Real-time data gathering and injection becomes a complex scenario to achieve.

When analyzing the factors that characterize data in precision agriculture, working
with customers, devices, sensors, and even vehicles or robots, almost all these data can be
characterized according to three fundamental dimensions: spatial, temporal, and semantic.
To characterize a datum and extract its meaning, or aggregate data and generate high-level
knowledge, three fundamental questions are asked: When were the data taken? Where
were the data taken? What are the semantics of the data?

As in precision agriculture, spatio-temporal data management has become one of the
fundamentals in many growing technological fields such as the Internet of Things (IoT) or
Big Data, because the raw products of the 21st century are data. There are many appliances
for temporal, geopositioning, and semantic information stored in databases. It should be
highlighted that the necessity of managing large amounts of data in a real-time environment
is one of the biggest challenges of technology nowadays. Different open-source and market
systems provide features to manage time series or even APIs with different methods for
geopositioning of measurements or stored documents.

The collection of huge volumes of data by all kinds of systems developed in precision
agriculture or even industry and technological sectors has reached its peak. It is due to
the development of multiple high-precision sensors and the rapid data transmission with
technologies such as four and five-generation networks, or a variety of lightweight or long-
range protocols such as MQTT, LoRa, Zigbee, etc. However, the goal of this uncontrolled
data collection is the generation of knowledge or wisdom from such raw data.

One of the main challenges of this environment is the reduction in processing times,
delivery latency between components of the distributed system, information management
in the repositories, and the availability of the device itself to collect, send information,
and receive possible orders in real-time. However, when analyzing each of the weak points,
a common element is detected, the repositories, and their management through semantic
middleware architectures, APIs, etc. In addition, the management of repositories together
with their respective data extraction and injection operations generate one of the largest
latency additions in the communication chains between components and platforms of an
IoT system for precision agriculture [11–14]. This impedes the implementation of solutions
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that require real-time data, such as herding livestock using UAVs or Robots, or acting via
mobile devices or actuators when detecting anomalous observations or alarms.

This article proposes a model for the management of precision agriculture data. The ob-
jective is to provide injection and retrieval of information in real-time, with the least possible
use of resources, enabling the management of large volumes of data. Spatial, temporal,
and semantic dimensions are defined for the precise characterization of data through the
model. The characteristics of one or more of the defined dimensions are studied, as well
as different loading and configuration situations. This allows the selection of the most
appropriate techniques for data analysis and retrieval, reducing delays, and allowing data
characterization according to the three defined dimensions. The proposal is carried out in a
real environment, with data extracted from the AFarCloud project. This article includes
a validation of the proposed Agricultural Data Model, through the InfluxDB engine [15],
oriented to time series management.

Agricultural diversification is based on the evaluation of weather and land conditions
to study the adaptability of new crops. Thanks to the information collected by sensors, it
is possible to estimate the profitability and yield of a new crop under certain conditions.
The proposed spatio-temporal semantic model and the data management architecture
resulting from this paper are key elements for an accurate assessment of the physiolog-
ical, environmental, and yield conditions of a given land. Thanks to the management
of historical and real-time updated data, the proposal offers a solution adaptable to any
farm, allowing to evaluate the precise moment and the type of crop that can be grown on a
specific plot, enabling agricultural diversification.

Due to the accurate characterization offered by the proposed model, it is possible to
collect the growth and yield history of a specific crop. The spatial and temporal values
of pH, humidity, soil temperature, leaf color, or stem thickness of a given crop allow for
estimation of its adaptability. Thus, the proposed model allows us to determine if a specific
crop can be harvested in other farms or plots, supporting agricultural diversification.

There are several similarities between the data generated by devices and sensors
deployed in different IoT application domains. The spatio-temporal nature of the data,
the use of a multitude of devices with low computational resources, the real-time operating
requirements, and the needs presented by data management architectures in the industrial,
healthcare, and energy sectors, in smart cities, smart homes, and agriculture represent com-
mon characteristics [16]. Therefore, the spatio-temporal semantic model and architecture
proposed in this paper can be easily adapted to any other IoT environment. The description
of measurements, devices, and state vectors enables its use for any environment described
by the use of sensors and devices, with minimal development effort.

Section 2 presents some of the most innovative research and technological solutions in
precision agriculture. It also shows how the collection of large datasets is one of the common
agents in this framework. Section 3 describes the proposed data model, the syntax and
structure of the data, and the query functions. The experimental framework is described in
Section 4, as well as the equipment used and the evaluation of the model against the defined
indicators. Section 5 presents the results obtained from the proposal and a data management
system resulting from the implementation of the proposed model, structuring, and query
functions. Finally, Section 6 presents the conclusions drawn from the results of the work.

2. Related Work

Agriculture plays an important role in the global economy and sustainability. Due to
the need to increase food production for a growing population, there has been a focus on
improving, automating, and increasing livestock and crop management activity. This has
resulted in a negative impact on the environment. However, smart farming technologies
aim to optimize productivity by reducing costs and waste production, minimizing the
impact on crops and livestock, and improving their quality.

There is a huge variety of sensors and types of measurements captured in a precision
agriculture scenario. In the book “Sensing Approaches for Precision Agriculture” [17],
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a wide variety of sensors currently on the market and even under research or development
are presented. Among the sensors presented are those with capabilities for soil sensing, crop
health, vigor, and disease detection, and even detection from unmanned aerial vehicles.

There are interesting proposals in the literature that, based on sensor data, can optimize
efforts and resources. In [18], a system capable of optimizing water consumption in crop
irrigation is proposed, thanks to the decision making generated by a machine learning
algorithm (KNN), nourished with a specific ontology and the values generated by humidity,
temperature, and light sensors.

In the field of precision crop and livestock farming, some technological and scientific
solutions can be found, described in [19]. Applications presented include the use of devices
to monitor livestock and their geoposition tracking with GPS sensors. At the same time,
machine learning and artificial intelligence solutions for detecting animal discomfort have
been exposed to reduce mortality and increase the welfare of livestock. In terms of crop
management, some systems based on the use of UAVs or robots for crop fertilization are
presented. In addition, certain automation systems based on monitoring using sensors and
the installation of actuators governed by artificial intelligence systems are also presented.

There are a variety of specific solutions for livestock monitoring and surveillance.
One of the most striking solutions is the use of multi-sensor collars fitted around the neck
of livestock. This solution allows individual monitoring of the animal and the collection
of multiple data on its activity. A specific solution is described in [20], which together
with a cloud-based software environment can manage livestock data and alert the farmer
proactively. In the study, the importance of real-time data collection through collars,
subsequent extraction, and processing of the data is exposed.

Through the measurement of crop data by sensors, numerous activities are developed
for crop harvesting. Examples include sorting and counting fruits or monitoring the health
status of plants, including the detection of weeds, insects, and diseases. In [21], some
studies of different agricultural activities framed in such harvesting solutions are reviewed.
In addition, some of the research on vehicle and robot guidance systems for the automation
of harvesting tasks in agriculture is presented.

