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Abstract: The physiological and biochemical processes of Aspergillus flavus (A. flavus) are complex.
Monitoring the metabolic evolution of products during the growth of A. flavus is critical to the overall
understanding of the fungal and aflatoxin production detection mechanism. The dynamic growth
process of A. flavus and the aflatoxin B1 (AFB1) accumulation in culture media was investigated
with a visible/near-infrared hyperspectral imaging (Vis/NIR HSI) system in the range of 400 to
1000 nm. First, the growth of A. flavus and the synthesis pattern of AFB1 were monitored on maize
agar medium (MAM) culture for 120 h with a 24-h time-lapse imaging interval. Second, to classify
the A. flavus growth, a principal component analysis (PCA) was employed, and a support vector
machine (SVM) model was established with the PC1–PC3 as inputs. The results suggested that
the PCA-SVM method could distinguish the A. flavus growth time with a classification accuracy
larger than 0.97, 0.91, and 0.92 for calibration, validation, and cross-validation, respectively. Third,
regression models to predict the AFB1 accumulation using hyperspectral images were developed
by comparing different pre-processing methods and key wavelengths. The successive projection
algorithm (SPA) was adopted to distill the key wavelengths. The experimental results indicated that
the standard normal variate transformation (SNV) with the partial least squares regression (PLSR)
achieved the optimal regression performance with an RC value of 0.98–0.99 for calibration and RV

values of 0.95–0.96 for validation. Finally, a spatial map of the AFB1 concentration was created
using the PLSR model. The spatial regularity of the AFB1 concentration was comparable to the
measurement performed. The study proved the potential of the Vis/NIR HSI to characterize the A.
flavus growth and the concentration of AFB1 on the MAM over time.

Keywords: Aspergillus flavus; AFB1; Vis/NIR hyperspectral imaging

1. Introduction

Fungi and mycotoxins are widespread in food and feed. Infection with Aspergillus
flavus (A. flavus) would reduce the quality of the objects by consuming the nutrients,
destroying the physical properties, and eventually producing aflatoxins (AFs) [1,2]. Among
all mycotoxins in grains, AFB1 is the most toxic and has been designated as a carcinogenic,
teratogenic, and mutagenic agent [3–5]. It was affirmed as a Class 1 human by the World
Health Organization [2]. Therefore, early detection and control of fungi and toxins are
crucial to prevent contaminated substances from entering the production chain [1].
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Multiples have been widely used to measure fungi and mycotoxins. The identification
of fungal growth has been carried out mainly by measuring the biological properties of
fungi, such as the total viable count, metabolite concentrations, and biomass, under specific
conditions [6,7]. Aflatoxin detection has been conducted commonly with HPLC, thin layer
chromatography (TLC), and enzyme-linked immunity (ELISA) [8–10]. The disadvantages
of these traditional detection analyses are destructive, labor-intensive, and time-consuming.
They are not applicable to rapid detection. Therefore, a non-destructive and rapid detection
method is required. Machine vision technology can be non-destructive, but results are
unsuitable for low levels of fungal infections or no distinguished features. Near-infrared
spectroscopy (NIR) is suitable for the detection of the chemical components of fungi and
mycotoxins [11]. However, traditional NIR can only obtain the average spectrum of the
detected objects through point sampling, and the spatial distribution of information on the
detected object is ignored. As an optical imaging technique, hyperspectral imaging (HSI)
generates spatial and spectral data on materials [12], allowing characterizing pixels with
spectral information of fungi and toxins within the selected spectral range.

The process of fungal infection and toxin production in grains is complex because it
differs among fungal strains and environmental conditions. For example, L-type isolates
usually produce fewer toxins on average than S-type isolates, and some L-type strains are
non-toxic [13]. Similarly, different environmental conditions may promote or inhibit the
growth and development of fungi [14]. With that in mind, the interactions between A. flavus
growth and aflatoxin accumulation, even under ideal environmental conditions for growth,
are still challenging to monitor and understand their dynamics. In addition, the growth
process of A. flavus has accompanied the changes in spore color, colony morphology, and
nutrient depletion. Therefore, using Vis/NIR HSI to study the dynamic growth process of
A. flavus is necessary.

