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Abstract: Understanding the invasion potential of any plant species is crucial for early detection in
habitat conservation, particularly when observing their expansion within their native region. As a
test species, we utilised Allium ursinum L., a dominant clonal species in early spring forest floors. We
compared the species’ germination capacity in native (Hungarian) and non-native (North American)
soils, its seedling growth, and competing performances with two co-occurring dominant species,
Melica uniflora Retz. and Carex pilosa Scop., in ten soil types and three soil compositions, respectively.
Additionally, the competitive interactions of A. ursinum with Convallaria majalis L., a species already
introduced in North America, were assessed under three moisture conditions. The results revealed
that A. ursinum exhibited enhanced germination in non-native soils, while its shoot growth was most
vigorous in control soil. When grown in soils with different co-dominant species, A. ursinum seedlings
exhibited varying growth rates, significantly influenced by solar radiation intensity. A. ursinum shoots
displayed superior growth in soil collected from C. pilosa stands compared to soil originating from its
own stands. Notably, A. ursinum effectively competed against C. majalis in moderate soil moisture
conditions. Furthermore, increasing sand content improved the competitive ability of A. ursinum
against C. pilosa and M. uniflora. Based on our findings, A. ursinum possesses an invasion potential
for particular North American habitats. However, the extent of its potential is dependent upon soil
and climatic conditions. Under medium moisture regime, A. ursinum might outcompete the already
established C. majalis from its habitats. Additionally, it can potentially displace native species with
comparable ecological characteristics, such as C. pilosa and M. uniflora, especially in loose soils. Similar
cross-range seed germination, growth, and paired competition experiments with potential competitor
species are highly recommended as these can not only elucidate its native range expansion but also
various growth scenarios for its agricultural cultivation.

Keywords: biotic interactions; germination and growth profiles; Relative Interaction Index; invasion;
competition; solar radiations; co-existing species

1. Introduction

The roles of plant community compositions are usually determined by coevolved inter-
actions of long-term associated native species [1–3]. Abiotic factors can alter the plant–plant
interactions that have evolved in natural ecosystems since they can modify the competi-
tive relationships within a system [4–6]. The manifestation of this alteration can initially
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be observed as a transformation in the dominant structure of plant communities [5,7,8].
Changes in the dominance structure can also occur due to the introduction of a novel and
highly competitive plant species, which can then impact the coexistence of species through
the exclusion of weaker competitors or by imposing constraints on similar species [9–15].
Therefore, it is necessary to investigate the probability of the establishment of a dominant
species in the potential recipient ecosystem [16–20]. Due to human activities’ direct and
indirect consequences, many plant species have become naturalised in new geographic
ranges by establishing self-sustaining populations [21–23]. A subset of these naturalised
species became invasive by spreading across considerable distances [24,25] and posing a
potential threat to native biodiversity and ecosystem functioning [26–28]. The spread of
invasive plants is associated with a significant change in host community composition,
and its impact varies as per the characteristics of the invaders and the invasibility of the
host community [29–34]. The invasive properties of a plant species are determined by
its ability to germinate successfully and how well it can compete against co-occurring
species [23]. Among these invasive proprieties, clonal growth form is considered one of
the most essential traits of successful invaders, enabling them to spread across numerous
disturbed habitats [35–37]. Also, the ease of seed dispersal is key for effectively establishing
an introduced alien species, e.g., for agricultural purposes [38–40], but little is known about
the early-stage establishment of dominant species. Understanding the invasion potential of
dominant plant species is incredibly important if we want to prevent the adverse outcomes
of their accidental or intentional introductions. Interspecific interaction experiments’ role
and importance in understanding community dynamics have been primarily underesti-
mated [41,42]. These interspecific interactions further elucidate the need to understand
plant–plant interactions (dominant vs. subordinate species). Along with the dominant
plant species, co-dominant species’ behaviour in above- and below-ground spaces can be
significant when disentangling how a community is organised [41,43,44].

In our study, we chose to focus on Allium ursinum L. (hereafter “A. ursinum”) based
on long-term monitoring studies conducted in its native range in Germany, where its
behaviour has changed over the past decades, transitioning from a species with natural
fluctuations to a naturally expanding species [45,46]. A. ursinum is a strong competitor
in wet and nutrient-rich soil conditions within its native mesic habitats [14,45–48]. This
plant outcompetes its natural competitors in the herb layer and can destroy the herbaceous
plant community diversity by often forming monodominant stands [14,47,49–51]. Due to
its high nutritional and pharmaceutical value [52–55], there have been several attempts to
bring wild A. ursinum into agricultural production in its native range, i.e., in Europe [56–60]
and outside of its native range like in India [61,62], and Russia, etc. [63]. Still, there is a
significant amount of work to be conducted in this regard.

Evidently, A. ursinum can spread intrusively in native populations; it is assumed to be
an aggressive invasive species in a new habitat. This led us to investigate its germination
potential in a similar climatic zone in the northern United States. Interspecific competition
with other dominant species in its native range can determine the spread of such species
since these species play a fundamental role in maintaining the structure and diversity of
the given plant communities [14,15]. Presumably, in its non-native range, where different
dominant species with similar community characteristics exist, A. ursinum would have a
competitive advantage there. Such competitive interactions, however, should be tested
in the laboratory setting so that the impacts of the abiotic conditions and plant–plant
interaction effects can be established first, as various soil properties have been reported to
affect its growth, flowering, and overall nectar production [53,64,65]. Convallaria majalis L.
(hereafter ‘C. majalis’) is a native species found in the European forest floors. The similar
leaf morphology of C. majalis and A. ursinum frequently leads to confusion between these
two species, and due to the similarities in their life strategies, both might lead to competition
in their natural habitats [66]. C. majalis has already escaped from cultivation and established
new habitats where it has been naturalised in several states of the U.S. and Canada [67].
Hence, the question arises: under what abiotic conditions does A. ursinum have a chance of
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defeating C. majalis and which areas are potentially threatened if A. ursinum is introduced?
A previous field experiment on A. ursinum revealed that the strongest competitors in its
native plant community were Carex pilosa (hereafter, ‘C. pilosa’) and Melica uniflora Retz.
(hereafter ‘M. uniflora’), which are clonal and maintain biodiverse-rich herb layers, but
A. ursinum was able to disrupt this community hierarchy [14].

