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Abstract: The number of wheat ears per unit area is crucial for assessing wheat yield, but automated
wheat ear counting still faces significant challenges due to factors like lighting, orientation, and
density variations. Departing from most static image analysis methodologies, this study introduces
Wheat-FasterYOLO, an efficient real-time model designed to detect, track, and count wheat ears
in video sequences. This model uses FasterNet as its foundational feature extraction network,
significantly reducing the model’s parameter count and improving the model’s inference speed. We
also incorporate deformable convolutions and dynamic sparse attention into the feature extraction
network to enhance its ability to capture wheat ear features while reducing the effects of intricate
environmental conditions. To address information loss during up-sampling and strengthen the
model’s capacity to extract wheat ear features across varying feature map scales, we integrate a path
aggregation network (PAN) with the content-aware reassembly of features (CARAFE) up-sampling
operator. Furthermore, the incorporation of the Kalman filter-based target-tracking algorithm,
Observation-centric SORT (OC-SORT), enables real-time tracking and counting of wheat ears within
expansive field settings. Experimental results demonstrate that Wheat-FasterYOLO achieves a mean
average precision (mAP) score of 94.01% with a small memory usage of 2.87MB, surpassing popular
detectors such as YOLOX and YOLOv7-Tiny. With the integration of OC-SORT, the composite higher
order tracking accuracy (HOTA) and counting accuracy reached 60.52% and 91.88%, respectively,
while maintaining a frame rate of 92 frames per second (FPS). This technology has promising
applications in wheat ear counting tasks.

Keywords: object detection; deep learning; wheat ears counting; Kalman filter; lightweight model

1. Introduction

Wheat is one of the world’s primary staple crops, playing a crucial role in meeting
global food demands. Its production and quality control are critical factors in ensuring
global food security [1], with the wheat ear as the reproductive organ of the wheat plant,
directly influencing both the yield and quality of wheat [2]. Research indicates that the
number of ears per unit area is the dominant yield component, and negative correlations
were obtained between most of the parameters affecting the yield per plant and the yield
per unit area [3]. Plant breeding experts utilize the information on wheat ear quantities
from different varieties, combining these data with genetic and environmental factors.
Through hybridization experiments involving a large number of wheat varieties, they select
strains suited to various growing conditions, developing more resistant and higher-yielding
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varieties [4]. Effective detection and counting of wheat ears are essential for wheat yield
prediction and ensuring food security [5]. Therefore, building a fast and efficient automatic
counting method for wheat ears is of great significance, and wheat ear detection technology
enables precise assessment of wheat ear quantities in fields, providing vital support for
agricultural production, field management, and food trade [6].

Due to the high planting density of wheat, accurate counting of wheat ears is a
challenging task. In the past, wheat yield estimation relied primarily on labor-intensive
manual counting [7,8] and expert visual estimation [9]. The former approach is not only
time-consuming and inefficient but also struggles to acquire accurate data in large-scale
farmland settings. The latter method is subjective, demanding a high level of expertise
in agriculture and resulting in difficulties in scientifically and accurately estimating the
correct yield. As a result, the aforementioned methods are unable to rapidly and precisely
estimate the wheat yield in large-scale wheat fields.

With the advancement of computer vision technology, image processing techniques
have been widely applied in agricultural production. Fernandez-Gallego et al. proposed a
method for automatic wheat ear counting using RGB drone images. This method utilizes
techniques such as frequency filtering, segmentation, and feature extraction to achieve
efficient and accurate wheat ear counting [10]. Tan et al. introduced a rapid identification
method for field wheat ears based on superpixel segmentation algorithms and digital
images. This approach involves image classification based on color feature parameters and
analysis of wheat ear morphology, demonstrating both speed and accuracy [11]. Bao et
al. presented a wheat ear counting method based on frequency domain decomposition.
They employed multiscale support value filtering (MSVF) in combination with improved
sampling contour transformation (ISCT) for frequency domain decomposition of wheat ear
images. At last, the wheat ear images are segmented and counted [12]. Fang et al. proposed
an automatic wheat tiller counting algorithm based on ground LiDAR data. This algorithm
utilizes adaptive hierarchical and hierarchical clustering algorithms to comprehensively
leverage 3D crop information in field environments, successfully counting wheat tillers of
different varieties, nitrogen levels, planting densities, and ecological conditions [13].

In recent years, an increasing number of researchers have begun using deep learning
techniques to use in agriculture. Compared to traditional image processing methods, deep
learning offers higher adaptability, accuracy, generalization, and scalability, thus demon-
strating better performance in processing large-scale image datasets and handling complex
image tasks. Pérez-Porras et al. proposed a method for early on-ground image-based de-
tection of poppies (Papaver rhoeas) in wheat using the YOLO architecture. Their research
findings demonstrate that the deep-learning-based object detection strategy can accurately
identify poppies at an early stage, providing precise information for the development
of accurate wheat weed management [14]. Yang et al. proposed a deep-learning-based
cross-platform model for wheat ear counting. This model combines a collaborative atten-
tion mechanism, achieving high-density counting of wheat ears while maintaining high
counting accuracy and a reduced number of model parameters [15]. Zaji et al. introduced
automatic object level augmentation (AutoOLA), which decouples different objects in
wheat images and generates augmented images through random combinations, signifi-
cantly reducing the required training sample size for the wheat ear model [16]. Alkhudaydi
et al. introduced SpikeCount, a density-based method for wheat ear counting. This ap-
proach automatically extracts useful features from images using a fully convolutional
neural network and utilizes transfer learning to optimize model training [17]. Qiu et al.
proposed an unsupervised learning method that automatically detects and labels wheat
ears from wheat ear images. They established a dataset to train a deep convolutional neural
network model for accurate detection and counting of wheat ears [18].

