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Abstract: Object detection in deep learning provides a viable solution for detecting crop-pest-infected
regions. However, existing rectangle-based object detection methods are insufficient to accurately
detect the shape of pest-infected regions. In addition, the method based on instance segmentation has
a weak ability to detect the pest-infected regions at the edge of the leaves, resulting in unsatisfactory
detection results. To solve these problems, we constructed a new polygon annotation dataset called
PolyCorn, designed specifically for detecting corn leaf pest-infected regions. This was made to
address the scarcity of polygon object detection datasets. Building upon this, we proposed a novel
object detection model named Poly-YOLOv8, which can accurately and efficiently detect corn leaf
pest-infected regions. Furthermore, we designed a loss calculation algorithm that is insensitive to
ordering, thereby enhancing the robustness of the model. Simultaneously, we introduced a loss
scaling factor based on the perimeter of the polygon, improving the detection ability for small
objects. We constructed comparative experiments, and the results demonstrate that Poly-YOLOv8
outperformed other models in detecting irregularly shaped pest-infected regions, achieving 67.26%
in mean average precision under 0.5 threshold (mAP50) and 128.5 in frames per second (FPS).

Keywords: polygon object detection; deep learning; YOLO; pest-infected region detection

1. Introduction

Corn is an essential crop for humans, widely used in biomass energy, the chemical
industry, pharmaceuticals, and more, playing a significant role in human societal develop-
ment. However, Spodoptera frugiperda and Mythimna separata (to simplify the writing,
we use the name “pest” to represent both Spodoptera frugiperda and Mythimna separata
in this paper) often lead to missed optimal prevention and treatment periods due to the
low efficiency of manual diagnosis and rapid pest spread. Thus, it is essential to detect
corn pests early and control pest infection. The timely detection of corn pests and adoption
of appropriate measures can effectively reduce the impact of pests on corn yield, ensuring
the safety of corn quality and economic benefits.

In recent years, deep learning has achieved tremendous success in computer vision,
spawning a variety of computer vision technologies, including object detection [1], image
classification [2], instance segmentation [3], etc. The realm of agricultural applications has
also seen a surge in research endeavors leveraging computer vision technology, encom-
passing tasks such as crop maturity detection and pest disease classification. However,
the current research on deep learning in agriculture is unbalanced, with relatively less
research and application in the pest-infected region detection domain. Moreover, the ex-
isting pest research work was relatively simple, and they had certain limitations when
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dealing with complex-shaped, overlapping pest-infected regions. For example, existing
object detection methods usually use rectangular boxes for detection, as shown in part (a)
of Figure 1. However, these boxes include redundancy background information, leading to
inaccurately describing the shape of pest-infected regions. Additionally, using pixel-level
processing, instance segmentation is insufficient to handle pest-infected regions with un-
clear backgrounds and ambiguous edges, as shown in part (b) of Figure 1. Especially near
leaf edges, the segmented regions will spread outward, leading to the ineffective detection
of pest-infected regions.

Figure 1. Part (a) shows examples of traditional object annotations, and part (b) shows ineffective
instance segmentation of pest-infected regions. Specially, part (c) illustrates our polygon object
annotations.

The current object detection algorithms are mainly two types: two-stage and single-
stage object detection algorithms. Two-stage object detectors generate potential object
bounding boxes through a region proposal algorithm (such as selective search or region
proposal network, etc.) then perform object detection by eliminating redundant proposals.
Compared with two-stage object detection, the single-stage object detection methods have
no region proposal; hence, they have superior detection speed. Among them, YOLO (You
Only Look Once) was a representative single-stage detector proposed by Redmon et al. [4].
Then, researchers proposed various variants [5], including YOLOv8. Despite maintaining
high detection accuracy and speed, the traditional YOLOv8 used rectangular anchor boxes
for object detection, which included unnecessary background and limited its ability to
detect polygon pest-infected regions.

Therefore, this paper aims to propose a new method for detecting pest-infected regions
using polygons. This method is designed to balance speed and accuracy in detecting these
regions. The implementation process involved annotating corn leaf images of pest-infected
regions with polygons and creating a PolyCorn dataset. We annotated pest-infected images
using Labelme, an annotating tool linked at https://github.com/wkentaro/labelme and ac-
cessed on 8 April 2018. During the labeling process, we annotated points in both clockwise
and counterclockwise directions. Concurrently, we adjusted the polygon bounding box to
closely follow the shape of the pest-infected regions. Addressing the issues of unnecessary
background in traditional rectangular prediction boxes and the limitations of instance seg-
mentation when detecting edges, we proposed an innovative polygon pest-infected region
detection model named Poly-YOLOv8, incorporating YOLOv8 and a new polygon detec-
tion head. Furthermore, we devised an algorithm that reduces overfitting in regression loss
caused by coordinate order, called an order-insensitive algorithm. This algorithm enhanced
the model’s emphasis on detecting pest-infected region shapes. Specifically, we introduced
a scaling factor derived from the perimeter of the polygon. This factor balanced the various
scales of pest-infected regions’s loss, enhancing the model’s ability to detect small regions.
Experiments showed that the Poly-YOLOv8 is effective in detecting pest-infected regions.