In our research, the initial objective was to explore the cross-range germination of
commercially available A. ursinum seeds in North American soils, as opposed to their
germination in Hungarian soils. The main aim was to assess the species’ ability to germinate
effectively in soils from a novel geographic range that may have unique soil biota and
chemical composition.

Secondly, we aimed to examine the effect of native soils collected under it and its native
competitors on the growth of A. ursinum seedlings in response to direct solar radiation. We
expected that more nutrient-rich soils would support more vigorous A. ursinum growth
and that the effects of sunlight would significantly impact growth intensity.

Thirdly, the effects of soil texture and water supply were assessed on the plant–
plant interactions between A. ursinum and its co-dominant plant species. The aim was to
determine under what soil texture and water conditions A. ursinum can achieve greater
competitiveness than its natural competitors.

By addressing these research questions, we aimed to gain a deeper understanding of
the ecological factors influencing the growth and spread of A. ursinum and draw attention
to the potential invasive behaviour of the species even within its native range. These efforts
can facilitate the development of future conservation management strategies, aiming to
regulate the plant’s potential spread while preserving native plant communities. Consider-
ing that A. ursinum can be cultivated in various floral and environmental settings across
Europe and other temperate regions, including the United States, we have strived to create
a model that can be evaluated through applied research in specific habitat conditions.

Our findings can provide valuable insights into the species’ ecological behaviour and
invasive potential, enabling the management of issues arising from its cultivation and the
development of effective defense strategies.

2. Materials and Methods
2.1. Study Plants

Allium ursinum L., commonly known as ‘bear garlic’ of Amaryllidaceae [68] family, is an
early spring clonal and bulbous geophyte that grows climate-zonally on moist, well-drained,
humus and nutrient-rich soils in mesophilic deciduous and mixed forests [47,48,51,69–71].
Furthermore, it spreads intrazonally throughout riparian forests with an additional water
supply or even in treeless wet habitats (e.g., [72,73]). Its spread is limited by the fact that
there is significant evaporation through its large leaf surface, which makes it a stenohydric,
moisture-demanding plant species [74]. At the same time, it has high nutrient demands,
especially in its reproductive phase, which is why its lifespan is approximately a decade.
Its short life cycle is offset by clonal spread and significant seed production [48,70]. It
germinates in the fall but is a light-demanding plant from the seedling stage by spring.
When forests completely leaf out and light availability decreases, A. ursinum recovers
nutrients from their leaves and slowly recedes into their bulbs by summer [48,49,70].
A. ursinum is a species with a competitive strategy [48,75,76], and it is a character species of
the Fagetalia syntaxonomic group [75–77].

Convallaria majalis L., also called the ‘lily of the valley’ of the Asparagaceae family [68],
is a spring clonal geophyte with a relatively thick rhizome, which can survive on slightly
drier, well-drained, humus and nutrient-poor soils [78], compared to A. ursinum. It is
climate-zonally dominant, mainly in mesophilic deciduous forests and mixed and conif-
erous forests [79]. Although its leaves are similar in size and shape to A. ursinum, they
evaporate less, making them more drought-tolerant than A. ursinum. Its nutrient require-
ments are more moderate, and its growth is much slower than A. ursinum. While C. majalis
has an early juvenile stage that lasts six months and a juvenile stage that lasts one to two
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years, during which time it grows its rhizomes and subsequently its shoots [78], its lifespan
as a clonal plant can reach up to 670 years [80] and the arrangement of the ramets is geneti-
cally driven [81]. It is more shade-tolerant than A. ursinum because its leaves develop in
the spring in moderately shaded forests, and they only wither in the fall. When competing
with summer aspect species, its leaves can be damaged by direct irradiation in summer.
C. majalis has a generalist strategy [76] and syntaxonomically is a broader Querco-Fagetea
species [75,76].

Carex pilosa Scop. the ‘hairy sedge’ of the Cyperaceae family [68] is a thin rhizome-
forming geophytic-hemicryptophyte [82] sedge with extensive clonal growth. The plant has
deciduous leaves on reproductive shoots with long, overwintering leaves at the base [83].
It is more drought tolerant than A. ursinum but also tolerates a wide range of soil moisture
regimes, from dry to wet, and its nutrient requirements are also lower [84–86]. C. pilosa has
more more continental distribution than A. ursinum. It is a dominant species in beech and
hornbeam-oak grasslands of European temperate deciduous forests. Further, it occurs in
mixed forests [87,88] and in the forest steppes of the Southeast European part of Ukraine
and Russia [89]. C. pilosa is a hemisciophyte or moderate sciophyte [82] with a competitive
strategy [76] and syntaxonomically a Fagetalia, Carpinion character species [75–77].

Melica uniflora Retz., commonly known as ‘wood Melick’ of the Poaceae family [68],
is a thin-rhizome forming proto-hemicryptophyte [72], which is a loose tussocky grass
with shoots that die off in the fall. Its distribution is similar to A. ursinum but can also
be found in the Mediterranean and Asia Minor. It is a dominant grassland constituent of
deciduous forests but is also common in mixed forests and forest steppes. It has lower
nutrient requirements and is more drought tolerant but does not tolerate flooding [72]. Its
clonal shoots can grow even in shady habitats. M. uniflora has a competitive strategy [76]
and is syntaxonomically a broader Querco-Fagetea species [75,76].