The Internet and computer technology are finding broader applications in agricul-
ture [19]. Modern agriculture is increasingly demanding efficient and precise intelligent
solutions. Despite the considerable research efforts focused on wheat ear counting [20],
challenges persist due to variations in wheat plants across growth stages and environ-
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mental conditions, as well as the diversity of wheat ears in images. Achieving accurate
and efficient wheat ear counting remains a complex task. Furthermore, previous studies
on wheat ear counting, whether based on image processing or deep learning methods,
predominantly employed static counting approaches. This involves counting wheat ears
in acquired images and then summing up the counts from each image to obtain the total
count. However, this approach lacks real-time capability and involves time-consuming
and intricate data preparation processes. To avoid repetitive counting of the same wheat
ears, data collectors need to precisely control the shooting range while capturing images
of wheat ears. This necessity introduces challenges such as difficulties in field operation,
time consumption, and inefficiency during data collection. Wu et al. used YOLOv7 and
DeepSORT to train on a subset of the GWHD dataset for real-time wheat ear counting [21].
However, the model has too many parameters and slow inference speed. On a high-end
GPU like 3090TI, it only achieved 14 FPS, making it unsuitable for real-time counting in
large wheat fields. This approach also demands high computational resources, increasing
hardware costs and hindering model deployment on mobile devices in the future.

In response to the challenges outlined above and to address the complex issues related
to efficient automatic wheat ear counting, our main objectives were as follows: (i) to
propose a novel lightweight wheat ear counting model, introducing an innovative and
efficient real-time wheat ear counting method based on applying leading-edge artificial
intelligence (AI) and Internet technology (IT) solutions, and (ii) to further advance the
globally important agriculture practices in wheat monitoring and production. The new
method implemented by our model is intended for accurate identifying and counting
of wheat ears in real time under unmanned aerial vehicle (UAV) conditions, thereby
significantly reducing the manual labor, and effectively auto-calculating the number of
wheat ears, thereby conducting a preliminary evaluation of wheat yield in the field to help
agriculture management and decision-making processes. We pursue our main objectives
by addressing our computational research hypotheses in the background of the following
proposed technological approaches and specific objectives:

(1) To enhance the robustness of our model performance, various data augmentation
methods were applied to the acquired dataset to ensure it would perform well under
diverse conditions, such as different contrast, lighting, and environments.

(2) To improve the computational efficiency of our model, FasterNet [22] was utilized
as the primary backbone for feature extraction. A specific objective was to enhance
computational efficiency while minimizing the number of parameters, thereby making
the model easily deployable on mobile devices.

(3) To enhance the backbone network, dynamic sparse attention and deformable convo-
lution models were integrated into the model. A specific objective was to mitigate
the influence of intricate environmental factors, such as the stickiness of wheat ears,
while improving the model’s capability to efficiently extract wheat ear features.

(4) To comprehensively capture fine details and context characteristics, feature pyramid
network (FPN) [23] and lightweight upsampling operators were integrated into the
PAN [24]. A specific objective was to enhance the capability of the proposed model to
detect various sizes of wheat ears by optimal extraction of multi-scale features while
minimizing the information loss during the upsampling process.

(5) To further build upon the wheat ear detection algorithms, the Kalman filter-based
tracking algorithm was incorporated into our model. A specific objective was to
overcome the limitations of traditional image-based counting methods by achieving
accurate motion prediction, and thereby avoid repeated counting in the continu-
ous sequence by analyzing the context of video frames. Another objective was to
significantly decrease the amount of manual work for wheat ear counting in the field.
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2. Materials and Methods
2.1. Data Acquisition and Processing

To train and validate Wheat-FasterYOLO, we prepared two different categories of
datasets. These include a wheat ear image dataset for the object detection training phase and
a wheat ear video dataset for the object tracking evaluation phase. Specifically, we employed
the Global Wheat Head Detection (GWHD) [25] dataset for training and validating our
wheat ear detection model. Furthermore, we utilized wheat ear video data captured by
UAV to assess the model’s performance in practical applications.

2.1.1. Source of Image Dataset

In order to obtain a universal and reliable wheat ears detection model, we utilized
the GWHD dataset for model training. This dataset is the world’s first large-scale and
diverse collection of labeled wheat ear images, originating from the collaboration of nine
research institutions across seven countries. GWHD encompasses high-resolution images
of wheat ears at different growth stages, varieties, and cultivation conditions. These image
data are sourced from multiple countries, exhibiting rich genotypic characteristics and
diverse growth phases, thereby providing robust support for the methodology proposed in
this study.

2.1.2. Image Data Partitioning and Augmentation

In this study, we obtained a total of 3372 annotated wheat ear image data. To ensure the
validity of the experiments, we used the hold-out method to randomly partition the dataset,
dividing the 3372 image data into training, testing, and validation sets in proportions
of 7:2:1, respectively. During the training process, the model’s hyperparameters were
adjusted and optimized based on various indicators from the validation set, and the final
performance of the model was evaluated on the test set.