The following are the main contributions of our work:

• We have constructed a PolyCorn dataset of corn pest-infected regions annotated with
polygons, providing a dataset for detecting polygon pest-infected regions domain.

https://github.com/wkentaro/labelme
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• We have proposed a novel polygon-based object detection model that effectively
balances detection accuracy and speed. This model outperforms other baseline models
in detecting corn pest-infected regions.

2. Related Work

With the rapid development of deep learning, scholars have increasingly focused on
object detection in recent years. Deep learning offers the benefits of high precision and
rapid efficiency in object detection, outperforming traditional object detection techniques.

2.1. Two-Stage Detectors

Object detection models are categorized into two-stage and single-stage detectors
based on their structural design. The R-CNN [6], Fast R-CNN [7], Faster R-CNN [8], and
Mask R-CNN [9] are representative two-stage algorithms. Jiao et al. [10] developed a multi-
class pest detection method with CNN (Convolutional Neural Network) as a core module,
introducing adaptive feature fusion to extract richer pest features and realize pest detection
in complex scenarios. Rahman et al. [11] proposed a lightweight CNN algorithm based on
two-stage training, which improved the detection effect of rice diseases and pests. Selvaraj
et al. [12] used DCNN (Deep Convolutional Neural Networks) and transfer learning for
detecting banana pests. Later, Wang et al. [13] adopted Faster R-CNN for tomato disease
detection and Mask R-CNN for segmenting disease regions. Xie et al. [14] improved grape
leaf disease detection with their Faster DR-IACNN model. They integrated Inception-v1,
Inception-ResNet-v2, and SE-block into the Faster R-CNN algorithm. Experiments showed
its higher object detection ability.

2.2. Single-Stage Detectors

Generally, single-stage detectors have better speed advantages than two-stage de-
tectors. Representative single-stage algorithms included the YOLO series, SSD [15], etc.
Liu et al. [16] optimized the YOLOv3 model by introducing a multi-scale feature pyramid,
which improved the accuracy and speed of the YOLOv3 model in tomato pest detection.
Liu et al. [17] improved the MobileNetv2-YOLOv3 model using the GIoU (Generalized
Intersection over Union) loss function for boundary regression. This modification im-
proved accuracy in detecting tomato gray spot disease. Ganesan et al. [18] employed a
hybrid model combining the ResNet and YOLO classifier with K-means for detecting rice
leaf disease. Leng et al. [19] proposed a lightweight model for object detection based on
YOLOv5 to detect corn leaf blight in complex scenarios. Li et al. [20] proposed an algorithm
for vegetable disease detection by employing the CSP, FPN, and NMS (Non-Maximum
Suppression) modules in YOLOv5-s. The improved algorithm enhanced the multi-scale
feature extraction ability. Afterward, Qi et al. [21] introduced a visual attention mecha-
nism into the SE-YOLOv5 network model, which realized key feature extraction in tomato
disease detection. Khan et al. [22] adopted multiple YOLO models to detect diseases of
corn, proving the effectiveness of YOLO models in pest detection. However, the mentioned
works above mainly detect diseases or pests on leaves, ignoring the pest-infected regions
detection of the leaf. Moreover, traditional object detection adopted rectangular boxes,
which easily contain background information and ignore the advantages of the polygon in
detecting pest-infected regions.

2.3. Polygon Object Detectors

Polygon object detection is a branch of object detection research. Hurtik et al. [23]
proposed Poly-YOLO, a model that is based on YOLOv3 and employs a high-resolution
single output layer. Poly-YOLO was designed to enhance the performance of polygon
object detection. Furthermore, the CenterPoly [24] and CenterPolyV2 [25] were designed
for road user detection in dense urban environments, employing vertex prediction heads
and multiple types of losses to optimize model performance. However, these models have a
poor ability to detect pest-infected regions because the overfitting vertex order information
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leads to ignoring shape features. Employing polar coordinates, Zheng et al. [26] proposed
a new DPPD (Deformable Polar Polygon Object Detection) model, which decoded the
regression vector into valid polygons and resampled sparse polygons into dense polygons.
However, this model can only predict a polygon detection box with a fixed number of
vertices. Moreover, the polygon detection models mentioned above need improvement
because detecting pest-infected regions demands high detection speed.