2.2. Seeds and Propagules Procurement

To minimise the genetic or climatic adaptions within seed material, A. ursinum seeds
for all germination and growth experiments were sourced from a single commercial
source based in the London, UK (https://kykeonplants.mysimplestore.com, accessed
on 19 September 2023). For the competition experiments, the propagules of A. ursinum
and co-existing species C. pilosa and M. uniflora were collected from the Mecsek Hills in
an Oak-Hornbeam (Asperulo taurinae-Carpinetum Soó et Borhidi in Soó 1962) plant associa-
tion in April 2017–2018. C. majalis rhizomes were also procured commercially (Pecs, HU;
https://profifaiskola.com/, accessed on 19 September 2023). A. ursinum seedlings that
were in the same developmental stage and size were selected, while in the case of C. pilosa,
M. uniflora and C. majalis equal-sized ramets and rhizomes were used for planting (each
of ≤5 cm with 1–2 nodes per pot). These soil-less root systems were kept wet and were
immediately used for the growth and interaction experiments.

2.3. Growing Media Types

For the A. ursinum germination test in native and non-native ranges, nine soil samples
were procured across the Mecsek hills (native range) and the northern part of the U.S.A.
(non-native range) during the spring of 2017. In the native range, these nine soils were
sampled from the Asperulo taurinae-Carpinetum plant community where A. ursinum has
monotypic stands and borders the herb layer dominated by C. pilosa or M. uniflora. The
monotypic stands of A. ursinum dominated three sampling sites, C. pilosa dominated another
three, and the subsequent three sites were dominated by M. uniflora, respectively [14]
A. ursinum shoots growth test was also conducted in these nine soils associated with these
three dominant plants. The soil was collected in plastic bags at a 5–10 cm depth of 0.5 m2.
After large debris and litter removal, samples were stored at ~10 ◦C until the experimental
setup [90]. Collected soil types are brown forest soils with clay illuviation (Luvisoils).

In the non-native range, similar procedures were followed for the nine soil collection
sites across Montana, Idaho, and Washington, states within the U.S.A. The habitats can

https://kykeonplants.mysimplestore.com
https://profifaiskola.com/


Agriculture 2023, 13, 2171 5 of 20

be characterised as coniferous forests (Pseudotsuga menziesii and Pinus contorta series) with
metamorphic, sandy loam soils and bottomland hardwood forests (Populus trichocarpa and
Populus trichocarpa-Pinus ponderosa communities) with alluvial soils.

For the interaction experiment with C. majalis, we used a commercially available uni-
versal potting soil (Pecs, HU; https://www.praktiker.hu/, accessed on 19 September 2023).
For the soil mixtures of the C. pilosa and M. uniflora interaction experiments, only soil
samples collected from A. ursinum were used by homogenising them from different habi-
tats. There were three soil texture categories for interaction experiments with C. pilosa
and M. uniflora with 0%, 25%, and 50% of the sand mixture. Potting soil was used in
the control sets of germination, growth, and competition (only A. ursinum vs. C. majalis)
tests, while a commercially procured (Pecs, HU; https://www.praktiker.hu/, accessed on
19 September 2023) fine river sand of nursery grade was used in sand-soil categories of
C. pilosa and M. uniflora interaction experiments.

2.4. Cross-Range Germination Test

Before germination tests, a water-floating test for seeds and embryo dissections was
performed on a random seed lot. To assess the germination vigour of A. ursinum, com-
mercially procured seeds were sown into soils from each of the nine sites from the native
and non-native ranges. The native range setup had ten soils: three of each A. ursinum,
M. uniflora, and C. pilosa growing soils and with one potting soil as a control. In the non-
native range, there were also nine soil sites and one potting soil control. In both ranges,
each site had ten seeds with ten replications. All the setups had 40-celled seed trays (each
cell/pot: 5 × 5 × 6 cm) in all experiments. The facility had to simulate the natural condi-
tions, i.e., seed trays were kept in a growth room with the natural light source but without
additional heating (−4 ± 2 ◦C to 10 ± 5 ◦C). Double-layered jute bags were covered over
trays to model the effect of natural leaf litter and avoid direct light. Soil moisture levels
were monitored weekly and augmented accordingly. The number of germinated seeds
(≥2 mm root) was recorded at the end of the experiment, around the 10th week.

2.5. Growth Experiment

To assess the growth patterns of A. ursinum in different soils, A. ursinum germinated
seedlings were sown in ten soils (similar to the germination test setup mentioned above:
three A. ursinum, three M. uniflora, three C. pilosa, and one as a control with potting soil).
Each soil had five seeds per pot with ten replications. All the treatment trays were subjected
to the same growing conditions as in the above-mentioned soil germination test. Weeds
were recorded and removed to minimise resource depletion. After the first emergent
leaf, setups were transferred to an unheated hoop house facility by the following week to
receive enough solar exposure. During the growth experiment, we also recorded mean
solar radiation data (W/m2/min) from the A.W.S., i.e., Automated Weather Station (http:
//joido.ttk.pte.hu, accessed on 19 September 2023) of the University of Pecs (46◦04′39.9′′ N
18◦12′23.2′′ E; a.s.l. 174 m; manufacturer: Vaisala (Vantaa, Finland; https://www.vaisala.
com, accessed on 19 September 2023) and Lambrecht GmbH (Göttingen, Germany; www.
lambrecht.net, accessed on 19 September 2023). As there was no micrometeorological
station inside the greenhouse and A.W.S. was just next to the greenhouse, we related the
energy from the solar radiation with the potential comparative growth dynamics of the
test plants in ten soils. Presumably, this parameter is mainly related to the temperature
and humidity conditions found in the greenhouse. From the 13th week onward, jute bags
were removed to avoid the irreversible bending of young seedlings. Leaf length and width
were recorded weekly. At the end of the experiment (~21st week), above-ground and
below-ground biomass was harvested, dried (at 60 ◦C for 48 h) and weighed.