Wheat ear images gathered from the field are impacted by factors like weather, lighting,
and variety, resulting in diverse color variations and disruptions. To enhance the model’s
generalization ability and robustness, making it suitable for different wheat varieties,
accurate counting can also be carried out, even in cases of overlapping wheat ears and
interference from weed occlusion. This research utilizes the ImgAug [26] algorithm library
to augment the data; after data augmentation, the dataset increased from the original
3372 images to 4899 images, comprising 3954 images in the training set, 675 images in
the validation set, and 270 images in the test set. Details of augmentation techniques and
outcomes are illustrated in Figure 1.

(a) (b) (c)

(d) (e) (f)

Figure 1. Data augmentation effect display. (a) Original figure. (b) Contrast adjustment. (c) Diffuse
focus blur. (d) Fogging noise. (e) Gaussian noise. (f) Sharpening and hue change.
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2.1.3. Video Data Collection

To validate the real-time tracking and counting effectiveness of the model in actual
scenarios, we visited three different wheat cultivation locations in the Guangxi Zhuang
Autonomous Region of China. We collected and processed multiple segments of wheat ear
videos. The wheat ear data collection equipment used was the DJI Mavic 3, manufactured
by DJI Innovations, headquartered in Shenzhen, China. This drone was equipped with a
4/3-inch CMOS Hasselblad camera, which is from a Hasselblad in Gothenburg, Sweden.
We have collected a total of tens of thousands of frames of wheat ear video data. In this
study, considering the actual workload, we extracted some representative data, and the
basic information of the data used is shown in Table 1.

Table 1. Wheat ear video data collection and processing information.

Video Name Wheat Variety Collection Location Location Coordinates Video Length/Frames

Yangmai 17.mp4 Yangmai 17 Taodeng Town,
Laibin City

Longitude 109◦16′36′′ E,
Latitude 23◦52′18′′ N 3267

Huanuo No.1.mp4 Huanuo No.1 Changfu Village,
Laibin City

Longitude 109◦14′36′′ E,
Latitude 23◦52′18′′ N 2327

Xumai 45.mp4 Xumai 45 Shuangqiao Village,
Guilin City

Longitude 111◦11′3′′ E,
Latitude 26◦4′22′′ N 3264

During the data collection process, the drone operated at an altitude of 4 m, and
we used a 7× telephoto camera manufactured by Zeiss, a company based in Germany.
This camera features a fixed focal length of 166mm and captures an 80-degree downward
view. The collected wheat ear videos had a resolution of 1920 × 1080 pixels at a frame
rate of 60 frames per second. Using DJI Mavic 3’s fixed-speed cruise function, the UAV
autonomously collected wheat video data based on pre-planned flight routes, maintaining
a constant speed of 0.1 m per second. In the collected and processed data, the drone flew a
total of 14.76 m. The acquired data examples are shown in Figure 2.

(a) Yangmai 17 (b) Huanuo No.1 (c) Xumai 45

Figure 2. Collected data on wheat ears characteristics from different varieties.

2.1.4. Annotation of Video Data

In the annotation process of the wheat ear video dataset, we utilized DarkLabel
version 2.4 [27]. A total of 8858 frames from the video sequences were annotated. Starting
from frame 0, wheat ear images were marked with rectangular bounding boxes frame by
frame. These manually annotated real target positions and trajectory information help us
to evaluate the model’s performance in practical applications. The annotation results are
shown in Figure 3.

2.2. Model Design Method

This work focuses on real-time wheat ear tracking and counting, which is an object-
tracking task. It involves accurate detection and positioning of wheat ear targets within
images, followed by trajectory prediction using target-tracking algorithms. The study
utilizes FasterNet as the baseline model, enhancing it through analysis of wheat ear recog-
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nition challenges and their integration with target-tracking algorithms. The outcome is the
proposed Wheat-FasterYOLO, a model for real-time wheat ear counting.

Figure 3. Annotation of wheat ear video data.

2.2.1. FasterNet

In vast wheat fields, wheat ear detection and counting often require a substantial
amount of computation time. Mobile and embedded devices have limited power, memory,
and storage, making complex models impractical. Lightweight models like GhostNet [28],
MobileNet [29–31], and ShuffleNet [32,33] utilize techniques such as group convolutions
and depthwise convolutions for feature extraction. However, these methods primarily
focus on reducing floating-point operations (FLOPs), which frequently result in increased
memory access during this process, consequently leading to lower floating-point operations
per second (FLOPS). The formula relating latency and FLOPs is as follows:

Latency =
FLOPs
FLOPS

(1)

The formula implies that latency does not solely connect with FLOPs, but also with
their FLOPS. In order to create a genuinely fast and efficient neural network, this study
adopts the FasterNet, rooted in partial convolution (PConv) [22], as its benchmark model.
Its aim is to lighten the device load for wheat ear counting tasks while achieving enhanced
FPS rates. The PConv’s architecture, showcased in Figure 4, engages convolutions solely
with select input feature map channels, leaving the remaining channels unaltered.

Figure 4. The structure of PConv.

2.2.2. Loss Function

The proposed wheat ear detection model in this study employs object confidence
and bounding box regression losses. While conventional bounding box regression uses
intersection over union (IoU) [34] for alignment, limited to area overlap, we introduce
SCYLLA intersection over union (SIoU) [35]. It also includes angle, distance, and shape
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losses, accelerating convergence. This improves accuracy and precision in localizing
wheat ears.

The formula for object confidence loss is as follows:

Lobj = wobjBCEsig
obj(po, piou) (2)

where po represents the predicted object confidence. piou denotes the IoU of the predicted
bounding box. BCEsig

obj signifies the binary cross entropy loss function for binary classifica-
tion. wobj embodies the weight coefficient for the object loss.