2.4. Image Classification And Instance Segmentation Detectors

Image classification and instance segmentation are additional methods for detecting
pests and diseases. Padilla et al. [27] used CNN and OpenMP to classify blight, rust,
and spot in corn leaf. Singh et al. [28] proposed an MCNN (Multi-layer Convolutional
Neural Network) for classifying mango leaves infected with anthracnose. Furthermore,
Tang et al. [29] proposed a classification model with 13 kinds of plant diseases. However,
as a coarse-grained detection method, image classification categorizes the entire image,
ignoring the specific pest-infected regions on leaves. Compared with image classification,
fine-grained instance segmentation had some advantages in disease and pest-infected
detection. Stewart et al. [30] used the Mask R-CNN to detect and measure the sever-
ity of corn leaf blight. This model could accurately detect and segment single lesions.
Lin et al. [31] proposed a segmentation model based on CNN, which segmented powdery
mildew on cucumber leaf images at the pixel level. Wang et al. [32] designed a novel
attention module to improve D2Det. They trained it using super-resolution, enhancing
performance in instance segmentation for pest detection. In addition, Li et al. [33] proposed
an integrated framework that combines instance segmentation, classification, and semantic
segmentation models. This framework enabled the accurate segmentation and detection of
potato leaf diseases. However, instance segmentation mainly aims at pest-infected regions
with apparent boundaries, which is less effective when addressing leaf pest-infected regions
with blurred boundaries [34]. Therefore, the pest-infected region detection domain needs
more effective detection methods.

2.5. Our Work

In this work, we addressed the issue in traditional object detection methods where the
use of rectangular bounding boxes captures excessive background information. Hence, we
employed polygons for pest region detection. Using order-insensitive loss, we proposed
Poly-YOLOv8, which can solve the overfitting problem on vertex order information in
existing polygon detection models. It enhanced the performance and speed of pest-infected
region detection.

3. Model

Given an image of corn pests, our model aims to accurately and quickly detect the
polygon pest-infected regions on the corn leaves. We have annotated a dataset of polygon
pest-infected regions based on corn images. To effectively extract features, we chose the
YOLOv8 as the backbone network. Specially, we designed a new polygon detection head
to detect pest-infected regions on corn leaves efficiently.

3.1. Data Loading

We established a Polygon Corn Leaf Pest-infected Region Dataset (PolyCorn) by
labeling the polygon pest-infected regions with a points range of 3 to 6, as shown in
part (c) of Figure 1. The annotation details are discussed in Section 4.1. We employed
coordinate padding for regions with fewer than 6 points to maintain consistency of the
feature matrix and preserve the object region’s shape. The coordinate point information is
P = {p1, . . . , p6}, where pi = (xi, yi) represents the horizontal and vertical coordinates of
the ith point. Additionally, we set up true existence labels T = {t1, . . . , t6} to distinguish
between ground truth points and padding points, where ti ∈ {0, 1} indicates whether
the ith point is a ground truth point. Furthermore, we used Mosaic data augmentation
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to enhance the robustness of pest-infected region detection, including random scaling,
cropping, and arrangement.

3.2. Backbone Network

The structure of Poly-YOLOv8 proposed in this paper is shown in Figure 2. The Poly-
YOLOv8 backbone network relies on multiple C2f (Coarse-to-fine) modules. These modules
address the problem of repetitive gradient information in large-scale CNN frameworks,
reducing model parameters and improving detection speed. Moreover, pest-infected region
feature representation is extracted by pooling and fusing multiple scale feature maps,
which express rich features (such as shape and texture features) of those regions, thereby
improving detection accuracy.

Figure 2. The structure of the Poly-YOLOv8 model.

During the feature extraction process of the backbone network, five different scale
features (P1-P5) were produced. We employed top-down and bottom-up feature fusion
methods to fuse P3, P4, and P5 information and enhance the semantic representation.
Furthermore, we defined the feature outputs of the backbone network at three different
scales as B20×20×(512×w)

small , B40×40×(512×w)
medium , and B80×80×(256×w)

big , respectively, where w is an
adjustment factor used to adapt different parameter volume of the detection model.

3.3. Improved Polygon Detection Head

To efficiently detect pest-infected regions, we designed a new polygon detection
head. As shown in Figure 2, the detection head designed with a decoupled structure can
achieve better expressive ability. It mainly consists of three branches: The pointness branch
predicts whether each point belongs to a pest-infected region. The bbox branch predicts the
bounding box coordinates of the pest-infected region, while the cls branch classifies the
type of those regions. Additionally, we designed an order-insensitive module to compute
the coordinate regression loss.