Pesticide spraying is used to prevent crop diseases and pests, and is one of the main
causes of a reduction in productivity. However, the manual spraying of these chemicals
presents a risk to humans, such as through the contraction of diseases. This is why some
precision farming solutions propose automating such tasks. In [22], the application of
UAVs for crop monitoring and pesticide spraying is reviewed. In this way, direct human
contact is avoided. However, for autonomous control of UAVs by a management system or
platform, real-time data exchange will be necessary.

Precision agriculture presents an environment rich in spatial and temporal data. To cor-
rectly extract information from the spatio-temporal data generated by sensors deployed in
crops and livestock, prior processing is necessary to make management decisions. The open-
source GeoFIS software (version 1.2), designed to cover the entire process, from spatial data
to spatial information and decision making, is presented in [23]. The experiment is applied
to three contrasting crops, bananas, wheat, and vineyards. The article evaluates GeoFIS
software together with its integrated algorithms to address the needs of farmers, advisors,
or spatial analysts when dealing with precision agriculture data. The GeoFIS framework fo-
cuses on the analysis and management of spatial data, offering decision support. However,
unlike the data model proposed in this article, GeoFIS lacks the temporal and semantic
characterization and management inherent in the nature of agricultural data.

Modeling and management of a large amount of spatio-temporal data are some
of the main goals in research and development due to the increasing implementation
and use of devices, sensors, and IoT terminals. Yongjiun Ren et al. in [24] present a
novel secure storage mechanism for large amounts of spatio-temporal data. However,
the implementation of a blockchain-based mechanism to guarantee the integrity and
security of spatio-temporal data storage requires high computational capabilities, and
makes its implementation impossible for real-time management scenarios.
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A collaborative platform based on linked data and machine principles for the viti-
culture domain is presented in [25]. This proposal includes the automatic enrichment
of metadata and services, with detailed workflow and user participation. The platform
aims to improve smart viticulture/agriculture services, and their efficient management,
involving all stakeholders.

Irya Wisnubhadra et al. in [26] present an open spatio-temporal data warehouse
for agriculture. This new concept aims to fill the gap in spatial and temporal attributes
in open agricultural data scenarios that reside in sources such as Linked Open Data,
Linked Open Statistical Data, and Open Government Data. The spatio-temporal data
warehouse is implemented based on MobilityDB, an extension of Postgresql. The offered
data model, based on RDF syntax (triples), could be extended to consider data extracted by
devices in the context of precision agriculture. This open data warehousing approach is
oriented to the analysis of agricultural production, whose precision of measurement of the
temporal dimension is focused on the date. Furthermore, the response time offered by the
queries presented in the warehouse evaluation exceeds 12 s, so the data modeling and the
warehouse presented do not offer a valid response for real-time scenarios.

The management of large spatio-temporal datasets in real-time is increasingly required
in different sectors. Atsushi Isomura et al. present a novel technology for spatio-temporal
data management called Axispot [27], applied to obstacle detection and lane-specific
congestion in the automotive domain. The paper describes the need to store spatio-temporal
data sent simultaneously by a large number of moving objects. The study presents spatial
data search and aggregation capabilities by reducing the complexity of polygonal shape
lines to deal with data management in a real-time environment. The proposed technology
does not consider the height or altitude dimension, but the authors consider it as an
objective for future study. The orientation of the proposal of this article towards the
automotive world, and the high computational capabilities offered by the agents involved,
make its application in an agricultural scenario difficult.

Studies on the management of large spatio-temporal datasets offer different ap-
proaches to improve performance. Some approaches include proposals such as that of Dong
Wang et al. who propose an extension of the SPARQL query language with spatio-temporal
assertions for RDF data collection [28], plus a corresponding index and query algorithm.
An alternative approach is the generation of new spatio-temporal data indexing engines,
such as the spatio-temporal data engine called JUST, designed to handle large amounts of
data with a query language similar to SQL, which is presented in [29].

The application of spatio-temporal semantic data management systems in precision
agriculture still has a long way to go in terms of research and improvement. However,
in the literature, there are already some systems, such as SEMAP, presented by Henning
Deeken et al. [30], mainly developed for spatio-semantic management for robot plan-
ning, which later, in [31,32], was successfully applied to the precision farming domain.
The SEMAP framework is characterized by a powerful spatial description of the agents and
the environment, offering 2D and 3D representations. However, this complex characteriza-
tion is not necessary for most use cases in agriculture. Moreover, as the authors argue in the
article, the temporal dimension is a missing piece in the system. In contrast, in this paper,
a data model specifically designed for precision agriculture is proposed and validated
against real data, captured by devices and sensors deployed on farms. The proposed data
model reduces the complexity in spatial characterization offered by the SEMAP framework,
which makes real-time management impossible, and adds the temporal and semantic
dimension for the complete characterization and management of agricultural data.

Most precision agriculture solutions are based on data retribution through various
types of sensors, devices, vehicles, or robots. To enable interaction between devices, or-
chestration of tasks, or provide an agile response from monitoring or supervisory systems,
data must be managed in a real-time environment. Numerous approaches to the descrip-
tion of ontologies and agricultural models have been proposed in recent decades, which
prioritize the semantic power of data. A current example is the Agricultural Information
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Model (AIM) [33] based on the SOSA (Sensor, Observation, Sample, and Actuator) [34]
and SSN (Semantic Sensor Network) [35,36] ontologies. However, these approaches are
characterized by complex syntax, hampering management in real-time and generation and
delivery by devices with limited resources. Most of the sensors and devices deployed in
agricultural scenarios have low computational power and resources; in some scenarios,
availability and connectivity constitute a problem. The model proposed in this paper offers
a simple and light syntax that enables its generation by sensors and devices with lower
computational power and resources, without sacrificing the power of spatial, temporal,
and semantic characterization of the data.

Thanks to the implementation of numerous smart environments, IoT, and monitoring
projects, hundreds of repositories with large volumes of data have been nurtured. In turn,
data present a much more accurate characterization, adding, to the paradigm, the spatial
and temporal dimensions as generic characteristics in data.

Relational databases (SQLs) are known for their high flexibility, ease of use, and matu-
rity of the technology itself. However, relational databases are not particularly known for
their scalability and ability to handle large volumes of data, which drives the creation of
non-relational (NoSQL) databases. In addition, the data entered by IoT systems, the inter-
connection of devices, and the exploitation of data are characterized by their time-series
nature. In [37], a study is oriented to time series databases (TSDBs) where InfluxDB, Kdb+,
Graphite, Prometheus, and RRDtool are exposed.

For the spatio-temporal semantic agricultural data model proposed in this article,
InfluxDB has been chosen as the NoSQL database engine for validation in the manage-
ment system environment. However, there are multiple open-source solutions for the
management of non-relational time series oriented databases. A comparison of several
open-source TSDBs is presented in [38]. Among the solutions compared are InfluxDB,
Graphite, RRDTool, Prometheus, OpenTSDB, and TimescaleDB. Through the definition of a
set of quantitative and qualitative attributes with different scales and units of measurement,
it is intended to select or classify the different TSDBs selected in the study. To solve the
analysis, evaluation, and selection of the TSDBs, a multi-attribute TSDB maturity model
is proposed, consisting of 10 quantitative and 8 qualitative attributes. As a result of the
analysis of the different rankings defined during the experimentation, the article concludes
with InfluxDB as the leading solution among the TSDBs analyzed.