2.6. Interaction Experiments

A. ursinum thrives in well-watered and nutrient-rich soils; the alteration of these
conditions was tested within the framework of an interaction experiment that included
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A. ursinum with C. majalis, C. pilosa, and M. uniflora. In the interaction experiment between
C. majalis and A. ursinum, we used universal potting soil as the growing media and set three
watering levels. For the experiment, 45 cells of seed trays (each cell/pot: 5 × 5 × 6 cm) were
filled with potting soil. Growth conditions were the following: illuminance = 70 µE /m2/s;
relative humidity = 60%; temperature = 22–23 ◦C; photo period = 12/12 h in all. The
young seedlings of A. ursinum and rhizomes of C. majalis were used in the following layout:
A. ursinum alone: 15 × 1/cell; C. majalis alone: 15 × 1/cell; A. ursinum + C. majalis together:
15 × 1-1/cell. To model different levels of water supply, we set three different watering
regimes: 8 mL water, low moisture; 15 mL water, medium moisture; 30 mL water, high
moisture. Leaf length and width were recorded for all plants weekly. The experiments
were terminated when A. ursinum mortality reached 80% in any of the given settings.

Plants in this experiment were grown for another season to test their regeneration
ability. Trays were kept in an open outdoor growth facility without additional heating with
a natural light source. Soil moisture levels were monitored and augmented accordingly.
A single-layered jute bag covering was used to avoid weed germination and rainwater or
snowfall erosion that would lead to soil compaction. In spring 2018, trays were moved
back into the growth room and kept under the above-mentioned detailed conditions. The
collection method of the leaf parameters was the same as the previous year. For below-
ground parameters, ‘number of roots’ and ‘longest root length’ were recorded for all plants.
Above and below-ground biomass was separately weighed after drying.

The soil structures were different in the A. ursinum + C. pilosa and A. ursinum +
M. uniflora interaction experiment, and the water supply was the same within the year.
We used the same seed trays as in the previous interaction experiment. The 45 cells
were filled with soils collected in A. ursinum-dominated stands from natural habitats and
were homogenously mixed with sand in the following ratios: 100/0, 75/25, and 50/50.
The seedlings of field-collected A. ursinum were transplanted into these pots with the
following setup: A. ursinum alone 15 × 3 (1/cell) or with either competing species (C. pilosa
or M. uniflora). We also planted the ramets of the competing species pairs A. ursinum
+ C. pilosa (15 × 3; 1/cell) and A. ursinum + M. uniflora (15 × 3; 1/cell). Greenhouse
growing conditions were the same as in the case of C. majalis. Watering was carried out
until saturation, called the ‘wet state’ in 2017. Leaf length and width were recorded for
A. ursinum plants weekly. For C. pilosa and M. uniflora, we recorded the ‘plant height’ and
‘number of leaves’ at the same time as A. ursinum. Trays were wintered outside of the
greenhouse in natural weather conditions. In spring 2018, trays were moved back into
the greenhouse and kept under the above-mentioned conditions. The experiments were
terminated when A. ursinum mortality reached 80% in any of the given settings. In 2018,
the interaction experiment with the A. ursinum + C. pilosa and A. ursinum + M. uniflora pairs
were retested for one season (without regeneration phase), but with a lower water supply,
i.e., in the ‘moist state’. Experimental and growth settings were the same as in the case
of C. majalis in 2017. The collection method of the leaf parameters was the same as the
previous year. For below-ground parameters, ‘number of roots’ and ‘longest root length’
were recorded for all plants. Above- and below-ground biomass were separately weighed
after drying.

2.7. Data Analysis
2.7.1. Germination Test

Testing the germination ability of A. ursinum seeds in different soils from native and
non-native ranges led us to significant germination differences. First, to determine the
applicability of ANOVA, the dataset was checked for the necessary requirements, namely
normality and homoscedasticity. The normality test was achieved using the Shapiro–Wilks
test, while the existence of homoscedasticity among datasets was determined using the
Flinger–Killeen non-parametric test because of the non-normal distribution of the data,
after which the Wilcoxon Sum Rank test was used to show the significant differences among
the datasets.
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2.7.2. Growth Experiment

Growth rate profiles for ten different soils based on the maximum growth values
of A. ursinum seedlings during a 21-week timeframe were box plotted and analysed for
further insights using ANOVA and Duncan post hoc tests. Growth rates of A. ursinum
seedlings in several soils were studied using abiotic parameters like soil type and total
solar radiation per week (the sum between measurements). While neither growth rate nor
solar radiation has normal distribution and homogeneity of variances (homoscedasticity),
quantile normalisation was applied to the data for calculating 3-way ANOVA followed by
the Duncan post hoc test. Duncan post hoc test is needed when more than two experimental
setups are involved in the experiment.

2.7.3. Interaction Experiments

We calculated Relative Interaction Index (Armas et al., 2004 [43]) to evaluate com-
petition and or facilitation between our test species. This index measures the ‘relative
interaction intensity’ in plants, with strong mathematical and statistical properties with
defined limits (+1 and −1; see Section 3.3) for competition and facilitation as it uses basic
arithmetical operators, which make the index quite suitable for measuring multi-species
interactions at the community level.

RII = (Bw − Bo)/(Bw + Bo) (1)

where (Bo) is biomass or growth attained by the candidate plant species growing with-
out inter or intraspecific interactions and (Bw) is growth with an interaction between an
opponent and dominant plant. Inter or intraspecific interactions are primarily a result of
differences in their growth or biomass when grown alone vs. together with other species.
Later measurements might be shorter or larger depending on the interaction type, i.e., com-
petitive or facilitative [43]. Based on the growth values of our interacting plants, several
R.I.I. profiles of A. ursinum alone, co-existing species alone, and A. ursinum together with
co-existing species were calculated using this equation; later, these were box-plotted and
further tested for significance using t-test.

Data from germination, growth, and interaction experiments were analysed using
Microsoft Office 365 suite (Version 2310 Build 16.0.16924.20054; Microsoft Corporation,
Redmond, WA, USA) and R (version 4.4.0) [91].