In available studies, Williams et al. [15] reported the growth of three Fusarium species
in the PDA medium at equal time intervals and extracted three characteristic wavelengths
associated with the chemical changes of carbohydrate proteins and other proteins during
mycelial growth and maturation. Jin et al. [16] employed Vis/NIR HSI to distinguish
toxigenic and atoxigenic fungi strains, and the support vector machine (SVM) models
achieved 83% and 74% classification accuracies, respectively. Chu et al. [17] applied
Vis/NIR HSI to evaluate the active region of A. flavus and A. parasiticus and adopted
competitive adaptive reweighted sampling (CARS) to select optical wavelengths. The
optimal CARS-SVM classification models with nine optical wavelengths as input obtained
discrimination accuracies of 83.33% and 98.15% of the two fungi, respectively. The work
of Lu et al. [18] also proved that Vis/NIR HSI can be used to distinguish types of fungi in
cereals. Lu et al. applied SPA-SVM models for the differentiation of five kinds of fungi that
had been cultivated in one day, and the average accuracy and Kappa coefficient reached
98.89% and 0.97%, respectively. Marin et al. [19] suggested that larger colonies produced a
higher toxin accumulation. Pearson et al. [20] used dual wavelengths (750 nm and 1200 nm)
to distinguish seriously polluted kernels (>100 ppb) from healthy kernels and showed
99% discrimination accuracy. Wang et al. [21] used a shortwave infrared (SWIR) HSI
(1000–2500 nm) united stepwise factor discriminant analysis (FDA) to detect aflatoxin B1
contaminants on grain skin and reported over 88% accuracy.

In general, the current research on fungi mainly focuses on the identification of strain
and its early period, with few comprehensive studies on the growth of A. flavus and the
accumulation of aflatoxin. Therefore, this research constructed the dynamic growth process
of A. flavus in the MAM and monitored it through Vis/NIR HSI. The contents of the current
study were to (1) construct a dynamic A. flavus growth and AFB1 biosynthesis model, and
acquire time-lapse hyperspectral images; (2) study the growth characteristics in terms
of inoculation times and distinguish the fungal growth periods; (3) analyze the spectral
differences over sampling time, analyze the AFB1 content, and compare the implementation
of the prediction models; and (4) build the multi-spectral model for AFB1 content detection
using key wavelengths and create their visualization image maps.
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2. Materials and Methods
2.1. Sample Preparation

A. flavus (NRRL 3357) toxigenic strain was obtained from the Institute of Agro-products
Processing Science and Technology. The A. flavus strain was cultivated through Potato
Dextrose Agar (PDA), at a constant temperature (30 ◦C) and humidity (60%), and mature
conidia were harvested after 7 days. The fresh conidia were separately scraped from
the PDA then distilled water was added to obtain spore diluent. To construct an AFB1
biosynthesis model, two 102 and 104 mL−1 conidia spore concentrations with the A. flavus
strain were obtained by mixing conidia suspension with MAM. Thus, two treatments
(a low concentration and a high concentration) were prepared for culturing A. flavus
on the MAM in Petri dishes. A Petri dish plate was poured with 20 mL MAM, and
3 replicated agar plates were prepared. All Petri dishes were incubated for 120 h. One set
of samples was taken out every 24 h and refrigerated. Hence, there were 36 Petri dishes
(2 treatments × 6 time intervals × 3 replicates) of A. flavus.

2.2. Image Acquisition and Calibration

The Vis/NIR HSI system consisted of an imaging spectrograph (G Series Image-λ-V10-
IM, Spectral Imaging Ltd., Oulu, Finland), a CCD camera (Bobcat2.0, Imperx Ltd., Boca
Raton, FL, USA), a variable-focal-length lens (Schneider, XENOPLAN, Bad Kreuznach,
Germany), a pair of 500 W halogen lamps (Photoflex, Watsonville, CA, USA), and an
acquisition system. The resolution of the spectral is 1.78 nm, the pixels are 0.14 nm/pixel,
and the exposure time is 32 ms. The sample is 450 mm from the lens, and the motor is
translating with a speed of 1.7 cm/s. The collecting spectrum is a range of 380–1012 nm. The
wavelength ranges of 380–400 nm and 1000–1012 nm were removed, keeping 400–1000 nm
for analysis in order to decrease noise. A total of 36 hyperspectral images were obtained.
The intensity of the hyperspectral images was calibrated. Images of the white panel and
camera opaque cap were collected as the white reference and black reference images [22],
respectively. The correction formula is the following:

RI =
Lm − Ld
Lr − Ld

× 100% (1)

where RI is the calibration value; Lm is the uncalibrated value; Lr is the white reference
value; and Ld is the black reference.