We used the decoupled head to predict polygon object information for the three scale
feature map from the network. In the bbox branch, we used the convolutions module with
1× 1 kernel to process three different scales feature maps and predict the coordinate infor-
mation P′ =

{
p′1, . . . , p′6

}
, where p′i =

(
x′i , y′i

)
∈ R2 represents the predicted ith coordinate

point. As shown in part (a) of Figure 3, traditional polygon calculation predicts coordinate
points and regression loss, giving excessive consideration to fitting the prediction object
point order to the model. Observing part (b) of Figure 3, we found that the prediction box
was already close to the ground truth bounding box for object detection in the real world.
However, the displacement of the prediction point order will cause excessive regression
loss when calculating regression loss, which neglects the importance of detection shape for
object detection, causing disturbances in the model convergence process. Simultaneously,
overfitting to point order reduced the overall robustness of the model, a phenomenon that
we referred to as coordinate order sensitivity loss. To solve this problem, we proposed an
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order-insensitive regression loss calculation algorithm. Hence, we introduced the pointness
branch to extract the true existence information of coordinate points, which adopted a
convolution module with 1× 1 kernel. The extraction formula is defined as follows:

T′ = f (Conv(B)) (1)

where T′ ∈ R6 is the output of the pointness branch. In our work, the pointness branch
aims to learn whether the corresponding coordinate point truly exists (a true value of 1
indicates existence, and 0 indicates non-existence). Therefore, to approximate the function
value as closely as possible to the binary value [0,1] and ensure function continuity for back-
propagation, we designed an approximation function f , defined as f (x) = 1

2 (1 + tanh(kx)),
where k is the approximation coefficient with a value of 256. Simultaneously, we adopted
a gradient regularization truncation mechanism to prevent a gradient explosion during
approximation. For inference, we will maintain points in T′ that the confidence is greater
than 0.5, using them as the predicted coordinate points for the polygon detection box.

Figure 3. Part (a) shows that the traditional polygon calculation of regression loss overly considers
the influence of the predicted object point order on the model. Therefore, we proposed an order-
insensitive regression loss calculation algorithm in part (b). Additionally, part (c) shows the IoU
(Intersection over Union) of images.

Afterward, we selected the points closest to the true value coordinate points from the
predicted value coordinate point subset by Algorithm 1. The algorithm iterated through
each ground truth point pl and calculated its distance from each predicted point p′q using
the Euclidean distance. It selected the predicted point with the minimum distance from
the ground truth point. Then, it updated the index of the selected predicted point z and
the probability of existence v. We repeated the process until all ground truth points have
been traversed. As a result, the algorithm constructed a loss_pair tuple, which contains a
ground truth point and a selected predicted point with its existence probability. Finally,
these tuples were added in a set E. We removed the prediction selected point from the set
of P′ to avoid duplicate calculations. Subsequently, we calculated the coordinate regression
loss LP of each prediction box as follows:

LP =
α

|E| ∑
e∈E

et′

(
(ex − ex′)

2 +
(

ey − ey′
)2
)

(2)

where |E| is the number of elements in set E; e is a loss_pair element in set E; et′ represents
the existence probability of the prediction box in this loss_pair; ex and ey, respectively,
represent the x-coordinate and y-coordinate of the ground truth box in this loss_pair;
and ex′ and ey′ , respectively, represent the x-coordinate and y-coordinate of the predicted
box in this loss_pair. To enhance the detection ability for small pest-infected regions, we
introduced α scaling factor a based on the perimeter of the polygon for harmony MSE
(Mean Square Error), where α = 2

C+C′ , C and C′, respectively, represent the perimeters
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of the ground truth box and the predicted box. Afterward, we calculated the coordinate
existence loss LT as follows:

LT =
1
6

6

∑
i=1

(
ti − t′p′i

)2
(3)

We defined the coordinate regression loss Lcoord = LP + LT .
Additionally, we used polygon IoU loss to constrain the shape of the object box, as

shown in part (c) of Figure 3. Since it involved non-convex polygon IoU computation, we
obtained the pixel areas covered by the ground truth object box and predicted object box,
respectively. Then, we calculated IoU by computing the intersection and union pixel of the
images. The IoU loss is formulated as follows:

LIoU = 1− A ∩ A′

A ∪ A′
(4)

where A is the pixel area covered by ground truth box, and A′ is the pixel area covered by
predicted box.

Algorithm 1 Order-insensitive algorithm

Input: Set of ground truth coordinate points P← {p1, . . . , p6}, Probability of the existence
of ground truth coordinates points T ← {t1, . . . , t6}, Set of predicted coordinate points
P′ ←

{
p′1, . . . , p′6

}
, Probability of the existence of predicted coordinates points T′ ←{

t′p′1
, . . . , t′p′6

}
Output: E

1: E← ∅
2: for l = 1 to n do
3: if tl = 0 then
4: Break
5: end if
6: Initialize distance dist← 0, Index of the predicted coordinate point z← 0, Probability

of the existence of predicted coordinates points v← 0
7: for q = 1 to |P′| do
8: µ← Calculate the euclidean distance between the true point Pl and the predicted

point p′q
9: if q = 1 then

10: dist← µ
11: else
12: if µ < dist then
13: dist← µ, z← q, v← t′p′z
14: else
15: Keep the current values of dist, z, and v unchanged
16: end if
17: end if
18: end for
19: loss_pair ←< pl , p′z, t′p′z >
20: E← E ∪ {loss_ pair}, P′ ← P′ − {p′z}
21: end for
22: return E