3. Results
3.1. Germination Test

Even though there was a negligible significant difference between native Hungarian
and non-native American soils (overall only), based on the Wilcoxon Sum Rank test results,
significant germination differences were observed between the native Hungarian A. ursinum
soils and the non-native American soils (p-value < 0.001). The median of germination in
Hungarian A. ursinum soils was higher than in American soils (see Figure 1). Significant
differences were also observed between the A. ursinum soils and the C. pilosa together with
M. uniflora soils within native soils (p-value ≤ 0.0001; see Table 1).

Table 1. Result of the Wilcoxon Sum Rank test assuming that there were no significant differences
between datasets (p < 0.05).

Soil Type p-Value

HUN vs. USA 0.2362
AU vs. USA <0.01

AU vs. CP + MU <0.0001
USA vs. CP + MU <0.001

Abbreviations: HUN—Hungary; USA—United States of America; AU—Allium ursinum; CP—Carex pilosa;
MU—Melica uniflora.
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Figure 1. Comparative germination profile of significantly different A. ursinum seeds germination in
non-native U.S. soils (in green) against the native Hungarian A. ursinum soils (in brown). Error bar
represent the standard error in dataset.

Higher germination was observed in A. ursinum soils; the second suitable soil was
considered under M. uniflora, and the less suitable soil for germination was the C. pilosa soil.
The American soils also showed significant differences when compared with the native
Hungarian C. pilosa and M. uniflora soils (p-value < 0.001; Table 1); however, there were
differences among American soils as well (Figure 1).

3.2. Growth Experiment

The initial intensive growth of A. ursinum shoots extends from week 6 to week 14, with
another growth period occurring up to the 18th week (red line). The average growth rate
of A. ursinum shoots shows a maximum between weeks 10 and 11, with a local maximum
between weeks 16 and 19. The most intense growth from the 6 to 13th week occurs on
C. pilosa soils (light blue line), except the control. M. uniflora soils show low growth intensity
(green line) after a local maximum peak from the 6 to 14th week. The first growth period is
shorter in the control (dark blue line), lasting until week 13. However, it only results in a
local maximum, with the highest growth value among all soils occurring in the 17th week
(Figure 2 and Supplementary Figure S3).

As we can see from Table 2, there were highly significant effects (p-value ≤ 0.001) of
measured abiotic factors such as the sum of weekly solar radiation (here, this refers to the
reflected sun rays as these setups were inside a greenhouse facility). The soils (referred
to as type here, which are based on the procurement site) were also highly significant
(p-value ≤ 0.001) with differences in their mean growth rates. Additionally, the mutual
effect of the weekly amount of solar radiation and the soil type was significant on the mean
growth rate of A. ursinum shoot growth (Table 2). As evident from Figure 3, various soils
had similar growth affinity beyond their types, for example, between A. ursinum_3 and
M. uniflora_2 or among C. pilosa_1 & 2 and M. uniflora_3. Further, A. ursinum soils had the
most divergent growth profiles, while M. uniflora soils shared an affinity with C. pilosa and
A. ursinum soils. C. pilosa soils were mostly the same in their growth rates, except C. pilosa_3
being an outlier with a similar growth profile as the control, though only under the low
magnitude of solar radiation.
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Figure 2. The mean growth rate of A. ursinum shoots for 21 weeks across different soil types. Legend:
AU = A. ursinum; CP = C. pilosa; MU = M. uniflora.

Table 2. The effects of solar radiation and soil types on the mean growth rate of A. ursinum shoots
across ten different soils using a 3-way ANOVA test.

Df Sum Sq. Mean Sq. F Value Pr (>F)

Solar 1 2.415 × 1012 2.415 × 1012 119.365 <0.001
Soil Type 9 7.684 × 1012 8.538 × 1011 42.206 <0.001

Solar: Soil Type 9 3.246 × 1012 3.607 × 1011 17.831 <0.001

Solar = sum of solar radiation between weekly measurements (Wm−2).
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On the other hand, C. majalis regeneration was unsuccessful in the low moisture cat-
egory, resulting in all the plant deaths (R.I.I. values −1.0). However, in the medium- and 
high-water supply categories, the shoots of the plants were able to regenerate, reducing 
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Figure 3. Duncan post hoc test for growth rate and soil origin type showing which soil origin
had a similar effect on A. ursinum growth rate in response to total solar radiation, y-axis: quantile-
normalised values of growth rate (order of magnitude similar to the values of the sum of solar radia-
tion. Abbreviations: AU—A. ursinum; CP—C. pilosa; MU—M. uniflora; CNT—Control; 1/2/3—site
name. Different letters (a, b, c, d, e) above the symbols refer to significant differences (p < 0.05)
between the effect of soil origins on growth rates.
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3.3. Interaction Experiments
3.3.1. Competition between A. ursinum and C. majalis under Three Moisture Categories
(Figure 4)

The presence of C. majalis did not impact the A. ursinum shoots in any moisture cate-
gory, as their average R.I.I. value was around zero. However, in the presence of A. ursinum,
the C. majalis shoots suffered a significant disadvantage in all moisture categories (F = 22.99,
df = 5, p < 0.001). These results indicate different competitive behaviours in the low (F = 8.04,
df = 5, p < 0.001), medium (F = 48.5, df = 5, p < 0.001), and high (F = 4.53, df = 5, p < 0.01) mois-
ture categories based on the one-way analysis of variance (see Supplementary Table S1).
During the second year of regeneration, the A. ursinum shoots showed no change in the
case of the low moisture category. In contrast, significant advantages were observed in the
medium moisture category, while they were disadvantaged in the case of high water supply.
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Figure 4. Cross categories box-plots of R.I.I. (Relative Interaction Index) values based on shoots (Total
Leaf Area) and roots (Numbers of Roots) of A. ursinum and C. majalis in three moisture categories. The
values above the zeroth fainted dotted line are positive R.I.I. values signifying facilitation, while below
this are negative R.I.I. values indicating competition. Both seasons’ mean (2017–2018) regenerated
plants were harvested by the following spring season. ‘x’ indicates the mean R.I.I. values in all the
box plots. Abbreviations: AU—A. ursinum; CM—C. majalis; reg.—regenerated.