2.3. Quantitative Measurement of the AFB1 Concentration

An HPLC system was used to measure the AFB1 levels. The sample preparation
for AFB1 detection on MAM was performed using the modified method of AflaStarTM R
immunoaffinity column. The buffer solution with pH 7.4 was prepared, and the extracting
solution was acetonitrile/deionized water with a ratio of 84:16. Subsamples were selected
from the MAM surface. The selected subsamples were placed in a centrifuge tube of 5 mL,
then 2 mL of extracting solution was injected into a centrifuge tube and agitated for 90 min.
After, 1 mL of the supernatant and 4 mL of buffer solution were mixed. The mixed solution
of dilute was added to the syringe. The 72–96 h sample was diluted twice before being
added to the syringe. The dilution corresponding to 72–96 h of culture was 1 mL, and
the corresponding dilution for 120 h of culture was 0.1 mL due to the high level of AFB1.
The immunoaffinity column was rinsed twice with 5 mL of buffer solution, then rinsed
with 5 mL of deionized water to remove impurities in the sample. After the eluent was
completely emptied, the immunoaffinity column was eluted of AFB1 samples with 1 mL
methanol for HPLC analysis.

2.4. Data Analysis

From each calibrated hyperspectral image, two wavelength ranges (380–400 nm and
1000–1012 nm) were discarded from the analysis because of high levels of noisy reflectance
responses in these wavelength regions. A total of 336 wavebands between 400 and 1000 nm
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were analyzed. Each calibrated hyperspectral image was cropped to 300 × 300 pixels
spatially, and a mosaic of the cropped hyperspectral images was constructed for each
growth period. Then, a circular region smaller than the diameter of the plate was chosen
to create the region of interest (ROI), following obtained average spectra from each ROI.
Nine ROIs with the same diameter on each plate were created, and the reflection spectrum
was obtained for the qualitative analysis of A. flavus growth. Finally, 162 (9 ROIs × 6 time
intervals × 3 replicates) samples of spectral data were obtained for each treatment. The
extracted data were randomly partitioned into calibration and validation sets according
to 2:1. Similarly, for the quantitative analysis, there were 18 samples (1 ROI × 6 time
intervals × 3 replicates) for each treatment that were randomly grouped at a ratio of 2:1.
All these operations were performed using ENVI (v. 5.3, L3Harris Geospatial, Boulder,
CO, USA).

In this study, the method of PCA and classifier of SVM were adopted for the character-
istics of the A. flavus growth period. PCA is a dimension reduction statistical method. By
mapping the raw variables onto a collection of variables (principal components, PCs) that
are mutually orthogonal, it is possible to preserve the greatest variety of data points in the
raw spectral space. Weighted sums of original variables are represented by scores in the PC
space without losing key information. PCA score plots display related pixel groupings that
are clustered together. The loading plots, which are the variable’s coefficient multiplier,
were used to describe the relationship between the PCA score and the key wavelengths.
The principal component score is calculated using the following formula:

T = XB + Q (2)

where T represents the principal component score matrix; X represents the primitive
variable matrix; B represents the load matrix; and Q represents a residual matrix.

SVM is a machine learning algorithm that shows sensitive preponderance in dealing
with small samples and high-dimensional data [23]. Thus, we initially used PCA to reduce
the dimensions and extract the PCs with high scores related to fungi. Subsequently, the
extracted PCs were used as the input of the SVM classifier to distinguish the growth period
of A. flavus.

The extracted spectral data usually contained noise due to light scattering as well as
instrumental noise. Thus, it was vital to remove the background noise before data analysis.
In this study, the first derivative (FD) and standard normal variate (SNV) were applied
as pre-processing techniques. The FD was used to correct the baseline and eliminate the
background noise. The SNV was utilized to reduce the impacts of particle size and optical
path variation [24]. Hyperspectral images usually have a high dimensionality that causes a
degradation in model performance. Therefore, it is significant to select useful wavelengths
for reducing the data dimensions. The successive projection algorithm (SPA) is a suitable
method for picking the key wavelength by calculating the projection vector of a wavelength
on the remaining wavelength and extracting the wavelength with the largest projection
vector as the key wavelength [25].