This paper proposes a novel spatio-temporal semantic agricultural data model and
management architecture that allow real-time performance. The proposed model enables
data generation by devices with low computational resources deployed in the field, with-
out sacrificing the power of characterization under the three defined dimensions. In Table 1,
a comparison between the most relevant proposals related to our work is presented, based
on the key features that our proposal presents: (i) big spatio-temporal (ST) data manage-
ment, (ii) real-time operation, (iii) simple syntax, (iv) low use of computational resources by
the data management architecture and the repository, (v) specific application and design for
agriculture, and (vi) adaptability to other domains. We consider that our proposal can be
applied to the contributions exposed in the literature, completing the shortcomings exposed
by them in the specific validation scenarios. For example, to fill the gap in the management
of the temporal dimension exposed in [32], and enable real-time data management, or to
support data generation by low-resource devices and enable real-time management of [33].

Table 1. A comparison between the most relevant related proposals.

Proposal
Ref. #

Authors Big ST
Data Man-
agement

Real-Time
Operation

Simple
Syntax

Low
Compu-
tational
Resources

Agricultural
Applica-
tion

Adaptable
to New
Domains

[23] Leroux et al. N N N N Y N

[24] Ren et al. Y N N/A N N Y

[26] Wisnubhadra et al. Y N/A N N/A Y N/A
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Table 1. Cont.

Proposal
Ref. #

Authors Big ST
Data Man-
agement

Real-Time
Operation

Simple
Syntax

Low
Compu-
tational
Resources

Agricultural
Applica-
tion

Adaptable
to New
Domains

[27] Isomura et al. Y Y N/A N N Y

[28] Wang et al. Y N N N/A N Y

[29] Ruiyuan
Li et al.

Y Y N/A Y N Y

[30] Deeken et al. N Y N N N Y

[32] Deeken et al. N Y N N Y Y

[33] Palma et al. Y N N Y Y Y

[34] Janowicz et al. Y N N Y N Y

[35] Compton et al. N N/A N Y N Y

Our proposal Y Y Y Y Y Y

3. Spatio-Temporal Semantic Data Model for Agriculture

Most innovative technological solutions for precision agriculture are driven by the
IoT and the collection of information through the deployment of a multitude of devices
in the field. These devices are divided into two main groups: (i) static devices and
(ii) mobile devices.

Implementing monitoring, decision support, or task automation solutions is based on
data collected in the field. An accurate characterization of the data collected by devices and
sensors is essential. Repositories and data management systems constitute the heart or cor-
nerstone of architecture and must guarantee availability, efficiency, and high performance.

Due to the lack of data model standards for precision agriculture and the heterogeneity
of data captured by devices, establishing a correct characterization and modeling of data
in precision agriculture is a complex but essential task. The generation of large volumes
of data by agricultural devices and sensors results in an increase in the space required
for storage, increasing digitization footprint [39]. The design of a lightweight syntax and
efficient structuring reduces the cost of storage and increases the efficiency of management.
Therefore, the design of data models for precision agriculture presents a common problem:

1. Defining common dimensions in data characterization empowering semantic infor-
mation.

2. Lightweight syntax design in modelling for transmission, enabling generation and
delivery for devices with limited resources.

3. Data modelling and structuring to reduce processing times and increase performance.
4. Design of data queries directly linked to the characterized dimensions of data, allow-

ing real-time gathering.

In this paper, a novel data model for agriculture is proposed which aims to address
this problem. The interest of this proposal is particularly encouraged by the European data
strategy [40], which aims to turn Europe into a leader in the data-driven society.

3.1. Data Model Definition

Precision agriculture is characterized by fully evolving scenarios. Observations cap-
tured by on-farm devices present three main dimensions, common in all types of measure-
ment: (i) temporal evolution of conditions, where observations are associated with a time
stamp; (ii) geopositioning stamp, which presents a static or dynamical nature, depending
on the type of device performing the capture; (iii) semantic characterization of data and its
relationships with devices or the environment.

The temporal dimension is of vital importance in the structuring of data in agricul-
tural IoT repositories, so the proposal focuses on non-relational TSDBs oriented modelling.
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NoSQL databases offer greater versatility and performance in terms of data volume scala-
bility compared to traditional SQL databases. TSDBs consider the time stamp of the data
directly as the index for indexing, making the gathering, aggregation, and sorting of time
series much faster and more efficient. Writes on frozen (disk-compressed) shards (A shard
is a horizontal partition of data in a database or search engine; each shard remains on a
separate instance of the database server to spread the load) of historical data will have
longer delays. However, this is anomalous in IoT scenarios for agriculture, where writes
are performed at the current time instant.

Due to the different characteristics presented by the devices in an agricultural scenario,
a subdivision of measurements into three main sets is proposed: (Dataset-1) observations
captured by the devices, (Dataset-2) information collected by collars installed on the neck
of livestock, and (Dataset-3) information from the state vector of vehicles.

(Dataset-1) The set of observations will contain all those measurements captured by
sensors of devices deployed on the field, on robots, on autonomous or semi-autonomous
vehicles, or Unmanned Aerial Vehicles (UAVs).

(Dataset-2) The collar set will contain all the information extracted by sensors embed-
ded in collars fitted on the neck of the cattle. This includes information on temperature,
accelerometers, or anomaly detection.

(Dataset-3) The set of state vectors will include information about the battery, the in-
clination, and of course, the geoposition of vehicles. This information is especially useful
when solutions integrate the use of UAVs.

In the definition of the model for a database, there are two types of attributes, “Tags”
and “Fields”. It must be considered that the attributes defined as ”tags” will be stored in
the memory of the server until its disappearance from the current shard. On the contrary,
the information of attributes defined as Fields will be stored directly on the disk. In this
way, queries whose predicate includes filters on attributes defined as Tags will be much
faster, as they access memory, as opposed to disk access for Fields. For the correct definition
of the type of attribute, two factors must be addressed: (i) The frequency of use for the
attribute in the query predicate. (ii) The cardinality presented by the attribute.

For instance, being a spatio-temporal semantic model, it is understandable to think
that all those attributes that present spatial information should be defined as Tags, and their
value should be stored in memory (will be subject to frequent consultation). However, as it
is an attribute that presents a high variability in its content, and therefore a high cardinality,
this decision would lead to an exponential use of memory and resources, even blocking
the system.

Figure 1 shows the attribute definition of the proposed model for the set of observations
captured by devices (Dataset-1).

IoT devices have limited resources and low computational power, which limits the
generation of data with complex syntaxes, such as those in the literature that work with
JSON-LD or Turtle (TTL) for RDF graphs. Therefore, for the proposed data model, the JSON
syntax is chosen for data modelling, which is much lighter for devices.