In the cls branch, we adopted a convolution module with 1× 1 kernels to predict the
probability Y′ of the object categories. The prediction process is formulated as follows:

Y′ = sigmoid(Conv(B)) (5)
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We used NMS to filter out redundant boxes and the binary cross-entropy loss function to
calculate the object classification loss. The calculation formula is defined as follows:

Lcls = −y log
(
y′
)
− (1− y) log(1− y′) (6)

where y and y′ represent the ground truth label probability and the predicted box proba-
bility, respectively. Combining the three types of losses, we calculated the overall loss L
as follows:

L =
1
N

N

∑
j=1

(
Lj

coord + Lj
IoU + Lj

cls

)
(7)

where N is the number of samples in the training set and j represents the sample index.
We developed the Poly-YOLOv8 using the PyTorch framework, which automatically

computes gradients for model parameters through loss and automatic adjustment of
parameters via gradient descent. Our model employed an improved polygon detection
head that effectively detects pest-infected regions with varying shapes. Additionally, we
designed an order-insensitive loss calculation method to solve the overfitting of vertex
ordering features on the model’s learning. This enabled the model to focus on learning the
intrinsic shape features of pest-infected areas.

4. Experiments
4.1. Data Processing

In this paper, we focus on the detection of pest-infected regions in corn. Hence, we
used the PolyCorn dataset in experiments. The raw dataset selected in this paper was
taken from the Kaggle repository (Acharya, 2020) Corn Leaf Infection Dataset, labeled as
healthy and infected. The dataset contains 4225 images, with the number of healthy and
infected being 2000 and 2225, respectively. Since we only detected pest-infected regions, we
selected 2225 infected images as the annotation subject. Those images are infected by two
types of pests: Spodoptera frugiperda and Mythimna separata. Additionally, these corn
images cover three different stages of corn growth, namely, the seeding stage, the tillering
stage, and the flowering and grain-filling stage. During the annotation, we found that a
polygon with 6 points could cover most pest-infected regions. Furthermore, we aim to
detect the degree of damage on corn leaves rather than the specific type of pest. Therefore,
we categorized the pest-infected regions into three different stages for annotation purposes,
namely, gather (the pest gathering region), infect (the infected pest region), and gnaw (the
gnawed pest region) respectively. That constructed the PolyCorn dataset, which was open-
sourced at https://github.com/meizi-eng/PolyCorn-Dataset and accessed on 23 July 2023.
We split the training and test datasets with 70% and 30% proportions, respectively. The
images of the three categories are shown in Figure 4.

Figure 4. Images of the three categories of pest-infected regions on corn leaves.

4.2. Evaluation Metrics

We expected the model to balance detection accuracy and speed in object detection.
To comprehensively evaluate the abilities of the model in these two aspects, we employed

https://github.com/meizi-eng/PolyCorn-Dataset
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the mainstream evaluation metrics P (Precision), R (Recall), and mAP (mean Average
Precision) under different IoU thresholds (In object detection, there may be redundant
predicted bounding boxes. The IoU is employed to evaluate the degree of overlap between
predicted and ground truth regions. In mAP, only predicted bounding boxes greater than
the IoU threshold will be retained). Those metrics are commonly used to evaluate detection
accuracy in the object detection domain. Meanwhile, the FPS (Frames Per Second) was
adopted to evaluate the detection speed of the model. The values of these metrics were
positively correlated with the effectiveness of the detection model.

4.3. Parameter Settings

We developed the model based on the Pytorch framework and completed the model
training on 2 GPUs (NVIDIA A100 40 G, Santa Clara, CA, USA). The hyper-parameter
settings during the training process are shown in Table 1. The number of training epochs
was set to 300. The large image sizes will provide more features for model learning, but
they also increase computational complexity and training time. We set image size as
640× 640, which balances model performance and computational efficiency. A large batch
size can increase training speed because it enables the model to process more samples
simultaneously. However, this may compromise stability during training. Conversely, a
small batch size can promote training stability at a slow training speed. To balance between
these factors, we set the batch size as 16.

Table 1. Hyper-parameter settings table.