Partial least squares regression (PLSR) is an effective chemometric technique, project-
ing all dependent and independent variables to another space with reduced dimension-
ality [26]. The PLSR was carried out to quantitatively predict the AFB1 contents in this
study. The changes in the AFB1 content at different culture sampling times were visualized
spatially using prediction images of the AFB1 accumulation generated by the PLSR model.

Sensitivity, specificity, confusion matrix, overall accuracy, and Kappa coefficient were
applied to assess the capability of the established qualitative model [18]. Sensitivity refers
to the proportion of true samples with correct prediction in all true samples, that is, the
true positive rate, which represents the ability of the model to test true samples. Specificity
represents the proportion of false samples with correct prediction in all false samples, that is,
the true negative rate, reflecting the model’s ability to test false samples. The classification
accuracy is measured by the number on the diagonal in the confusion matrix. A high
number represents a high classification accuracy. The overall accuracy of the confusion
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matrix is expressed as a percentage of properly identified samples over the entire sample.
Generally, the calculation of the Kappa coefficient is based on the confusion matrix. The
Kappa coefficient is used to assess classification accuracy. When the value of Kappa is
greater than 0.8, it indicates that the model has high precision.

The performance of the regression model was measured by the correlation coefficient
(R), root mean squared error (RMSE), and residual predictive deviation (RPD). The correla-
tion coefficient of calibration RC and validation RV was used to assess the goodness of fit
of the model. A better regression model corresponds to a high value of R. The deviation
between the real value and predicted value was expressed by RMSE. The predictive power
was assessed by RPD.

3. Results and Discussion
3.1. Critical Growth Characteristics of A. flavus in Culture Media
3.1.1. Image Information of A. flavus Growth

Time-lapse hyperspectral images of A. flavus on the MAM plates were visualized
with pseudo-color images (blue: 459 nm, green: 550 nm, red: 640 nm). As shown in
Figure 1, the individual color images were stitched into mosaics for analysis, where the
rows and columns represented different concentrations and growth durations of culture
days, respectively. After 24 h of incubation, all treatments of A. flavus strains showed fine
white mycelia on the MAM, but the color was not readily distinguishable from the MAM.
The cultures grew a small number of mycelia after 48 h. After 72 h, the number of spores in
all treatments increased and the color of spores changed to yellowish green. After 96–120 h,
the edges of the Petri dishes were covered with yellow-green spores while the central areas
of the Petri dishes showed fewer spores. That may be due to the uneven density of the two
inoculums in the Petri dishes.
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Figure 1. Pseudo color images of A. flavus growing at different time intervals on MAM. Pseudo color
images of medium inoculated (a) NRRL 3357 with concentration of 102 spores mL−1; (b) NRRL 3357
with concentration of 104 spores mL−1.

3.1.2. Spectral Characteristics of Fungal Culture in Maize Agar Medium

The raw mean reflectance spectra at different culture sampling times of A. flavus are
presented in Figure 2. The spectral curves of the two treatments are bell-shaped with similar
trends. During the first 24 h of cultivation, the abundant white mycelia mainly contributed
to the higher spectral reflectivity in the color wavelength range below 750 nm. As the
incubation time increased, fungal colonies changed from vegetative growth (mycelium) to
reproductive growth (spores), conidia began to form, and the yellow-green conidia caused
a decrease in overall spectral reflectance. From 96 to 120 h, the spectral reflectance dropped
to a more pronounced level as the spore color darkened.

In the visible range, spectral reflectances around 519 and 559 nm were related to the
pigment of MAM. The range of 780–1000 nm, as well as 810 nm, 917 nm, and 979 nm,
were dominant. The wavelength at around 917 nm was generally correlated with the third
overtones of C-H stretching modes that were caused by the changes in fatty acids [27].
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Additionally, the valley at around 979 nm was associated with the vibration of the O-H
bond in the molecules of H2O.

Agriculture 2023, 13, x FOR PEER REVIEW 6 of 14 
 

 

the incubation time increased, fungal colonies changed from vegetative growth (myce-
lium) to reproductive growth (spores), conidia began to form, and the yellow-green co-
nidia caused a decrease in overall spectral reflectance. From 96 to 120 h, the spectral re-
flectance dropped to a more pronounced level as the spore color darkened. 

  
(a) (b) 

Figure 2. Mean spectra of maize agar medium inoculated with A. flavus. Mean spectra of medium 
inoculated (a) NRRL 3357 with concentration of 102 spores mL−1; (b) NRRL 3357 with concentration 
of 104 spores mL−1. 