On the other hand, C. majalis regeneration was unsuccessful in the low moisture
category, resulting in all the plant deaths (R.I.I. values −1.0). However, in the medium- and
high-water supply categories, the shoots of the plants were able to regenerate, reducing
their disadvantage compared to the previous year, but they remained in the negative range.
The behaviour of the roots of A. ursinum and C. majalis during the regeneration year was
similar to that of the shoots. However, the latter’s roots slid into the positive range in the
case of high water supply.

3.3.2. Competition between A. ursinum and C. pilosa in a Wet Environment (Figure 5)

In the first year of the experiment, there was no competition between A. ursinum and
C. pilosa at zero sand content. However, the C. pilosa shoots were at a disadvantage at a
quarter of sand content, while the A. ursinum roots gained an advantage (by −0.2 mean
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R.I.I. value). At half sand content, C. pilosa was destroyed. In the following regeneration
year, the competition increased as irrigation decreased. The zero-sand content became
disadvantageous for A. ursinum shoots (−0.2 average R.I.I. value), while C. pilosa still
showed no reaction. The R.I.I. values of the regenerated roots were around zero for both
A. ursinum and C. pilosa. At a quarter sand content, the disadvantage of A. ursinum shoots
increased, with the average values of the roots slipping into the negative range. The
disadvantage of C. pilosa shoots was accompanied by a low average R.I.I. value of the
roots (−0.4), indicating a significant disadvantage. Half of the sand content favoured the
regeneration of A. ursinum shoots, with a slightly positive value of mean R.I.I. around 0.1
and an even higher R.I.I. median of 0.35. However, the shoots (−0.7 RII value) and roots
(−0.65 RII value) of C. pilosa could not withstand the increased sand content. Overall, high
sand content was advantageous for A. ursinum in the competition, while increasing sand
content linearly reduced the competitiveness of C. pilosa shoots and roots.
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Figure 5. Cross categories box-plots of R.I.I. (Relative Interaction Index) values based on shoots
(Total Leaf Area) and roots (Numbers of Roots) of A. ursinum and C. pilosa in three sand categories.
Values above the zeroth fainted dotted line are positive R.I.I. values signifying facilitation, while
below this are negative R.I.I. values indicating competition. ‘Wet state’, denoted with number 1,
is water-saturated soils, and ‘both seasons’ means regenerated plants were harvested by the next
spring season (2017–2018). ‘x’ indicates the mean R.I.I. values in all the box plots. Abbreviations:
AU—A. ursinum; CP—C. pilosa; reg.—regenerated.

3.3.3. Competition between A. ursinum and M. uniflora in a Wet Environment (Figure 6)

In the first year of the experiment, in the presence of M. uniflora, A. ursinum shoots
developed better in all soil texture categories, with primarily positive R.I.I. values (around
+0.1) with increasing sand content. On the other hand, the shoots of M. uniflora were at a
disadvantage with increasing sand content, with increasingly negative average R.I.I. values
(−0.1, −0.3, and −0.5). Further, overall, A. ursinum interaction effects were significantly
(F = 8.47, df = 3, p < 0.001) competitive (all R.I.I. values < 0) on C. pilosa roots and shoots
across all soil compositions (see supplementary file/table). In the following regeneration
year, the regeneration of A. ursinum shoots became more extreme in all soil structure
categories. In addition, the A. ursinum shoots were significantly disadvantaged (with
a < 0 R.I.I. value) in the case of quarter sand content. The M. uniflora shoots behaved
similarly to the previous year, only in the case of zero sand content. In the case of increasing
sand content, they were at an increasing disadvantage due to their shoots’ regeneration
and roots’ development. Overall, A. ursinum proved to be a stronger competitor, while the
competitiveness of M. uniflora decreased as the proportion of sand increased.
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Figure 6. Cross categories box-plots of R.I.I. (Relative Interaction Index) values based on shoots
(Total Leaf Area) and roots (Numbers of Roots) of A. ursinum and M. uniflora in three sand categories.
Values above the zeroth fainted dotted line are positive R.I.I. values signifying facilitation, while
below this are negative R.I.I. values indicating competition. ‘Wet state’, denoted with number 1,
is water-saturated soils, and ‘both seasons’ means regenerated plants were harvested by the next
spring season (2017–2018). ‘x’ indicates the mean R.I.I. values in all the box plots. Abbreviations:
AU—A. ursinum; MU—M. uniflora; reg.—regenerated.

3.3.4. Competition between A. ursinum and C. pilosa in Moist Environments (Figure 7)

Both species showed a negative competitive interaction in all three soil compositions.
The different sand ratios reduced the competitiveness of both species, although the A.
ursinum was less affected than its fellow competitor, i.e., C. pilosa here.
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Figure 7. Cross categories box-plots of R.I.I. (Relative Interaction Index) values based on shoots (Total
Leaf Area) and roots (Numbers of Roots) of A. ursinum and C. pilosa in three sand categories. Values
above the zeroth fainted dotted line are positive R.I.I. values signifying facilitation, while below this
are negative R.I.I. values indicating competition. ‘Moist state’, denoted with number 2, is moder-
ately water-saturated soils. ‘x’ indicates the mean R.I.I. values in all the box plots. Abbreviations:
AU—A. ursinum; CP—C. pilosa.