The set of JSON schemas that defines the spatio-temporal semantic data model is
given in [41]. This approach allows for more efficient and lightweight data management,
without sacrificing the full characterization of measurements captured by devices under the
spatial, temporal, and semantic dimensions. In turn, the modeling of sensor data embedded
in collared devices adds livestock management to the paradigm, without the need to use
external models.

The model includes schemas for simplified data generation. In this way, the generation
and delivery of information by devices with limited resources are enabled. Semantic
information about the device must be collected in registry systems, so that the message can
be completed in the data management system upon reception, facilitating the transmission
from these devices.
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Figure 1. Data model of Observations.

3.2. Performance Indicators

The following performance indicators are described as part of the presented spatio-
temporal semantic model:

1. Availability (Ind-I).
2. Resources Consumption (Ind-II). Memory, disk, and server CPU consumption.
3. Response time (Ind-III).
4. Scalability (Ind-IV).

For validation, each of the three datasets defined in the model will be fed with different
volumes and structuring in tables, offering multiple experimentation scenarios. In this
way, the model will be evaluated under a complete experimentation scenario, taking into
account each of the defined indicators.

3.3. Data Modeling for Generation and Delivery

This section describes the modeling of information from different agricultural devices,
for subsequent submission and injection into the repository. The information modeled
by the schemas for each dataset against spatial, temporal, and semantic dimensions is
represented in Figure 2.

Figure 2. Information associated with each dimension in the modeling schemas.



Agriculture 2023, 13, 360 10 of 28

The model includes three types of schema for modeling the (Dataset-1) set of obser-
vations captured by a device (and their simplified versions). (i) The first schema models
the observation captured by one sensor or device. (ii) The second schema models the
information for several observations captured by a single sensor or device. (iii) The third
schema models the information for several observations captured by a device with several
sensors installed. An example of modelling a message on the set of observations captured
by several sensors installed in a single device (iii) is given below (Listing 1):

Listing 1. Observations captured by several sensors installed in a single device.

1 {
2 "resourceId": "urn:stsdb:AS01:environmentalObservations:

UPM:soil:KotipeltoFarmWeatherStation",
3 "location": {
4 "latitude": 64.05029,
5 "longitude": 24.72468,
6 "altitude": 450.75
7 },
8 "observations": [
9 {

10 "observedProperty": "wind_speed",
11 "resultTime": 1666453901,
12 "result": {
13 "value": 3.2,
14 "uom": "http://qudt.org/vocab/unit/M-PER -SEC"
15 }
16 },
17 {
18 "observedProperty": "wind_direction",
19 "resultTime": 1666453901,
20 "result": {
21 "value": 295,
22 "uom": "http://qudt.org/vocab/unit/DEG"
23 }
24 },
25 {
26 "observedProperty": "solar_radiation",
27 "resultTime": 1666453901,
28 "result": {
29 "value": 308.96,
30 "uom": "http://qudt.org/vocab/unit/W-PER -M2"
31 }
32 }
33 ],
34 "sequenceNumber": 7324
35 }

In real-life scenarios, connectivity is not always available to send the measurements
captured by the sensors embedded in the collar fitted on the cattle neck (Dataset-2). Nor-
mally, these measurements are sent through a gateway. In the proposed model, two types
of schemas are defined for generating and injecting information captured by the collars:
(i) The first schema models the information captured by the collar sensors in a single instant
of time. (ii) The second schema models the information captured by the collar sensors in
several instants of time (accumulated information).

An example of the information collected by the sensors installed in the cattle collar in
a single instant of time (i) is shown bellow (Listing 2):
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Listing 2. Observations captured by sensors on a collar.

1 {
2 "collar": {
3 "resourceId": "7F4F9",
4 "location": {
5 "latitude": 40.698695354,
6 "longitude": -4.532722972,
7 "altitude": 2.10789
8 },
9 "resultTime": 1666453135,

10 "resourceAlarm": false,
11 "anomalies": {
12 "locationAnomaly": false,
13 "temperatureAnomaly": false,
14 "distanceAnomaly": false,
15 "activityAnomaly": false,
16 "positionAnomaly": false
17 },
18 "acceleration": {
19 "accX": 0.2331,
20 "accY": 0.898,
21 "accZ": 0.998
22 },
23 "temperature": 22.5
24 },
25 "sequenceNumber": 903
26 }

The modeling of vehicle state vector information (Dataset-3) includes a description
of geolocation, orientation, linear speed, and battery of a specific vehicle in a time instant.
An example of its modelling for submission is shown below (Listing 3):

Listing 3. Vehicle state vector information.

1 {
2 "vehicleId": 42,
3 "sequenceNumber": 802,
4 "lastUpdate": 1666452395,
5 "location": {
6 "latitude": 32.34534454345703,
7 "longitude": 12.563429832458496,
8 "altitude": 999.75
9 },

10 "orientation": {
11 "roll": 82.30000305175781,
12 "pitch": 5.300000190734863,
13 "yaw": 2.299999952316284
14 },
15 "battery": {
16 "batteryCapacity": 49,
17 "batteryPercentage": 0.24
18 },
19 "linearSpeed": 11
20 }
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The timestamp is included in "Epoch"–Unix Timestamp format, generally with pre-
cision in seconds (10-digit integer); this will facilitate its generation and simplify the
message syntax.

3.4. Data Query Functions

The proposed model aims to reduce data gathering times, so query techniques and
function syntax constitute a key element to increase performance. Querying precision
agriculture data provides the feed for decision-making algorithms, automation, monitoring,
and tracking applications, among other use cases. In this way, a wide range of queries
must be described. Queries must allow the extraction of the evolution of data over time,
geopositioning, and some semantics such as the identification, type, or provider of the
device delivering the desired data.

To cover the range of queries required, a complex query with different requirements
for the retrieval of data will be described, as well as a set of queries made by splitting the
original complex query. The original query should present a minimum of one attribute
per dimension; this means at least a time interval, an area geolocated, and an attribute to
describe some semantics about the desired data to be extracted. In addition, the complex
original query is going to be adapted to three different configurations, varying the size
of the time and geoposition windows of the search. The original query is described in
Figure 3.

Figure 3. Spatio-Temporal Semantic Query definition. Query parameters (ti, t f , lati, lat f , longi,
long f , geoArea) (ti = Initial time, t f = Final time, lati = minimum latitude, lat f = maximum latitude,
longi = minimum longitude, long f = maximum longitude, geoArea = Circumscribed bounding box
defined through low precision geohash projection).