In the visible range, spectral reflectances around 519 and 559 nm were related to the 
pigment of MAM. The range of 780–1000 nm, as well as 810 nm, 917 nm, and 979 nm, were 
dominant. The wavelength at around 917 nm was generally correlated with the third over-
tones of C-H stretching modes that were caused by the changes in fatty acids [27]. Addi-
tionally, the valley at around 979 nm was associated with the vibration of the O-H bond 
in the molecules of H2O. 

3.1.3. HPLC Analysis of AFB1 Accumulation 
The AFB1 concentrations measured with HPLC were investigated using a one-way 

analysis of variance. Statistical analysis results of the AFB1 concentrations for each treat-
ment are presented in Figure 3. The results showed that different inoculation concentra-
tions (p < 0.05) had a significant effect on the accumulation of AFB1, and there was a sta-
tistically significant interaction in the inoculation stage (p < 0.05). These results demon-
strated a marked difference between the two cultures, but these differences changed over 
time. The difference level between the low-density inoculation and the high-density inoc-
ulation reached the maximum at 120 h. 

400 500 600 700 800 900 1000
0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

917nm

979nm

810nm

559nmRe
fle

ct
an

ce

Wavelength(nm)

 Control
 24h
 48h
 72h
 96h
 120h

519nm

400 500 600 700 800 900 1000
0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Re
fle

ct
an

ce
Wavelength(nm)

 Control
 24h
 48h
 72h
 96h
 120h

519nm

559nm

810nm
917nm

979nm

Figure 2. Mean spectra of maize agar medium inoculated with A. flavus. Mean spectra of medium
inoculated (a) NRRL 3357 with concentration of 102 spores mL−1; (b) NRRL 3357 with concentration
of 104 spores mL−1.

3.1.3. HPLC Analysis of AFB1 Accumulation

The AFB1 concentrations measured with HPLC were investigated using a one-way
analysis of variance. Statistical analysis results of the AFB1 concentrations for each treat-
ment are presented in Figure 3. The results showed that different inoculation concentrations
(p < 0.05) had a significant effect on the accumulation of AFB1, and there was a statistically
significant interaction in the inoculation stage (p < 0.05). These results demonstrated a
marked difference between the two cultures, but these differences changed over time. The
difference level between the low-density inoculation and the high-density inoculation
reached the maximum at 120 h.
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Over the whole culturing period, the AFB1 concentrations varied depending on the
applied inoculation method. When the AFB1 content was examined in the time series, there
was only a small amount of AFB1 detected at 24 h, possibly due to the initial period of A.
flavus spore germination and fungal hyphal growth. However, after 48 h, the AFB1 levels in
each treatment increased significantly, as reported by Mellon et al. [28]. Furthermore, when
comparing the aflatoxin accumulations in terms of treatments at each time point, the AFB1
level from the low-spore inoculation treatment was higher than the high-spore inoculation
treatment. In addition, in our previous study, the experimental results showed that no
AFB1 was detected when the inoculation concentration was 106 spores mL−1, indicating
that AFB1 was not synthesized under this treatment. This result was consistent with the
study of Amare and Brow [29,30] and suggested quorum sensing [31] during the growth of
A. flavus.

3.2. Identification of the A. flavus Growth Period
3.2.1. Identification of the A. flavus Growth Period by PCA

The PCA analysis method was used to distinguish the growth period of A. flavus.
The contribution rates of the first three PCs of low-density inoculation was 65.5%, 32.7%,
and 1.6%, respectively, and the high-density inoculation was 65.1%, 32.9%, and 1.1%,
respectively (Figure 4). More than 99% of the original data information was explained.
The score maps of the PC1, PC2, and PC3 are presented in Figure 5. From the score maps,
the growth periods of A. flavus can be differentiated under two treatments. Samples can
be clearly separated at almost all the time intervals, and only a few samples could not be
easily separated at 72–120 h.
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The dynamic growth of A. flavus in the MAM caused the curve of spectrum difference.
At the same time, the first PCs mainly interpreted the change in spore color and the nutrient
of the MAM [18]. Then, the loading plots of the PC1, PC2, and PC3 were plotted to further
explain the corresponding changes in spectral signal (Figure 5). Wavelengths, such as
410, 420, 608, 610, 740, and 742 nm, in the loading plots corresponded to the spore color
differences. Additionally, wavelengths around 812 (813), 872 (875), and 979 (987) nm were
associated with the change in chemistry among the A. flavus growth. In addition to the
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810 nm, and the 979 nm mentioned in Section 3.2.1, the 872 (875) nm is related to the
third-order overtone of the N-H structure in the protein or in the aromatic ring, which is
the basis of the cell wall.
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3.2.2. Identification of the A. flavus Growth Period based on PCA-SVM