3.3.5. Competition between A. ursinum and M. uniflora in a Moist Environment (Figure 8)

In the case of zero sand and the presence of M. uniflora, the A. ursinum shoots suffered
a significant disadvantage, but the roots did not. M. uniflora shoots and roots were better
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developed (F = 6.04, df = 3, p≤ 0.001). All of the R.I.I. values of M. uniflora roots fell into the
positive range. At quarter sand content, the A. ursinum shoots are still at a disadvantage,
but the extent of this is decreasing, and the roots are already slightly better developed. The
shoots and roots of M. uniflora developed better than in the case of zero sand content. In
the case of half sand content, the A. ursinum shoots are no longer at a disadvantage, and
the roots behave similarly to when they were at a quarter sand content. On the other hand,
the M. uniflora shoots are at a disadvantage in the presence of A. ursinum, with an average
R.I.I. value of −0.2, and the advantage of the roots also disappears. However, they are not
yet at a disadvantage. Overall, the increasing sand content is advantageous for A. ursinum
and disadvantageous for M. uniflora in the competition (F = 6.04, df = 3, p = 0.00062; see
supplementary file/table).
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Figure 8. Cross categories box-plots of R.I.I. (Relative Interaction Index) values based on shoots (Total
Leaf Area) and roots (Numbers of Roots) of A. ursinum and M. uniflora in three sand categories. Values
above the zeroth fainted dotted line are positive R.I.I. values signifying facilitation, while below this
are negative R.I.I. values indicating competition. ‘Moist state’, denoted with number 2, is moder-
ately water-saturated soils. ‘x’ indicates the mean R.I.I. values in all the box plots. Abbreviations:
AU—A. ursinum; MU—M. uniflora.

4. Discussion
4.1. Cross-Range Germination Test

Our cross-range germination study demonstrated that A. ursinum can germinate
in several American soils more effectively than in Hungarian soils. Here, we found a
significant difference in the germination between A. ursinum soils and those collected
from areas dominated by co-existing species in its native range. However, based on our
earlier soil analyses, we reported that there were no major significant differences in the
abiotic soil parameters like pH or moisture content of soils collected from A. ursinum
dominated areas and those dominated by co-existing species (cf. Kaushik et al., 2021 [14];
see supplementary file). This suggests that there might be other more likely biotic effects
behind the different cross-range germination capacities, such as allelopathy. The strong
allelopathic effect of A. ursinum on other species has already been demonstrated [92],
but further research is needed to understand how it affects its own seedlings or how the
allelopathic substances of competitors influence the germination capacity of bear’s garlic.
Moreover, we would speculate the likelihood of A. ursinum invasion in American soils; as
a clonal propagator, it has demonstrated a successful establishment of an early stage of
invasion, i.e., germination [23,36,37].
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4.2. Growth Experiment

In our growth experiment, the growth period showed a close correlation with the
intensity of solar radiation, confirming what many authors have already found [93–96].
However, differences in the magnitude of growth may arise from variations in the capacity
of the soil to supply nutrients to the plants (see Supplementary File).

The maximum growth exhibited by seedlings grown in control soil can be explained by
their excellent nutrient-supplying ability, which manifests when the root system is already
sufficiently developed. However, growth starting later in other soils may be due to the lack
of mycorrhizal colonisation, which exists as part of the natural biota of soils and can provide
an initial advantage to seedlings. The development of A. ursinum mycorrhiza was found
to be inversely proportional and dynamically variable over time when compared to the
nutrient-supplying capacity of the plant’s soil [97]. Additionally, in closed stands, the soils
(i.e., habitat type), light availability, and the dominance of A. ursinum also had a significant
effect on the diversity and abundance of root mycorrhiza [90,98,99]. The decomposition of
A. ursinum leaves results in a substantial nitrogen surplus [100], thereby contributing to the
enhancement of soil nutrient levels [101,102], with microbial activity playing a pivotal role
as the primary catalyst [103].

In contrast to A. ursinum, the leaves of C. pilosa decompose slowly and are partly
evergreen, so they do not provide a significant nutrient surplus. Nevertheless, seedlings
grew more vigorously in this soil. This leaf decomposition phenomenon is interesting
because, in the monodominant stands of A. ursinum, the positive effect of maternal plants
on seedlings was demonstrated [47]. However, this support was not evident when fully
developed A. ursinum plants surrounded the seedlings. Based on the above, it can be
hypothesised that the allelopathic compounds produced by A. ursinum may not only affect
co-existing species but, at high concentrations, promote self-selection and the maintenance
of an appropriate distance from maternal plants. Surviving seedlings may benefit from
maternal plants whose large leaves create a favourable environment by maintaining a
higher humidity [47]. Our study suggests that A. ursinum grows more effectively on
C. pilosa dominated soils compared to M. uniflora soils, which could result from differences
in their nutrient supply capacities.

4.3. Interaction Experiments

In the interaction experiments conducted on nutrient-rich soils (A. ursinum + C. majalis),
it is presumed that C. majalis shoots were significantly disadvantaged in all moisture cate-
gories because A. ursinum seedlings already had leaves and roots that could immediately
grow, while C. majalis had to develop these first from the rhizome, which requires more
time [78]. The amount of water supplied did not appear to affect competition in the first
year. However, in the next season, their interaction was more even as both plants sprouted
from their respective perennating organs (bulbs and rhizomes, respectively). However,
due to continued illumination, C. majalis could continue to photosynthesise even after
A. ursinum had retreated into its bulb. The different strategies of the two species deter-
mined the outcome of the second year’s competition, where the effects of water supply
were more apparent and significant. Under low moisture conditions, which occurred
during the summer months, C. majalis could not regenerate. Under favourable conditions
with medium moisture, A. ursinum was most competitive and clocked a growth sprint
with its abundant nutrient supply [48]. This reflects that under favourable medium wa-
ter supply conditions, the nutrient utilisation ability of A. ursinum is better than that of
C. majalis. The slower-growing, lower-nutrient-demanding, but much more water-tolerant
C. majalis [104,105] outperforms A. ursinum under high water conditions. Our results sug-
gest that the cultivation of A. ursinum may pose challenges as the absence of shading could
make competition of light-demanding weeds more competitive. However, in the shaded
forests adjacent to the cultivated areas, there is a possibility for the invasion of A. ursinum
in a relatively narrow, moderately watered range.
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The current study provides a comprehensive exploration of the competitive interac-
tions between A. ursinum + C. pilosa and A. ursinum + M. uniflora, considering three distinct
soil compositions and two varying watering regimes. The study investigates the effects
of increasing sand content, which alters soil texture and has a direct impact on nutrient
content, soil aeration and porosity, water penetration, and drainage. The modifications to
these factors ultimately influence the outcomes of species competition.