During the evaluation stage of the spatial clause construction for data gathering, three
types of filtering have been described (see Figure 4). (i) Circumscribed bounding box
defined through low precision geohash projection; (ii) multiple geohash or latitude and
longitude projections of different precision to adjust to the search area; (iii) circumscribed
bounding box defined by two points (latitude and longitude) determining the diameter
of the search area. After repeating the set of tests defined in the experimentation section,
it has experienced delays that are too high for the first two configurations, even reaching
the timeout configured on the server, making an agile query unfeasible, close to real-time.
This was the expected result, as the TSDBs are designed to optimize retrieval time under
temporal filter conditions, increasing its response time when the number of semantic
predicates is increased or in response to “like” type queries (Like type queries are queries
based on matching patterns. In the case of the spatial predicate of a query, it could be used
to filter by those geohashes that start with a certain pattern. This allows the accuracy of the
search geohash projection to be adapted). However, agile responses were obtained for the
delimitation of areas by means of rectangles made up of two latitude and two longitude
coordinates. Therefore, the options of processing with geohash or with more than one
delimitation area for the composition of a superior area have been discarded from the



Agriculture 2023, 13, 360 13 of 28

experimentation. This is due to the lack of sufficient performance for a production scenario,
and because it exposes the server to a load too high for concurrent accesses.

Figure 4. Spatial clause.

For a precise study of each possible query to be performed, several aspects must be
considered when conducting experiments. To measure and evaluate the performance of
the proposed data model, queries will be performed according to the following cases:

• Isolated vs. Concurrent injections (Section 4.5). The response of the injection engine
to injection requests from one or more client-threads is analyzed. It allows drawing a
performance curve according to the type of database attack (Ind-I and IV).

• Isolated Cached queries (Section 4.6). Execute each query for a number ‘n’ of iter-
ations without altering the semantics of the query (response retrieved from cache)
(Ind-III).

• Isolated no-Cached queries (Section 4.7). A measurement of the different time re-
sponses for queries that do not remain in cache (Ind-III).

• Concurrent Injection-Query (Section 4.8). Execution of a set of queries, each one on
a thread-client concurrently and in parallel to the injection of data through several
injector clients (Ind-II, III, and IV).

• Sharding (Section 4.9). A direct relationship is established between the delay times
for the extraction of data stored on disk or in RAM. The same test battery is run for
data in an active and non-active shard (Ind-III).

4. Data Model Validation through the TSDB Engine InfluxDB

Due to the high performance exposed in the literature and its previous use in the
implementation of the AFarCloud project repositories, the InfluxDB database engine will
be used for the validation of the proposed data model. However, the objective of the
article is not the measurement of performance or comparison between the existing TSDBs,
but the validation of the proposed data model, checking that it can offer support in a
real-time scenario.

Through various tests, the objective is to measure performance against the different
indicators described in the definition of the proposed model. The validation of the proposal



Agriculture 2023, 13, 360 14 of 28

is performed through experimentation and measurement with data from real devices and
sensors, deployed in the AFarCLoud European project scenarios.

4.1. Real Data Modelling from the AFarCloud Framework

The AFarCloud (Aggregate FARming in the CLOUD) ECSEL JU project [42] presents
a distributed platform capable of offering integration and cooperation of agriculture cyber
physical systems to increase efficiency, productivity, food quality, animal welfare, and to
reduce costs in agricultural labors. Focused on real-time data exchange, it offers services
for mission management, task automation, decision support, or even data processing and
analysis, among others.

For the evaluation and validation of the proposed model, real data are extracted from
the AFarCloud project scenarios, structured in each of the defined sets, and modelled
according to the spatio-temporal semantic proposal. A set of measurements generated
by a multitude of sensors of different nature deployed on farms has been chosen (soil
sensors, atmospheric sensors, crop management sensors, agricultural machinery sensors,
etc.), contemplating the broad agricultural spectrum. AFarCloud comprises a total of 11
scenarios in Europe. In this way, the evaluation of the model offers a generic view that can
be applied to any type of device and sensor used in an agricultural scenario. In Table 2,
the volume of each dataset, its modelling against the three defined dimensions, and its
structuring according to the type of information provided by each dataset is presented.

Table 2. Data model for datasets 1, 2, and 3.

Single Database

Dataset-1
(Observations)

Dataset-2
(Collars)

Dataset-3
(Vehicles)

Number of points 7,652,221 743,295 34,602

Dimensions

Time Timestamp (Epochtime)

Geoposition
1-Latitude and Longitude (Float)
2-Geohash (String)

Semantic Semantic information regarding data nature, identifiers,
and service provide

Structure

Tags 6 attributes 5 attributes 1 attribute

Fields

6 attributes 15 attributes 10 attributes
Float: 5 Float: 8 Float 9

String: 1
Boolean: 6

String 1String: 1

Time series are stored in the form of tables within the database. This has a direct
bearing on the planning and execution time of queries by TSDBs engine. The structure
defined for this work replicates two different cases to analyze queries in a given dataset
that resides in one or several tables (“measurements” in the TSDB notation):

• Dataset-1 (Observations): 42 tables;
• Dataset-2 (Collars): 1 table;
• Dataset-3 (Vehicles): 1 table.

4.2. Equipment Used

The experiments are performed with stable laboratory equipment. Kernel updates
and any possible software updates have been blocked during testing so that no delay
or alteration of the measurements can be experienced by any kind of process outside of
the experimentation.
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The hardware requirements of the InfluxDB host server are determined according to
the official documentation provided in [43]. Taking into account the high volume of queries
and injections in the agricultural IoT scenario under study, a server is built based on the
“high performance” specification.

For the tests carried out in this paper, machines with similar characteristics were used.
One is configured as a server, and the others work as clients, responsible for submissions to
the database hosted on the server. Its characteristics are shown in Table 3.

Table 3. Equipment Used.

Client Host Server Host

OS Microsoft Windows
10 Enterprise

Ubuntu server
18.04.3 LTS

Mother Board MSI MS-7A72 MSI MS-7A72

Architecture 64-bit 64-bit

Mic i7-7700 3.6 GHz i7-7700 3.6 GHz

Nº Cores 4 (8 threads) 4 (8 threads)

RAM 8 GB 64 GB

Disk Samsung SSD 850
EVO 500GB

Samsung SSD 850
EVO 500GB

The version of InfluxDB used for the experimentation is 1.8.0.

4.3. InfluxDB

InfluxDB is an open-source time series database written in Go; InfluxDB databases
are NoSQL. The query language implemented by InfluxDB is an SQL-like query language
defined as InfluxQL. InfluxDB is not oriented to geospatial queries; therefore, it is an
optimal experimentation environment for testing the query functions defined in the model.

InfluxDB works with in-memory indexing and the time-structured merge tree (TSM).
The TSM has a write ahead log (WAL) and a set of read-only data files, which represent
a similar concept to the sorted strings table (SSTables) in an LSM Tree. SSTables are a
format for storing key-value pairs in which the keys remain in sorted order. An SSTable
will consist of multiple sorted files called segments. These segments are immutable once
they are written to disk.

The WAL is a temporary cache for recently injected points (writes). To reduce the
frequency with which permanent disk storage files are accessed, InfluxDB stores the new
points in the WAL and groups them in batches until their total size or age triggers a flush
into permanent storage. This allows an efficient grouping of writings in the TSM.

To speed up the InfluxDB engine searches, a definition must be made of each of the
attributes associated with a temporary series, such as the aforementioned “Tags” or “Fields”.
To evaluate the proposed model, the definition of the type of attribute shall be as described
in the model definition.