Introducing angle loss seeks to penalize model errors in angle predictions, enhancing
the precise alignment of wheat ear angles. Angle loss is defined as follows:

Λ = 1− 2× sin2(arcsin(
ch
σ
)− π

4
) (3)

where ch indicates a vertical disparity between the predicted and ground truth bounding
box centers, while σ represents their horizontal difference.

Introducing the concept of distance loss to penalize the model for inaccuracies in
distance prediction helps the model better capture spatial relationships between wheat ears.
The loss is defined as follows:

∆ = ∑
t=x,y

(
1− e−ρt(2−Λ)

)
(4)

where

ρx =

(
bgt

cx − bcx

cw

)2

, ρy =

(
bgt

cy − bcy

ch

)2

(5)

where bgt
cx is the horizontal coordinate value of the center point of the ground truth bounding

box, while bgt
cy represents their vertical coordinate value. cw signifies the width of the

minimum bounding rectangle for both the ground truth and predicted bounding boxes,
while ch represents the height of the minimum bounding rectangle.

Introducing shape loss to refine shape predictions enhances the model’s grasp of
wheat ear morphology. The shape loss is defined as:

Ω = ∑
t=w,h

(
1− e−wt

)θ (6)

where

ww =
| w− wgt |

max(w, wgt)
, wh =

| h− hgt |
max(h, hgt)

(7)

Among them, w and h represent the width and height of the predicted bounding box,
respectively. wgt and hgt represent the width and height of the ground truth bounding box,
respectively. θ indicates the degree of attention to the shape loss.

In summary, the final loss function of the Wheat-FasterYOLO is as follows:

LOSStotal = 1− IoU +
∆ + Ω

2
+ Lobj (8)

2.2.3. BiFormer

The attention mechanism enhances the network’s capability to extract wheat ear fea-
tures while reducing the influence of complex backgrounds (such as weeds resembling
wheat ear characteristics). However, in most cases, it faces challenges of high computational
complexity and memory consumption. Therefore, in Wheat-FasterYOLO, we have incorpo-
rated BiFormer consisting of bi-level routing attention (BRA) [36]. By incorporating sparsity
and query-aware adaptability, BiFormer efficiently models pivotal image regions globally.
This method has moderately enhanced the precision of matching wheat ear samples amid



Agriculture 2023, 13, 2110 8 of 22

intricate backgrounds, concurrently guaranteeing minimal memory utilization and reduced
computational intricacy.

The BRA module’s structure is shown in Figure 5. First, the height of the input feature
map is H, the width is W, and the number of channels is C. Next, the feature map is divided
into S× S distinct regions, and key-value pairs are collected for the first N regions. Each
region contains HW

S2 feature vectors, which are linearly mapped to obtain the corresponding
Q, K, and V. An adjacency matrix is used to construct a directed graph to determine
the participating relationships for different key-value pairs. As the routing regions are
distributed across the entire feature map, it is necessary to aggregate the tensors of keys
and values. The aggregated tensors of Kg and Vg are obtained. Matrix multiplication (mm)
is performed between Kg and Q, followed by a softmax operation. The obtained matrix
A, representing the index of region-to-region routing, is multiplied with Vg using matrix
multiplication. Ultimately, a fine-grained token-to-token attention is achieved.

Figure 5. The structure of BRA.

2.2.4. DCNv2

Throughout the growth stages, wheat ears can exhibit diverse shapes, colors, and
densities due to different growth factors. Furthermore, during UAV flights, camera motion
may distort wheat ear images. The factors mentioned above can easily cause errors in wheat
ear detection models. Models should adapt to changing feature distributions. Traditional
convolutions ignore target deformation and position, yielding poor results for uneven
features. Thus, this study introduces Deformable ConvNets v2 (DCNv2), a neural network
using offsets for deformable convolutions [37]. DCNv2 dynamically adjusts kernel positions
to precisely address target changes. This adaptation empowers the feature layer to adjust
the receptive field and scale, resulting in improved performance in detecting wheat ear
targets of different characteristics.

DcnV2’s learning is shown in Figure 6. Extra convolutional layers learn offsets from
the input feature map through convolutional operations, forming a 2N channel dimension.
This dimension signifies x and y coordinate axes offsets for each pixel in an N-sized
kernel. Inputs to the deformable convolutional layer are the feature map and offsets, where
sampling points are shifted. Following convolutions, an output feature map is obtained.

2.2.5. Improving the PAN Architecture

The FPN acquires multi-scale contextual information by integrating feature maps from
different scales. It not only captures texture information in lower-level feature maps but
also extracts rich semantic information from higher-level feature maps. Building on this,
the PAN further enhances performance through additional sampled fusion.

Conventional upsampling methods focus only on spatial distances among sub-pixel
neighbors. However, in the task of wheat ears detection, due to the limited feature infor-
mation that wheat ears can capture, this approach cannot fully grasp the hidden semantic
information in the feature map. This may result in the loss of important details and contex-
tual information. To address this issue, we introduce the lightweight upsampling operator
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CARAFE [38] in PAN. During the upsampling process, CARAFE aggregates extensive
contextual information, enabling PAN to better capture wheat ear details and context, thus
reducing feature loss during upsampling. Figure 7 illustrates the structure of CARAFE-PAN.

Figure 6. Illustration of deformable convolution.

Figure 7. Illustrates the structure of CARAFE-PAN.

2.2.6. OC-SORT

To achieve real-time tracking and counting of wheat ears in a video stream, we adopt
the OC-SORT [39] algorithm. This method reduces noise and enhances robustness using
observation-centric techniques.