Three variables (the first three PCs), instead of the full band spectrum, were used
as input for the SVM classifier to establish the growth period classification model of A.
flavus. The performance of the models is exhibited in Table 1. With the two inoculation
methods, the accuracy of the models was greater than 0.97, 0.91, and 0.92 for the calibration
set, validation set, and cross-validation, respectively. The results showed that the PCA-
SVM classification method can accurately identify the growth period of A. flavus. At the
same time, the results of cross-validation also demonstrated the excellent stability of the
classification models.

Table 1. Classification results of the A. flavus growth period based on the full spectrum.

Modeling Method Inoculation Methods
Accuracy

Calibration Set Validation Set Cross Validation

PCA-SVM
NRRL 3357 (102 spores mL−1) 0.97 0.96 0.94
NRRL 3357 (104 spores mL−1) 0.97 0.91 0.92

By observing the confusion matrix, the growth period of misclassification was further
analyzed (Table 2). While the model can accurately identify the A. flavus at 24 h, 48 h, and
120 h, only one sample was misclassified in the control group at 24 h. The misclassification
primarily appears in 72 h to 96 h due to the physical color of spores and mycelia being
resemblant. Still, the sensitivity and specificity of A. flavus were above 0.93 and 0.78, the
accuracy reached 0.97 and 0.94, and the kappa coefficient was above 0.933, which indicated
that the growth periods were accurately identified.
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Table 2. Classification results of the confusion matrix.

Group
NRRL 3357 (102 spores mL−1) NRRL 3357 (104 spores mL−1)

Control 24 h 48 h 72 h 96 h 120 h Control 24 h 48 h 72 h 96 h 120 h

Control 27 0 0 0 0 0 26 1 0 0 0 0
24 h 1 26 0 0 0 0 0 27 0 0 0 0
48 h 0 0 27 0 0 0 0 0 27 0 0 0
72 h 0 0 0 25 2 0 0 0 0 25 1 1
96 h 0 0 0 2 25 0 0 0 0 6 21 0

120 h 0 0 0 0 0 27 0 0 0 0 0 27
Sensitivity 1.00 0.96 1.00 0.93 0.93 1.00 0.96 1.00 1.00 0.93 0.78 1.00
Specificity 0.99 1.00 1.00 0.99 0.99 1.00 1.00 0.99 1.00 0.96 0.99 0.99
Accuracy 0.97 0.94

Kappa coefficient 0.9630 0.9333

3.3. Detection and Prediction of AFB1 Content in the Culture Medium
3.3.1. Hyperspectral PLSR Models

Regression models to predict the aflatoxin in terms of incubation time were established
using hyperspectral data in full wavelength ranges. The SNV and the FD were applied
to the hyperspectral data as preprocessing for the models. The performances of the PLSR
among the two types of inoculation methods are displayed in Table 3, with the optimal
results marked in bold font. The PLSR regression models ranging from 400–1000 nm
predicted the AFB1 content with an RC of 0.91–0.95, RV of 0.87–0.94, and RPD of 1.99–2.54.

Table 3. Prediction results of AFB1 in two types of culture methods based on full-band spectra.

Inoculation Methods Preprocessing Methods LVs RC RMSEc RV RMSEv RPD

NRRL 3357
(102 spores mL−1)

Raw 4 0.93 20.851 0.92 41.547 2.15
SNV 5 0.94 35.032 0.91 56.074 2.02
FD 3 0.91 40.609 0.87 58.475 1.99

NRRL 3357
(104 spores mL−1)

Raw 4 0.94 13.177 0.93 28.957 2.26
SNV 4 0.95 12.770 0.94 33.641 2.54
FD 3 0.94 14.040 0.92 37.374 2.23

Note: R, raw reflectance spectrum; bold indicates the optimal model.