Parameters Setup

Epochs 300
Batch Size 16
Image Size 640× 640
Optimizer SGD
Momentum 0.937
Weight Decay 5× 10−4

Initial Learning Rate 1× 10−2

Final Learning Rate 1× 10−4

Save Period 10
Image Scale 0.5
Image Flip Left-Right 0.5
Mosaic 1.0
Image Translation 0.1
NMS IoU 0.7
w {0.25v | v ∈ Z+, v ≤ 5}

We used the SGD optimizer to optimize model parameters. We set the momentum
parameter as 0.937, which was used to accelerate the convergence of SGD and stabilize
its update direction. A weight decay coefficient of 5× 10−4 was employed to mitigate
overfitting and enhance generalization.The initial learning rate and the learning rate decay
mechanism can impact the model’s training speed and performance. A higher initial
learning rate accelerates training but raises instability, while a lower learning rate increases
stability at slow training speed. In this paper, we set the initial learning rate to 1× 10−2 and
employed a learning rate decay mechanism, resulting in a final learning rate of 1× 10−4.
Those settings will balance learning speed and stability. The model was saved every
10 epochs for selecting the optimal model. Additionally, we employed data augmentation
methods, including image scaling, left-right image flipping, mosaic application, and image
translation. The probabilities that occurred during training were 0.5, 0.5, 1.0, and 0.1,
respectively. The IoU threshold for non-maximum suppression was set to 0.7. We defined
several parameter scaling factors: n, s, m, l, and x, with the number of parameters increasing
sequentially. Furthermore, the adjustment factor w was set as 0.25, 0.5, 0.75, 1.0, and 1.25
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under the parameter scaling factor n, s, m, l, and x, respectively. The adjustment factor w is
shown in Figure 2. It multiplies the hidden layer dimension to control the scale of model
parameters.

4.4. Baseline Models

To comprehensively compare our proposed model, we conducted comparative experi-
ments with the Poly-YOLOv8 and five advanced baseline models. Specifically, it included
Mask R-CNN, Poly-YOLO, DPPD, CenterPoly, and CenterPolyV2. The information for
the baseline models is shown in Table 2. We compared our proposed model with baseline
models in terms of detection accuracy and speed for pest-infected regions. The original
Mask R-CNN is a rectangular bounding box detector. To facilitate the adaptation of the
model to polygon object detection, we employed the polygon detection head proposed
in this paper to replace the detection head of Mask R-CNN while maintaining the rest of
the network architecture unchanged. Hence, the replaced Mask R-CNN retained its origi-
nal detection capabilities. Additionally, the YOLOv8 series contains five scaling models,
marking different scale models based on parameter scaling factors n/s/m/l/x. We used
Poly-YOLOv8 series models with the same scaling factors as YOLOv8.

Table 2. Baseline models information.

Ref. Models Datasets

[9] Mask R-CNN COCO [35]
[23] Poly-YOLO Simulator, Cityscapes [36], and IDD [37]
[26] DPPD Cityscapes and Crosswalk
[24] CenterPoly Cityscapes, KITTI, and IDD
[25] CenterPolyV2 Cityscapes and IDD

Ref. Contributions Remarks

[9] Using mask mechanism Slow training and detection
[23] Using YOLOv3 for detection Poor performance and slow detection
[26] Using the deformable polygon detection Detection with a fixed number of vertices
[24] Using central polygon method Relies on a pre-defined center key point
[25] Using the improved regression loss Overfitting the coordinate order loss

4.5. Comparative Experiment Analysis

Table 3 lists the experiment results of the Poly-YOLOv8-x and the baseline models,
including the P (Precision), R (Recall), and mAP. Meanwhile, a comparative analysis was
conducted in the loss functions of the six models, and the corresponding change curves
were plotted, as shown in Figure 5. Comprehensively considering Table 3 and Figure 5, the
comparison results of each model are analyzed as follows:

1. As seen in Table 3, the detection performance of the model gradually increased from
Poly-YOLO to Poly-YOLOv8-x. Compared with Mask R-CNN, the various metrics
of Poly-YOLOv8-x were improved by 5.54%, 2.67%, 1.57%, and 3.93%, respectively,
reflecting that the Poly-YOLOv8-x model is more powerful in detecting pest-infected
regions. It suggested that the Poly-YOLOv8-x can better extract the shape features of
those regions than the baseline models.

2. Compared with traditional polygon object detection models (Poly-YOLO, DPPD,
CenterPoly, CenterPolyV2), Poly-YOLOv8-x had an advantage in accuracy, which sug-
gested that the new polygon detection head was effective in predicting pest-infected
regions. Compared to CenterPoly and CenterPolyV2, the improved loss calculation
method enhanced the model’s ability to learn the shape features of pest-infected
regions rather than only fitting the order coordinates of region vertices. Overall,
the evaluation metrics of the Poly-YOLOv8-x were higher than the baseline models.
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The improved Poly-YOLOv8-x had more robust polygon object detection abilities,
achieving higher and more stable detection performance in complex scenarios.