4.4. Experiments

To analyze the performance indicators defined in the proposal against the TSDB
system, such as the one provided by the InfluxDB engine, the different characteristics
presented in its operation must be considered. In Table 4, the time consumed to perform
data injection is referring to datasets-1, 2, and 3.

The total disk space allocated for the storage of the 8430118 data points regarding the
three datasets is 165 MB, a low disk space consumption referring to Ind-II.

The main objective of the proposed agricultural data model is to enable real-time data
gathering. To evaluate the query functions defined in the model, a complete set of queries
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is exposed, addressing each of the defined dimensions (spatial, temporal, and semantic).
In this way, the model is intended to be evaluated against different configurations of table
structuring and database loading.

Table 4. Data Injection through InfluxDB.

InfluxDB

Dataset-1 Dataset-2 Dataset-3

Nº Data Points Injection
Time (ms)

Nº Data Points Injection
Time (ms)

Nº Data Points Injection
Time (ms)

7,652,221 271,471 743,295 37,413 34,602 2054

Nº points/s 28,188 Nº points/s 19,867 Nº points/s 16,848

The set of defined queries complies with the following filtering conditions for the
different experiments performed (Tables 5 and 6).

Table 5. Cached query sets.

Clauses-Cached Queries

Query Batteries Time Geopositioning Semantics Grouping Ordering Limit

1 24 h

Square of 1 km

Service type

By entity name Ascendent time

10

2 24 h 10

3 2 h Service type

4

5 Service type 10

6 24 h Service type 10

Table 6. Sequential query sets.

Clauses-Sequential Queries

Query Batteries Time Geopositioning Semantics Grouping Ordering Limit

1

30 m
Sequential squares of

1 km

Service type

By entity name Ascendent time

10

2 10

3 Service type

4

5 Service type 10

6 30 m Service type 10
* Half-hourly
intervals

* Always within the
margins of the scenario
under study.

The following subsections detail each of the experiments performed, and present the
response of the system to the proposed model.

4.5. Isolated vs. Concurrent Injections

Precision farming scenarios are characterized by a large volume of devices constantly
and concurrently measuring and injecting data into the system. Therefore, evaluating the
performance of the model against writes is vital for its validation in a real-time environment.
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In the first set of tests, it is going to proceed to the evaluation of data injection into
the repository. For this purpose, the tests are divided according to the nature of the data
to be injected and the differences between the injection times for the structures in one or
several tables.

Similarly, a comparison is made between sequential injections and concurrent injection
requests by several clients.

Concurrent data injection into the repository is performed according to the capabilities
of the host server. For this purpose and considering the total number of core threads
(A thread is a virtual component that manages the tasks of the core. Usually, each core
is composed of one or two threads, depending on the architecture) in the experimental
equipment, concurrent injection requests will be made between four and eight clients (In
the experimentation described in this article, a client is a person or program that performs
data injection or query requests. A given client request will be attended by a single
thread on the server hosting the repository. Accordingly, the number of clients making
simultaneous requests corresponds to the number of threads that serve the request in the
repository. Four clients making simultaneous injection requests = four threads in charge of
the injection process in the repository), and will be compared to injection requests from
a single client. Each injection represented on the x-axis of the graphs corresponds to the
writing of 1000 data points. Figure 5a shows the injection times for the total dataset of
observations (dataset-1—7,652,221 data points).

To evaluate the behavior and performance against the dataset referred to the measure-
ments extracted by the collars, the process is repeated for dataset-2. This dataset is more
structurally complex, but will be stored in a single table (see Figure 5b).

Finally, the response obtained against a smaller dataset, composed of vehicle state
vectors, is evaluated. Figure 5c shows data injections concerning dataset-3.

(a) (b)

(c)
Figure 5. Sequential and concurrent dataset injections. Injection time in ms (milliseconds).
(a) Dataset-1 Injections. (b) Dataset-2 Injections. (c) Dataset-3 Injections.
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After the set of experiments is performed for sample injection into the repository,
a correlation is observed between the number of clients attacking the database and the
total sample injection time. The server is overloaded for a large number of clients with
simultaneous requests, affecting the scalability of the system and the availability of data
gathering (Ind-I and IV).

In addition, the structure of the data to be injected directly influences the results
obtained. To visualize the influence of each of the factors studied, the number of samples
injected per second is shown for the different cases under study (Table 7).

The results reflect a clear influence of an overload on the system. Sample injection will
be more efficient when using a larger number of clients attacking the database. However,
when attacking the host server with several clients close to or equal to the total number of
threads presented, the injection will slow down and will be reflected in less efficiency. This
is the expected behavior.

Table 7. Injections (samples/second).

Number of Injections per second (Samples/s)

Dataset 1 Dataset 2 Dataset 3

1 Thread 34,905 8698 13,007

4 Threads 28,188 19,867 16,848

8 Threads 11,099 6453 5250

In contrast, complexity, that is, the number of fields and tags defined for a dataset, will
directly influence the sample injection process. Thus, it is observed that for less complex
data structures, such as those presented in the first dataset samples, the injection efficiency
increases when such injections are performed from a single client sequentially. On the
contrary, when injecting time series with high structural complexity (a higher number of
fields and tags), the injection performance peaks when using a larger number of clients or
injector threads, without reaching the maximum number of host threads.

We observe the evolution of injection time (Ind-III) for datasets 2 and 3, which are
structured in a single table within the database. The first injections will be delayed by the
creation of the table structure and the indexing of tags in the server’s memory. Subsequent
injections show a decrease in the injection time used. On the contrary, dataset-1 represents
a constant injection time, due to the constant creation of tables during the injection of new
data, due to the defined structure, showing some delay spikes in the creation of new tables.

The proposed model presents very fast injection times. The model presents a better
injection performance than that required in a typical agricultural scenario. The writing
and storing of data in the repository will not be a problem for the needs of real-time
environments in agriculture. However, before concluding, the query time offered under
the different scenarios should be evaluated.

4.6. Isolated Cached Queries

In a real scenario, when querying data are residing in the repository, updates or new
data are not always extracted. For instance, this may be to monitor the temperature and
humidity of a certain crop field. Therefore, it is important to know the response to the
extraction of data residing in tables that have not been altered (no new data have been
injected between consecutive queries). Implementing a query cache would speed up the
response to such queries and reduce the use of server resources.

To evaluate the proposed agricultural model against data gathering of cached queries,
the previously defined set of queries is used (Table 5). These queries have been executed by
a unique client attacking the server (see Figure 6a). To measure and compare performance
with a concurrent attack, the process will be repeated in the following subsections. The ex-
periment is executed for each of the defined datasets. The response of the system allows us
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to evaluate the behavior for the different structures and volume presented by each set. The
requests made for each query have been studied to establish a relationship between query
time, serialization, and volume of extracted data. A representation of the volume in bytes
of the response to each query can be seen in Figure 6b.