3.3.2. Development of Multispectral PLSR Models

To obtain a parsimonious model, multispectral PLSR models based on a few key
wavelengths were developed. The SPA algorithm selected seven and six key wavelengths
for each culture method type, respectively (Table 4). After the MAM inoculation of A.
flavus conidia, the surface color and internal components were changed, which affected
the spectral signal of the medium. Key wavelengths, such as 559, 873, and 979 nm, were
considered several times. They were associated with cell walls, fatty acids, and moisture in
cells. This result was also consistent with the result of Sections 3.1.2 and 3.2.1. The spectral
response at the vicinity of 873 nm was a response to the third overtone of the N-H structure
in amino acids, important components of proteins in the furan ring. This also illustrates
that the growth of A. flavus is closely related to the production of toxins.

Table 4. Key wavelengths selected by SPA.

Inoculation Methods Number Wavelengths (nm)

NRRL 3357 (102 spores mL−1) 7 419, 487, 622, 697, 771, 880, 979
NRRL 3357 (104 spores mL−1) 6 417, 475, 559, 619, 796, 873

Then, multi-band quantitative models were developed for two types of culture meth-
ods (Table 5 and Figure 6). The SPA-PLSR models achieved an RC of 0.98–0.99 and RV of
0.95–0.96, respectively. Although the number of bands had decreased from 336 to 7 and
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6, the multi-band models had similar or better performances than the full-band models.
The results implied that the developed multispectral models were optimized parsimo-
nious models of just a few key wavelength variables with better predictive power than the
hyperspectral models.

Table 5. AFB1 prediction results using key wavelengths.

Inoculation Methods LVs RC RMSEc RV RMSEv RPD

NRRL 3357 (102 spores mL−1) 4 0.98 5.426 0.95 15.235 2.42
NRRL 3357 (104 spores mL−1) 2 0.99 3.856 0.96 17.438 1.58
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3.3.3. Prediction Image of AFB1 Content

A prediction image, similar to a heat map, was used as a visualization tool to observe
the variation of content in the spatial dimension, with each pixel quantitatively displaying
the level of AFB1 content with different colors. The prediction images for different culture
durations and inoculation types are shown in Figure 7. The color from cold to warm
indicates the concentration value of AFB1 from low to high.
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The changes in the levels of AFB1 over time were easily observed from the predic-
tion image. The level of AFB1 production, when inoculated with a low concentration of
conidia, became higher than that when inoculated with a high concentration of conidia
(top rows in Figure 7), which was consistent with the quantitative chemical analysis of
AFB1 concentration using the HPLC. The results indicated that the optimal model could
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be established based on multispectral data to predict the level of AFB1 concentration at
each pixel, although the predicted results could not provide accurate (or quantitative) AFB1
concentrations at each pixel. When the predicted results were expressed in different colors,
it enabled us to qualitatively analyze the differences in AFB1 concentrations of different cul-
ture types spatially (among locations on culture medium) and temporally (among sampling
intervals). The findings of the current basic research from culture medium have significant
ramifications in detecting and sorting A. flavus infected, as well as aflatoxin contaminated,
crop seeds.

4. Conclusions

The Vis/NIR hyperspectral imaging technique was used to examine the growth
characteristics of A. flavus inoculated on the MAM and detected the dynamic changes of
AFB1 levels among different cultural methods.

Different conditions for AFB1 biosynthesis were achieved by inoculating the medium
with different densities of toxigenic A. flavus conidia for different periods of time. The level
of AFB1 was different in the imparity growth environments of A. flavus. The inoculation
with low conidia concentration synthesized higher levels of AFB1 than the treatments with
high conidia concentration on the MAM.

PCA and PCA-SVM methods were applied to distinguish the growth period, and
results showed that the PCA-SVM method was the most effective. A quantitative PLSR
model with full spectra achieved RC values of 0.91–0.95, RV values of 0.87–0.94, and RPD
values of 1.99–2.54. To make the model more available, key wavelengths were chosen to
establish multi-spectral models, achieving RC values of 0.98–0.99, RV values of 0.95–0.96,
and RPD values of 1.58–2.42. Then, spatially distributed visualization maps were calculated
using the simplified model, and the AFB1 concentration regularity was in accordance with
the measurement by the HPLC analysis. Results indicated the potential of the HSI to detect
A. flavus growth and AFB1 content on a culture medium, which has significant implications
for detecting and sorting A. flavus infection and aflatoxin contamination on crop seeds.
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