3. As can be seen from Figure 5, the improved Poly-YOLOv8-x fluctuates less when
converging. This indicated that our model had better robustness and faster conver-
gence. Simultaneously, our improved loss calculation method effectively focuses on
the shape features of pest-infected regions. In summary, compared with baseline
models, the Poly-YOLOv8-x had better detection performance on the corn leaves.

Table 3. Comparison results of models.

Model P R mAP50 mAP50–95

Poly-YOLO 60.64% 52.36% 54.46% 31.85%
DPPD 64.23% 56.54% 60.38% 38.46%
CenterPoly 66.67% 58.61% 62.35% 40.58%
CenterPolyV2 67.57% 59.36% 63.82% 42.64%
Mask R-CNN 69.34% 62.16% 65.69% 44.21%
Poly-YOLOv8-x 74.88% 64.83% 67.26% 48.14%

Figure 5. The loss curve of models.

We designed experiments to compare the five different scale models of the Poly-
YOLOv8 series, and the results are shown in Table 4. Analyzing Table 4, we found that the
parameter scale limited the Poly-YOLOv8-n model, which had weaker detection abilities.
Meanwhile, compared with other baseline models in Table 3, Poly-YOLOv8-n had no
advantage in the accuracy of pest-infected region detection. Additionally, the Poly-YOLOv8-
s and Poly-YOLOv8-m balanced the amount of parameters and detection effects, thereby
achieving competitive performance with the baseline models. The mAP50 and mAP50−95
metrics of Poly-YOLOv8-l were slightly higher than those of Poly-YOLOv8-m, but the
parameters increased by nearly 70%. The speed and parameter volume of the Poly-YOLOv8-
x model further increased, but the mAP improvement was limited. The overall trend
showed that the parameter volume of the model was positively correlated with the accuracy,
where Poly-YOLOv8-x had the best detection effect.

The FPS is the number of images processed per second, which can intuitively reflect the
speed of a model and is a key metric to measure inference speed. The comparison between
the FPS metric of different models is shown in Figure 6. The FPS of the Mask R-CNN model
was less than 15, making it unsuitable as a real-time detection solution. Although the FPS
of Poly-YOLO, DPPD, CenterPoly, and CenterPolyV2 satisfied real-time requirements, their
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speed was insufficient to detect complex real-time detection. The improved Poly-YOLOv8
series models had an obvious advantage in detection speed. Especially the model with the
largest number of parameters, Poly-YOLOv8-x, could also reach 128.5 FPS. This showed
that the improved Poly-YOLOv8 series models effectively balanced accuracy and detection
speed, making them suitable for complex real-time detection.

Table 4. Comparison results of YOLOv8 series models.

Model mAP50 mAP50–95 Parameters

Poly-YOLOv8-n 60.74% 37.90% 3.25 M
Poly-YOLOv8-s 64.36% 42.15% 11.78 M
Poly-YOLOv8-m 66.02% 45.76% 27.22 M
Poly-YOLOv8-l 66.75% 46.43% 45.91 M
Poly-YOLOv8-x 67.26% 48.14% 71.72 M

Figure 6. FPS metrics among different models.

4.6. Ablation Experiment

To comprehensively evaluate the impact of order-insensitive loss on model perfor-
mance, we conducted ablation experiments on Poly-YOLOv8 at different parameter scales.
The results of the experiment are shown in Table 5. By analyzing Table 5, we found that
in all models of different parameter volumes, both increased mAP50 and mAP50−95 after
introducing the improved loss calculation method. This proved that order-insensitive
loss could enhance the ability of models to extract features from the pest-infected regions.
Using order-insensitive loss, the improvement in the mAP50−95 was more significant, which
suggested that order-insensitive loss allows the model to focus on learning object shape
features rather than coordinate point order features. Especially on large-scale models
Poly-YOLOv8-l and Poly-YOLOv8-x, the improvement was significant, at 2.01% and 1.9%,
respectively. The results suggested that the order-insensitive loss has better gain effects on
Poly-YOLOv8 with larger parameter scales and stronger feature extraction capabilities.

Table 5. The results of the ablation experiment.

Model Order-Insensitive Loss mAP50 mAP50–95

Poly-YOLOv8-n % 59.96% 36.04%
Poly-YOLOv8-s % 63.89% 40.48%
Poly-YOLOv8-m % 65.61% 43.91%
Poly-YOLOv8-l % 65.93% 44.42%
Poly-YOLOv8-x % 66.48% 46.24%
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Table 5. Cont.