The processing performed for queries by the InfluxDB engine can be observed natively
in the tool, thanks to the Explain analyze API [44]. By decomposing each of the actions
performed by the InfluxDB engine for data gathering through the query sets performed in
this experiment, a direct relationship is found between the volume of data and the number
of tables to be searched, with the measured response time.

Analyzing the results obtained in the experiment, it is observed that the Influx Engine
(as well as other TSDBs) does not use query response caching. Therefore, the response
times are constant for a given query, without exposing a maximum delay for the first query
performed, and a decrease in response time for the following identical queries (Ind-III).

(a)

(b)
Figure 6. Cached query sets. (a) Cached query sets. Response time in ms (milliseconds). (b) Cached
query sets. Response volume in bytes.
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Query caching should be implemented on top of the database system to reduce the
response time and resource use for identical queries performed consecutively. The im-
plementation of caching for query responses should only be applied to historical queries.
Data residing in active shards (current data) are targets of continuous writes, and the
use of caching for responses to these queries would prevent the collection of the most
recent writes.

4.7. Isolated No-Cached Queries

In the cached test set, a stable response time has been experienced between repetitive
queries, demonstrating that the caching of the query does not have an impact. However,
to analyze the model response to sets of queries with variant filters, the process defined in
the previous section has been repeated for the sequential queries defined in Table 6.

The response time to the execution of the set of sequential queries is presented below
(see Figure 7a).

(a)

(b)
Figure 7. Sequential query sets. (a) Sequential query sets. Response time in ms (milliseconds).
(b) Sequential query sets. Response volume in bytes.
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By studying the volume of data extracted for each query (see Figure 7b) and breaking
down the plan executed by the search engine for data retribution, the impact on the delay
times added to each query can be observed.

With respect to Ind-III, the time costs of each of the operations performed in data
gathering have been divided (the planning and the execution of the defined plan). One of
the main sources of delay in the data gathering process is the extraction and serialization of
the data to compose the response to the query. For this reason, there is a direct relationship
between the volume in bytes extracted by the query and the total delay time for query
execution. However, it can be observed that the response times captured for the requests
from dataset-1 are notably higher, even though the volume of data extracted is smaller.
This high delay is introduced by two different stages in the data extraction operation:
development of the extraction plan itself, which will need to define a simultaneous attack
on different tables for data collection; and the delay introduced by the concurrent search in
the various tables and their subsequent serialization for the composition of the response.
This process is simpler for dataset-2 and 3, where data are structured in a single table.

4.8. Concurrent Injection-Query

In a real precision agriculture scenario, access to repositories is subject to several types
of simultaneous requests. Therefore, this section will evaluate the impact of concurrent
database accesses (Ind-III and IV). To represent a database load state, it will be excited
through various concurrent injections and queries, causing different loads on the server
resources where the database is located.

Figure 8a shows the response time to concurrent injections and queries by several client
threads. Figure 8b shows the volume of data retrieved by each of the query threads. There is
a direct relationship between the delay time experienced in queries and the volume of data
to be extracted. In addition, the queries executed by the consultant threads retrieved data
from dataset-1 (dataset injected by the injector thread), so that as injections are performed,
the number of tables on which data are extracted increases.

These two factors, the increase in data volume and in the number of tables on which
the data is distributed, result in an exponential increase in the retrieval time experienced.

By using a larger number of tables for the organization of data subject to recurring
queries, response times (Ind-III) and the use of server memory and disk resources are
increased (Ind-II), so its scalability will be lower, since a large number of simultaneous
queries with long delay times would block the system (Ind-IV).

(a)
Figure 8. Cont.
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(b)
Figure 8. Simultaneous requests. Concurrent injections and data gathering. (a) Concurrent injection
and data gathering. Injection and response time in ms (milliseconds). (b) Volume of data extracted by
the consultant threads.

4.9. Sharding

To analyze the delay introduced by the model for gathering data residing in an
uncompacted or compacted shard, two different scenarios are considered: querying or
extracting data from an active shard or from an inactive shard (Ind-III).

The data writing performed by a TSDB engine on an injection request is affected by the
type of shard it attacks. In most cases, a write is performed on the active shard, as this is an
agricultural scenario where a write is performed about current data. When receiving a write
request on a cold or inactive (disk-compacted) shard, the write requires prior decompaction
and subsequent compaction of the shard. Therefore, writes of historical data, on cold
shards, are slowed down by the process of decompaction and subsequent compaction.

In addition, to measure the impact on delay when querying data residing in hot (active)
shards versus querying the same data residing in cold (inactive) shards, a comparison has
been made for the three datasets defined in the paper. Figure 9a shows the total time taken
to extract data related to dataset-1.

The process is repeated with the battery of queries for dataset-2 and 3, and a simi-
lar behavior to that described by the experiment carried out with dataset-1 is observed
(see Figure 9b,c).

It is observed that data query times do not increase whether the data reside in an
active or inactive shard. On the contrary, a significant delay would be experienced if the
data were distributed in different shards, and the operation of data retribution would have
to be decomposed in the attack on the different shards containing the measurements to
be searched.

For the proposed data model, as long as queries are performed on a single shard,
the gathering times will be really low, regardless of whether the objective of the query
is historical or current data. Therefore, a positive model evaluation is assumed for data
gathering in a precision agriculture scenario requiring real-time performance.

The model proposed in this paper provides a more efficient use of computational
resources, enabling the management of large spatio-temporal semantic datasets generated
by sensors and agricultural devices. The model enables the generation of telemetry by
devices with lower resources, thanks to a lightweight syntax, without reducing the semantic
spatio-temporal information provided by the device. The response time to data injection
and query, presented in the evaluation of the model, corroborates its performance in a
real-time environment, improving the response for implementation in monitoring systems
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and algorithms or models for automation or decision support. Finally, the proposed model
offers a reduction in the data management effort which offers more efficient management.
This allows for the use of resource-limited equipment without sacrificing performance,
for data management and repository implementation.

(a) (b)

(c)
Figure 9. Comparison between access to active and inactive shards. Response time in ms (millisec-
onds). (a) Dataset-1 queries. Access from non-active shards or from active shards. (b) Dataset-2
queries. Access from non-active shards or from active shards. (c) Dataset-3 queries. Access from
non-active shards or from active shards.

5. Results

The implementation of a data management architecture for agriculture is divided
according to two main cases: (i) the extraction of the latest captured measurements, which
should be in real-time, allowing the rapid detection of anomalies, enabling the acting or the
representation of the current status of crops and livestock; (ii) historical data retribution,
which needs to perform searches over large volumes of data, for cases such as feeding
decision making or machine learning algorithms.

Due to the number of attributes in the point structure of the agriculture datasets
described in the proposal, TSDBs perform batching of up to 1000 points in the WAL (the
maximum size of the WAL segment is 10 MB). This reduces the number of accesses to
permanent disk storage for writes. WAL is also used as protection against the loss of recently
added data on power loss. However, the WAL storage format is not easily queryable.