In consecutive video frames, the motion of the same target can be seen as linear. The
Kalman filter is suitable for position estimation, but noise can lead to inaccurate motion
direction estimation, causing target loss. OC-SORT integrates the observation-centric
momentum (OCM) strategy, reducing noise impact.

During wheat ear tracking and counting tasks, to prevent the parameter bias of
the Kalman filter from causing recurrent losses of detected wheat ear targets, OC-SORT
employs the observation-centric re-update (ORU) strategy. When re-tracking, Kalman filter
parameters adjust through virtual trajectories, reducing errors.

Natural wind can briefly obstruct wheat ear targets, and traditional tracking algorithms
may mislead target loss or counting errors. OC-SORT leverages the observation-centric
recovery (OCR) strategy, attempting a second association to restore trajectories.

The OC-SORT workflow is shown in Figure 8.

2.2.7. Wheat-FasterYOLO Model Structure

As depicted in Figure 9, the Wheat-FasterYOLO framework incorporates FasterNet
with DCNv2 and BiFormer in its backbone. Employing PAN with CARAFE in the network’s
neck and three YOLO heads in the head predicts wheat ear target regression. OC-SORT
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enables efficient real-time tracking and updates of wheat ear positions, enabling real-time
wheat ear tracking and counting.

Figure 8. The pipeline of OC-SORT. During association, OCM introduces velocity consistency cost,
but the target is momentarily obscured in frame t + 1 due to occlusion. However, in the subsequent
frame, the target is successfully regained by referencing its observation in frame t using OCR. This
re-tracking event then prompts ORU to update the parameters of its Kalman Filter from t to t + 2.

Figure 9. Comprehensive architecture of the Wheat-FasterYOLO.

2.2.8. Practical Application Process of the Model

In our research, the process of using a model for actual counting is illustrated in
Figure 10. First, based on the features of the actual wheat field, manual route planning
for the drone’s flight path is conducted to ensure that every area is scanned by the drone.
Subsequently, the automatic cruise function is initiated, and the drone will autonomously fly
and capture a sequence of wheat ear videos based on the previously established flight route.
Finally, when the drone begins its operation, real-time captured video data are transmitted
to our mobile computing device terminal through DJI’s OcuSync transmission technology.
Running our models on mobile devices with the PyTorch deep learning framework, real-
time detection and counting of the wheat ear video sequence are performed, providing
real-time counting results.
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Figure 10. The process in the actual counting of wheat ears, with the yellow line in the diagram
representing the planned route and the red area indicating the area being scanned by the UAV.

2.3. Evaluation Indicators

In wheat ears object detection, we employ the P, R, mAP, and F1 metrics to compre-
hensively evaluate detector effectiveness. P represents the proportion of actual wheat ears
detected by the model within the detected wheat ears, while R denotes the proportion of
successfully detected wheat ears by the model out of all the true wheat ears. mAP provides
a comprehensive assessment of precision and recall across target categories, and F1 is the
harmonic mean of precision and recall. The specific calculations are as follows:

P =
TP

TP + FP
(9)

R =
TP

TP + FN
(10)

mAP =
1

∑
i=1

[∫ 1

0
P(R)dR

]
i

(11)

F1 = 2× P× R
P + R

(12)

where TP is the accurate wheat ear predictions, FP is non-target samples misclassified as
ears and FN is the missed number of actual wheat ear detection.

In the task of wheat ear tracking, the performance of the model in tracking targets
after detecting wheat ears is measured using DetA, AssA, DetRe, AssRe, and HOTA [40].
DetA signifies ]precise detection ratio, while AssA indicates the association accuracy of
tracking. DetRe and AssRe are the ratios of successfully detected and associated wheat
ears to all true targets. HOTA assesses the overall t performance in detection and tracking.
The specific calculation methods are as follows:

DetA =
∫ 1

0

|TP|
|TP|+ |FN|+ |FP|dα (13)

AssA =
∫ 1

0

1
|TP| ∑

c∈(TP)

|TPA(c)|
|TPA(c)|+ |FNA(c)|+ |FPA(c)|dα (14)

DetRe =
∫ 1

0

|TP|
|TP|+ |FN|dα (15)

AssRe =
∫ 1

0

1
| TP | ∑

c∈{TP}

| TPA(c) |
| TPA(c) | + | FNA(c) |dα (16)

HOTA =
∫ 1

0

√
DetAα × AssAαdα (17)
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where TP, FP, and FN have the same definitions as in formulas 9 and 10. TPA, FNA, and
FPA correspond to accurate positives, incorrect negatives, and incorrect positives. α is the
association accuracy threshold, and c represents any point within TP.

3. Results and Discussion

This study trained and tested the model on the Ubuntu 18.04.5 LTS 64-bit operating
system. The experimental environment employed an NVIDIA RTX 3090 (24G) graphics
card with a CUDA 11.1 driver. Python 3.8.3 and the deep learning framework PyTorch 1.8.0
were utilized. The final set of hyperparameters is presented in Table 2.

Table 2. Training and testing hyperparameter information.

Set of Parameters Value or Name

Batch size 16
Learning rate 0.01

Epoch 230
Image resize 640 × 640

Optimizer SGD
Momentum 0.937

IoU-thres 0.55

During training, we employed common object detection techniques like mosaic data
augmentation, cosine learning rate scheduling, and hyperparameter evolution. Figure 11
visualizes bounding box regression loss, confidence loss, precision, and recall for the
Wheat-FasterYOLO model’s validation set.