Model Order-Insensitive Loss mAP50 mAP50–95

Poly-YOLOv8-n ! 60.74% 37.90%
Poly-YOLOv8-s ! 64.36% 42.15%
Poly-YOLOv8-m ! 66.02% 45.76%
Poly-YOLOv8-l ! 66.75% 46.43%
Poly-YOLOv8-x ! 67.26% 48.14%

4.7. Overall Experimental Analysis

To visually compare the detection ability of different models, we show the detection
results in Figure 7. It can be seen from the fig that Poly-YOLOv8-x could detect small
pest-infected regions, which suggested that the detection performance of Poly-YOLOv8-x
was better than baseline models for small pest-infected regions. The experiment results
reflected that using a perimeter-based scaling factor helps adjust the weight of large and
small objects in the overall loss. This prevents the overemphasis on the loss from large
objects, which could cause the model to focus on learning from large pest-infected regions
while disregarding small pest-infected regions. Meanwhile, the Poly-YOLOv8-x accurately
detected the pest-infected regions on the leaf edge, indicating that the improved loss
calculation method effectively enhanced the detection ability for object boxes. Additionally,
regarding the confidence of detected pest-infected regions, Poly-YOLOv8-x had an obvious
advantage over baseline models.

Figure 7. The detection results for Poly-YOLOv8-x and baseline models.

Moreover, to evaluate the detection capability of Poly-YOLOv8 in different corn
growth stages, we divided the corn growth cycle into three stages: the seeding stage,
the tillering stage, and the flowering and grain-filling stage. The detection results are
shown in Figure 8. The results indicated that Poly-YOLOv8 can effectively detect pest-
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infected regions in three stages of corn growth. It does not specifically rely on a particular
growth stage of corn. Moreover, our images were sourced from two types of pest infection
(Spodoptera frugiperda and Mythimna separata). The purpose of Poly-YOLOv8 is to detect
the degree of damage on the corn leaves. Therefore, Poly-YOLOv8 has the ability to detect
pest-infected regions when damage caused by other pests is similar to regions labeled as
the infect and gnaw in the PolyCorn. However, considering the varying larval forms of
different pests, the effectiveness of our model may be compromised when detecting the
gather regions. This will be a key focus of our future research.

Figure 8. The detection results for different corn growth stages.

Additionally, we showed the results of polygon detection and rectangular detection in
Figure 9. We found that the traditional rectangular bounding box contains many healthy
corn leaf regions, especially for elongated pest-infected regions. When detecting dense
regions, rectangular bounding boxes were easy to overlap, making it ineffective to de-
tect and evaluate true pest-infected regions. Compared to rectangular bounding boxes,
polygon bounding boxes were more closely related to true pest-infected regions. Even
in dense regions, it could effectively detect pest-infected regions and significantly reduce
overlapping problems.

Figure 9. Comparison of polygon detection and rectangular detection results.

Through the above analysis, the Poly-YOLOv8-x was powerful in detecting pest-
infected regions. The experiment results showed that the polygon detection head could
effectively extract features of the detection object. Additionally, the improved loss cal-
culation method enhanced the extraction ability of small object features. A comparative
analysis of Table 4 and Figure 6 indicates that baseline models have an imbalance be-
tween detection accuracy and speed. In baseline models, Mask R-CNN demonstrates high
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detection precision (the mAP50 is 65.69%) but has low detection speed (the FPS is 10.4).
Conversely, the DPPD within the baseline model shows higher detection speed (the FPS is
67.3) but lacks detection accuracy (the mAP50 is 60.38%). Compared with baseline models,
our proposed model achieved superior detection accuracy and speed performance. In
conclusion, the improved Poly-YOLOv8-x could maintain high detection accuracy and
speed in pest-infected regions, satisfying the real-time detection requirements.

These experimental results are insightful for future research and practical applications
in pest-infected region detection. We should consider balancing the detection accuracy
and speed in practical applications of pest-infected regions. Therefore, future studies
could focus on optimizing both aspects concurrently. Enabling timely intervention through
accurate and fast detection, a well-balanced model can enhance overall pest management
strategies, thereby mitigating losses associated with corn pests.

5. Conclusions

To improve the ability of polygon pest-infected region detection, we proposed a
novel object detection model based on YOLOv8, namely, Poly-YOLOv8. Firstly, to detect
the corn leaf pest-infected region, we constructed a dataset annotated with polygons,
PolyCorn. Secondly, we improved the polygon object detection method by designing a new
order-insensitive regression loss calculation algorithm, which solves the problem of over-
consideration point order in calculating the polygon regression loss. This improvement
enhanced the feature extraction ability and overall robustness. Additionally, to improve the
detection performance in small objects, we employed loss scaling with the perimeter factor
to balance the losses of different scale objects. Finally, the experiment results demonstrated
the effectiveness of the Poly-YOLOv8 series models in pest-infected regions detection, and
the result of Poly-YOLOv8-x was superior to baseline models.

In future work, we will continue to explore the research of polygon object detec-
tion in agriculture. To enhance the classification ability of pest-infected regions, we will
introduce graph neural networks to aggregate feature information and spatial informa-
tion of the predicted points, thereby improving the model’s capability in classifying the
predicted regions.
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