As a result of experimentation, additional delays on querying the last injected data
have been observed due to this use of the WAL by TSDBs and, in particular, by InfluxDB.
Therefore, a data management system is proposed in which the latest measurements
captured by the sensors are also stored in a small SQL (relational) database. By overwriting
these values as new values, they are captured by the sensors. The latest measurements can
be retrieved in real-time from the SQL database. This avoids querying TSDBs data stored
in the WAL.
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Furthermore, to reduce the network load, it is recommended to send the injection
request to the TSDB, directly in a batch of points, tuned with the WAL segment. For complex
structures, between 10 to 20 attributes per point, the most efficient grouping of points in a
client will be between 1000 to 2000 points per batch. In an agricultural IoT scenario, it is
recommended to collect write requests to form a batch at the edge. The time window for the
collection of points in a batch at the edge should not exceed 100 ms for a real-time scenario.

The InfluxDB TSM engine and that in general TSDBs are not recommended for scenar-
ios with constant writes or alterations to historical data. To inject historical data into a cold
shard, it must have been previously decompressed, written, and then compressed again.
This slows down the writing of historical data.

To increase the efficiency in injecting or querying agricultural data from the repository,
several factors must be considered.

Firstly, a server hosting the repository must be chosen, with a number of cores thought
in relation to the number of clients or devices that can perform queries or data injections
concurrently at a given instant of time to reduce delays.

Secondly, we look at the structure of the data to be injected. It must be attempted to
reduce the definition of tags to those attributes that are going to be filtered in the queries
more frequently, always making sure that these attributes do not have a cardinality that is
too high; that is, the fewer values these attributes can take, the greater the efficiency due to
a lower memory load on the server.

In precision agriculture, the use of tags is only recommended in attributes with
information concerning the type of sensor and service offered, the scenario, provider,
unit of measurement (uom), and device identifier. Measurement values, geopositioning,
sequence identifiers, and attributes with a high range of possible values should be avoided.

Unlike tags, fields are not indexed, which implies a sequential scan of the field col-
umn values. Field-based queries, which increase response time directly proportional to
the volume of data in the query target, should be avoided. Due to the structure of the
data model, queries will slow down when extracting data are residing in multiple tables;
however, a response time suitable for a real-time performance scenario is still observed.

The division of data into tables is recommended according to the main query targets.
The aim is that queries only need to attack one table at a time. In this way, query times
are reduced due to the simplification of the plan design for the extraction and subsequent
serialization of data by the TSDBs engine. Therefore, structuring in tables is defined
according to the type of device and the nature of the measurement (Table 8). This structure
offers a maximum reduction in the number of tables without obtaining a volume of data
per table that is too high.

Table 8. Structure of the database in tables.

Definition of tables in the
database according to:

Structuring by type of
device

Structuring by nature of
measurement

Livestock collar or device Division is not recom-
mended

Vehicle or robot Division is not recom-
mended

Field device

Climatic information

Device status

Specific crop information

Regarding the composition of spatial clauses defining a search area, as query argu-
ments, it will be more efficient to establish a bounding box type search. The bounding box
will be conformed by latitudes and longitudes, describing a square. “Like” type queries (as
the use of geohash) or the definition of complex areas through a multitude of geolocated
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points will slow down queries. By defining spatial filtering in the form of a square, only
four spatial filtering parameters (two latitudes and two longitudes) will be presented.

This type of query structure allows the definition of three dimensions of filtering
on the agricultural data repository, spatial, temporal, and semantic, without adding high
delays in data extraction and allowing efficient exploitation with a minimum amount of
resources on the host server.

The architecture, the spatio-temporal semantic data model, and the configurations
and structures implemented in this article result in the Data Access Manager & Data
Query (DAM & DQ) data management system. This system provides a distributed reposi-
tory between TSDBs and relational databases to overcome the delays added by the WAL
management in the TSDBs for querying the latest data Figure 10. This system has been
implemented as the core of the semantic middleware of the AFarCloud intelligent platform,
offering real-time performance. In this way, the platform can offer real-time actuation or
detection solutions.

Figure 10. Data Access Manager & Data Query (DAM & DQ).

The source code of the architecture, the description of the components, and the license
scheme are available in [45].

Thanks to the Afarcloud project, with multiple live scenarios, it has been possible
to apply the solution described in this article as a data management system to feed vari-
ous decision-making, AI, and monitoring systems. One of the use cases using this data
management system is the work described [46]. It presents a smartphone application that
allows the monitoring and management of assets from the field in real-time. In addition,
the application allows the creation of observations, evaluations, and alarms associated with
the devices, including the user in the flow.

To ensure the interoperability of the data model and the data management system
proposed in this article, it is intended to continue with research to offer interoperability
through the preparation and integration of data with other existing models. Similarly, it is
intended to distribute the data management system between edge, fog, and cloud, offering
high availability of data management in real-time, from the farm itself or from the cloud.

6. Conclusions

The projects developed in the field of precision agriculture present a wide range of
solutions for automation, monitoring, and increased efficiency in agricultural activities.
These projects are made up of a large number of sensors and devices that make these tasks
possible. The article discusses the characterization of device data across three dimensions:
spatial, temporal, and semantic.

The deployment of numerous agents for the digitization of agricultural processes
involves the generation of large volumes of data [39], increasing the digitization footprint
generated by the agricultural sector. The model and architecture proposed in this article
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offer an improvement in resource management, reducing the storage space required and
increasing management performance, thus reducing the digitization effort.

Many of the solutions presented in the field of precision agriculture include the
operation of autonomous vehicles or the response to emergency situations in crops or
livestock. To provide such solutions, a system that offers real-time data management is
required. To reduce the latency times in data retribution, an agricultural data management
system based on the proposed model and a distributed repository has been exposed.
Several measures have to be taken for the structuring of data and the specification of
techniques in the construction of the query clauses to enable real-time gathering, and
reduce resource usage.

The paper exposes how the delay times for data gathering are directly affected by the
structuring of data and the attack on various tables for a given query. It explains how to
reduce the number of clauses to improve query speed and describes the impact. Even the
implementation of a manager to handle the cache or the access to the latest measurements
or historical data is explained.

Thanks to the precise spatio-temporal semantic characterization offered by the pro-
posed model, the risks and uncertainties involved in agricultural diversification are mini-
mized. The management system allows us to evaluate the historical and current conditions
of a given piece of land to assess the feasibility of planting a new crop. Furthermore,
the data management system offers an entry point for feeding machine learning models,
allowing the comparison of historical conditions offered by the terrain and those necessary
for a high yield of a variety of new crops. In this way, the farmer will be limited to choosing
among the proposed crops, for which a correct yield is guaranteed.

The structuring, data model, and data management system implemented and de-
scribed in this article have been applied to the AFarCloud project, which develops a
platform for precision agriculture, applied to multiple live scenarios. This framework
allows the testing of the solution against real data. Thanks to the use of the system and
techniques presented in the paper, the use of resources has been reduced, and data gather-
ing by the semantic middleware of the AFarCloud project has been accelerated. This has
sped up and improved the responsiveness of various solutions and applications developed
within the project framework.
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