Figure 11. Visualization of Wheat-FasterYOLO detection model training data.

3.1. The Impact of Data Augmentation

Data augmentation experiments trained the baseline model on original and augmented
GWHD datasets, resulting in two models. As shown in Table 3, using FasterNet as the base-
line, the non-augmented model achieved mAP and F1 scores of 84.91% and 81.17%. After
augmentation, scores improved to 85.66% and 81.97%, confirming data augmentation’s
necessity for field-derived wheat ear images.

Table 3. Comparison before and after data augmentation.

Data State P/% R/% mAP/% F1/%

Non-augmented 86.28 76.62 84.91 81.17
Augmented 86.52 77.88 85.66 81.97

3.2. Comparative Experiments with Different Attention Integrations

Attention mechanisms typically enhance model performance. In the context of the
FasterNet backbone feature extraction network for global wheat ear detection datasets,
we assessed various attention mechanisms’ effectiveness. The comparative experimental
results, showcased in Table 4, illustrate the impact of different attention mechanisms within
the augmented global wheat ears detection dataset.
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Table 4. Results of comparative experiments incorporating different attentional mechanisms in the
data-enhanced GWHD dataset.

Attention P/% R/% mAP/% F1/%

None 86.52 77.88 85.66 81.97
SimAM 86.75 78.25 86.11 82.28
CBAM 86.78 78.85 85.81 82.63
GAM 89.99 84.02 90.49 86.9

SE 86.19 77.31 85.18 81.51
BiFormer 90.2 85.35 91.21 87.71

It can be observed that compared to the baseline model, the inclusion of SimAM [41]
and CBAM [42] resulted in a slight improvement in model performance, with an increase of
0.45% and 0.15% in mAP values, and 0.31% and 0.66% in F1 values, respectively. In contrast,
incorporating GAM [43] significantly boosted performance, with mAP and F1 values rising
by 4.83% and 4.93%. However, SE [44] had no positive impact; instead, it led to a 0.48%
and 0.46% decrease in mAP and F1 values, indicating its unsuitability for this model.

It is worth noting that BiFormer performed the best in the experiments, with mAP and
F1 values reaching 91.21% and 87.71%, respectively, marking a significant improvement of
5.55% and 5.74% compared to the baseline model. Figure 12 visually presents heatmaps
depicting various attention mechanisms, illustrating the model’s precise targeting of wheat
ear objectives. These findings reaffirm BiFormer’s commendable performance in the realm
of wheat ear detection tasks.

(a) (b) (c)

(d) (e) (f)

Figure 12. Heat maps of attention to the target after incorporating different attention mechanisms.
(a) Original figure. (b) BiFormer. (c) CBAM. (d) GAM. (e) SE. (f) SinAM.

3.3. Ablation Experiment

To validate the effectiveness of the wheat ear detection model improvement, we con-
ducted ablation experiments, and the results are shown in Table 5. The experimental results
demonstrate a significant enhancement in the model’s performance after the incorporation
of BiFormer, with an increase of 5.55% in mAP and 5.74% in F1. BiFormer, with its unique
sparsity and query-aware adaptability, can effectively model regions of interest across the
feature maps globally.

By introducing the improved upsampling operator path aggregation network, the
mAP and F1 of the wheat ear detection model improved by 2.37% and 2.65%, respectively.
The path aggregation network helps the model better fuse multiscale features in the feature
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maps. After upsampling with the lightweight operator CARAFE, the model can capture
the details and contextual information of wheat ears more effectively.

Table 5. Results of model ablation experiments.

BiFormer CARAFE-
PAN DCNv2 P/% R/% mAP/% F1/%

86.52 77.88 85.66 81.97
X 90.2 85.35 91.21 87.71
X X 92.32 88.47 93.58 90.36
X X X 92.63 89.04 94.01 90.8

With the addition of the DcnV2 module, the mAP of the wheat ear detection model
increased by 0.43%, and the F1 increased by 0.44%. Deformable convolution adjusts the
position information of convolution kernels dynamically, responding more accurately to
the deformation and spatial positional changes in wheat ear targets.

The mAP of the improved wheat ear detection model reached 94.01%, and the F1 score
reached 90.8%. Compared to the baseline model before improvement, there was an 8.35%
increase in mAP and an 8.83% increase in F1 score. The proposed improvement methods
in this paper have played a significant role in the wheat ear detection model, effectively
enhancing its performance. The detection results of wheat ears before and after the model
improvement are shown in Figure 13.

(a) (b) (c)

Figure 13. Comparison of the wheat ear detection model’s performance before and after improvement.
(a) Pictures of primitive wheat ears. (b) Before the model improvement, there were varying degrees
of missed and false detections in wheat ear detection. (c) After the model improvement, the wheat ear
detection performance has been greatly enhanced, significantly reducing missed and false detections.

3.4. Comparative Experimental Analysis of Different Detection Models

In order to evaluate the performance of our proposed wheat ear detection model,
we conducted a comparative analysis with popular object detection models. We utilized
the same set of parameters and dataset, and each model underwent training in the same
experimental environment. The experimental findings in Table 6 reveal that our Wheat-
FasterYOLO model, introduced in this study, outperformed in terms of P, R, mAP, and
F1 scores, achieving high scores of 92.63%, 89.04%, 94.01%, and 90.8%, respectively. Fur-
thermore, our model has fewer parameters and lower computational complexity, with a
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mere 1.34 × 106 parameters and 3.9 GFLOPs. Additionally, it demonstrated a faster speed;
the frame rate reached 185 FPS.