In the experiment, the abundant irrigation intended to simulate water supply in
A. ursinum-dominated riparian forests [69,74,106]. Both C. pilosa and M. uniflora, found in
similar habitats [107], were negatively affected by the increasing sand content, particularly
regarding water impact. Consequently, A. ursinum gained an initial advantage, enabling it
to outcompete other species more quickly in the subsequent year. Our results indicate that
increasing the sand content did not provide C. pilosa and M. uniflora with a competitive
advantage against A. ursinum. The early leafing out of A. ursinum put it ahead in the
competition, giving it a distinct edge [47,48]. Detached C. pilosa and M. uniflora ramets
were self-sufficient, not requiring leaf development like C. majalis. This led to a more
balanced competitive situation in the first year with A. ursinum seedlings. These results
indicate that the competition dynamics were influenced by the natural habitat preferences
of M. uniflora and C. pilosa [85,108,109]. Factors such as climatic tolerance and shade
adaptation contributed to the competitive abilities of the species [89,110]. Additionally,
the outcome of growth and interaction experiments was dependent on the initial size of
the propagules [79,111]. The availability of water and nutrients post-detachment played a
critical role in the results of the experiments, emphasising the significance of the optimal
shoot-to-root ratio [112].

Furthermore, C. pilosa was a stronger competitor than M. uniflora. These findings
reveal the significance of soil composition and early leafing out in determining species
success and competition. The study provides a detailed understanding of the complex
interactions between soil composition, watering regimes, and species competition that
impact species dynamics in a natural environment.

5. Conclusive Remarks

The outcome of the growth and interaction experiments consistently relied on the
initial size of selected propagules, including seeds, bulbs, ramets, or rhizomes. Notably,
co-existing species with significant biomass demonstrated varying growth patterns, sug-
gesting the influence of the propagule type’s initial size, particularly in the context of
rhizome nodes and root production [79,111]. In the field experiment, A. ursinum exhib-
ited a tendency to form a monotypic stand in the long term, mainly thriving in more
humid conditions that supported an extended lifespan (e.g., A. ursinum + C. majalis; in
high moisture conditions) [47,48,69]. The high mortality during the regeneration phase
highlighted the potential vulnerability of A. ursinum due to the lack of protective leaf litter
cover, leaving buds susceptible to frost damage [113]. Incorporating physically integrated
rhizome fragments with parent plants might help alleviate the competitive effects of A.
ursinum-like species [114,115], thereby promoting more balanced coexistence in the herb
layer, a crucial consideration for sustainable agricultural practices.

To gain deeper insights and projections, further research is recommended, mainly
focusing on the potential agricultural benefits and risks associated with A. ursinum cul-
tivation. Due to the germination responses in non-native soil types, the species could
significantly spread and monopolise favourable habitats while adversely affecting the
pre-existing species dynamics in the herb layer of American temperate forests. Also, its
aggressive growth patterns and the potential to monopolise favourable habitats underscore
the need for vigilant management strategies to prevent its uncontrolled spread and the
subsequent disruption of native plant communities in agricultural settings. Additionally,
expanding the interaction experiments to include more species paired with A. ursinum
could shed light on effective intercropping strategies that promote beneficial coexistence
while mitigating potential agricultural risks [116]. A proactive approach, such as Early
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Detection and Rapid Response (EDRR), is crucial in curbing the potential spread and
adverse effects of introduced invasive species [39,40,117], emphasising the significance of
preventive measures as the primary defense against invasion in agricultural landscapes.
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84. Rejzková, E.; Fér, T.; Vojta, J.; Marhold, K. Phylogeography of the Forest Herb Carex pilosa (Cyperaceae). Bot. J. Linn. Soc. 2008,

158, 115–130. [CrossRef]
85. Iliško, E.; Soms, J. Geographic Distribution of Protected Sedge Species Carex Pilosa Scop. In Latvia with Reference to Forest Ecosys-

tems. In ENVIRONMENT. TECHNOLOGIES. RESOURCES. Proceedings of the International Scientific and Practical Conference; 2015;
Volume 2, p. 325. Available online: http://journals.ru.lv/index.php/ETR/article/view/975 (accessed on 19 September 2023).
[CrossRef]

86. Ellenberg, H.; Weber, H.E.; Dull, R.; Wirth, V.; Werner, W.; Paulißen, D. Indicator Values of Plants in Central Europe (In German:
Zeigerwerte von Pflanzen in Mitteleuropa 2nd Ed). Scr. Geobot. 1992, 18, 1–260.

87. Oberdorfer, E. Southern German Plant Societies, Part IV, Forests and Shrubs (German: Süddeutsche Pflanzengesellschaften, Teil IV, Wälder
und Gebüsche), 2nd ed.; Gustav Fischér Verlag: New York, NY, USA, 1992.

88. Chytry, M.; Vicherek, J. Forest Vegetation of Podyjí/Thayatal National Park (Czech/German: Lesní Vegetace Národního Parku
Podyjí/Thayatal. Die Waldvegetation Des Nationalparks Podyjí/Thayatal); Academia: Praha, Czech Republic, 1995.

89. Bohn, U.; Gollub, G.; Hettwer, C.; Neuhäuslová, Z.; Raus, T.; Schlüter, H.; Weber, H. Map of the Natural Vegetation of Europe.
Scale 1:2,500,000 (German: Karte Der Natürlichen Vegetation Europas, Maßstab 1:2,500,000); Bonn-Bad Godesberg: Bundesamt für
Naturschutz, Germany, 2003. Available online: https://library.wur.nl/WebQuery/titel/1631571 (accessed on 19 September 2023).
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