Table 6. Performance of different object detection models in a wheat ear detection task.

Model P/% R/% mAP/% F1/% Parameters GFLOPs FPS

SSD-VGG 90.94 63.96 82.59 75.1 2.36 × 107 136.6 66
SSD-MobileNet 93.44 71.21 88.45 80.82 3.54 × 106 3.0 87
Faster R-CNN 68.52 85.41 81.13 76.04 2.83 × 107 474.1 30

EfficientDet 92.43 79.01 89.69 85.19 6.56 × 106 5.7 21
YOLOX 93.04 89.6 93.69 91.29 8.04 × 106 21.6 117

YOLOv7-Tiny 92.89 88.86 93.0 90.83 6.01 × 106 13.0 125
Wheat-FasterYOLO 92.89 89.04 94.01 90.8 1.34 × 106 3.9 185

Wheat-FasterYOLO outperforms SSD-VGG [45,46], SSD-MobileNet [29], Faster R-
CNN [47], and EfficientDet [48] significantly, even though Faster R-CNN and Efficient-
Det exhibit FPS of only 30 and 21. However, the introduction of tracking algorithms,
requiring increased computational resources for Kalman filtering to estimate target mo-
tion, makes it unsuitable for real-time wheat ear tracking. Compared to SSD-MobileNet,
Wheat-FasterYOLO experiences a slight 0.9 increase in GFLOPs, but its parameters are
only 37.93% of SSD-MobileNet. It also achieves a 98 FPS boost, demonstrating Wheat-
FasterYOLO’s fast and lightweight performance despite increased GFLOPs, with superior
FPS and fewer parameters.

While Wheat-FasterYOLO has a slightly lower F1 score compared to YOLOX [49] and
YOLOv7-Tiny [50], it surpasses all other models in terms of mAP. This indicates that Wheat-
FasterYOLO may not have the absolute best precision and recall. However, in terms of
mAP, it outperforms all other models, which means it is better in overall detection accuracy
across a range of confidence thresholds. It stands out for its efficiency, requiring only 16.71%
of YOLOX’s parameters and 22.36% of YOLOv7-Tiny’s parameters, with computational
demands at 18.06% of YOLOX and 30% of YOLOv7-Tiny. Combining the highest mAP
with faster speed, Wheat-FasterYOLO demonstrates better overall performance, making it
a suitable choice for real-time wheat ear tracking and counting tasks.

3.5. Comparative Experiments Incorporating Different Tracking Algorithms

In the real-time wheat ear tracking and counting task, the wheat ear detection model
is combined with popular target-tracking algorithms. Through comparative experiments
in different wheat varieties and using the TrackEval [51] evaluation, the performance
differences in models incorporating different tracking algorithms in practical wheat ear
counting applications are assessed. The results of the experiment are shown in Table 7.

According to the experiment data, OC-SORT achieved the best performance, with an
average HOTA of 60.52%, which is 7.04% higher than ByteTrack [52] and 13.05% higher than
StrongSORT [53]. When working in conjunction with the wheat ear detector, OC-SORT had
a slightly lower average FPS than ByteTrack. However, its average DetA, AssA, DetRe, and
AssRe were 9.36%, 3.2%, 13.54%, and 5.65% higher than ByteTrack, respectively, indicating
that it outperformed ByteTrack comprehensively. StrongSORT had a higher DetRe than
OC-SORT in testing. However, its HOTA metric was significantly lower than OC-SORT,
indicating that StrongSORT’s overall performance in real-time wheat ear counting tasks
was unsatisfactory. Additionally, due to the introduction of the feature re-identification
network, StrongSORT consumed a large amount of computational resources, resulting in
high latency, with an average FPS of only 20, making it unsuitable for practical wheat ear
tracking and counting tasks. The feature re-identification network is able to recapture a
similar-looking target and confirm whether it is the same target as the previously detected
one. In StrongSORT, the feature re-identification network tends to misidentify different
wheat ear targets as the same target when dealing with wheat ears with highly similar
appearance features, significantly affecting the counting results.
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Table 7. Scores of different tracking algorithms in conjunction with an object detection model for
various metrics in different varieties of wheat ears.

Tracker Wheat
Variety DetA/% AssA/% DetRe/% AssRe/% HOTA/% FPS

StrongSORT

Yangmai 17 60.58 38.69 74.57 75.04 48.06 23
Huanuo No.1 58.52 42.72 74.83 72.54 49.85 17

Xumai 45 48.58 30.71 57.0 62.12 38.49 20
Average 55.89 37.37 68.8 69.33 47.47 20

ByteTrack

Yangmai 17 58.45 65.92 65.43 73.12 61.75 115
Huanuo No.1 60.16 62.28 67.27 70.43 61.09 101

Xumai 45 25.82 54.92 26.61 59.31 37.61 127
Average 48.14 61.04 53.10 67.62 53.48 114

OC-SORT

Yangmai 17 63.0 69.25 74.41 78.75 65.64 104
Huanuo No.1 62.79 65.14 73.88 75.95 63.82 83

Xumai 45 46.72 58.34 51.63 65.1 52.11 90
Average 57.5 64.24 66.64 73.27 60.52 92

In summary, the Wheat-FasterYOLO model proposed in this paper, when integrated
with the OC-SORT algorithm, achieved higher HOTA and overall performance compared
to ByteTrack and StrongSORT. It achieved an average FPS of 92, meeting the requirements
of real-time wheat ear tracking and counting. Figure 14 shows the HOTA, DetA, AssA,
DetRe, and AssRe curves of OC-SORT at different association accuracy threshold values
“alpha”, reflecting the variations in scores of various metrics with the threshold “alpha”.

Figure 14. The variations in HOTA, DetA, AssA, DetRe, and AssRe curves under different threshold
values “alpha” for OC-SORT.

3.6. Analysis of Counting Accuracy in the Wheat-FasterYOLO Model

When collecting data with UAV, wheat ear targets are prone to temporary loss in
the detector due to motion blur or occlusion. However, by integrating target-tracking
algorithms, as long as the wheat ear target is detected once in the video sequence, a unique
ID can be assigned and counted. In subsequent detections, if the detector redetects the lost
target and the target has not undergone significant irregular motion or severe deformation,
the tracking algorithm will ensure consistent ID recognition. Wheat-FasterYOLO avoids the
issue of the same target being counted repeatedly in different video sequences, as shown in
Figure 15 for a specific illustration.

Table 8 shows the counting results for three different types of wheat ears. In the
table, “IDs” represent the model’s counting results, “GT_IDs” represent the actual number
of wheat ears, and “Counting accuracy” reflects the accuracy of the model in practical
wheat ear counting tasks. As shown in Figure 16, a linear regression analysis is performed
between the model count results and the actual quantity over a period of time. R2 reflects
the degree of agreement between the model count values and the actual values. The closer
its value is to 1, the better the fit. RMSE represents the deviation between the calculated
value of the model and the actual value. It can be seen from this that there is a strong
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correlation between the counting results of the wheat ear counting method proposed in
this study and the manual counting results, indicating that our method is practical.

In the wheat ear counting experiment, the accuracy rates for Yangmai 17, Huanuo No.1,
and Xumai 45 were 91.71%, 92.66%, and 91.28%, respectively, with an average accuracy
rate of 91.88%. By analyzing the detection results, it was found that there were weeds in
Yangmai 17 and Huanuo No.1 with heights similar to wheat ears, leading to the model
mistakenly identifying weeds as wheat ears. Additionally, in windy conditions, when the
wheat ears moved only slightly in the wind, the model was able to track the wheat ear
targets well. However, when strong winds caused the wheat ears to sway significantly, the
model had difficulty accurately capturing the same wheat ear target, resulting in the model
incorrectly considering wheat ears that moved significantly before and after as different
objects, ultimately leading to an overestimation of the detected wheat ear count.

Table 8. Practical counting performance of Wheat-FasterYOLO in ears of three different wheat varieties.

Wheat Variety IDs GT_IDs Counting Accuracy/%

Yangmai 17 374 343 91.71
Huanuo No.1 518 480 92.66

Xumai 45 680 745 91.28
Average 524 523 91.88

(a) (b)

(c) (d)

Figure 15. The demonstration of Wheat-FasterYOLO’s tracking effect on the same wheat ear object
in different video sequences. The rectangular box in the figure shows the location of the wheat target
detected by the model, and the red dot is the center of the rectangular box. (a) In the first frame of the
video sequence, target number 1’s and target number 3’s wheat ears are in a detected state, included
in the total count of wheat ears. (b) In the 64th frame of the video sequence, target number 1’s wheat
ear was temporarily lost by the detector due to motion blur, and target number 3’s wheat ear was
excessively occluded by leaves. (c) In the 76th frame of the video sequence, target number 3’s wheat ear
was re-detected, the ID number remained unchanged, and the tracking algorithm successfully identified
it as the same target, restoring the label for target number 3’s wheat ear. (d) In the 105th frame of the
video sequence, similar to target number 3’s wheat ear, target number 1’s wheat ear was re-detected.
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(a) (b) (c)

Figure 16. Scatter plot of model-based and manual counting results for three different types of wheat
ears in a video sequence. (a) Yanmai 17.mp4. (b) Huanuo No.1.mp4. (c) Xumai 45.mp4.

In the case of Xumai 45 detection, there were no issues related to weeds with heights
similar to wheat ears or interference from strong winds. However, due to the heavy overlap
and occlusion of Xumai 45 wheat ears, the model erroneously identified overlapped wheat
ears as a single target. Furthermore, the wheat ears of Xumai 45 had a relatively large
aspect ratio, making it difficult for the model to fit the position information of the real
bounding boxes. These factors led to instances of missed detections, resulting in a lower
detected wheat ear count compared to the actual count.

Figure 17 shows a randomly selected frame from the three detection video sequences,
illustrating the counting results of Wheat-FasterYOLO. The top-left corner displays the
total number of different wheat plants detected by the model from the first frame to the
currently selected frame. The information displayed above the detection boxes indicates
the wheat ear’s ID value, category, and confidence level.

(a) (b)

(c)

Figure 17. Wheat-FasterYOLO shows the counting results in a video sequence of one of the three
different wheat ear varieties (wheat ear counting begins from the first frame of the video sequence
and continues until the last frame). (a) Frame 794 of Yangmai 17.mp4. At this point, the cumulative
count is 98 wheat ears. (b) Frame 620 of Huanuo No.1.mp4. At this point, the cumulative count is
179 wheat ears. (c) Frame 10 of Xumai 45.mp4. At this point, the cumulative count is 32 wheat ears.
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3.7. Advantages and Limitations

In this subsection, we will discuss the advantages and limitations of Wheat-FasterYOLO
in detail as follows:

Firstly, we employed a combined model approach by introducing the OC-SORT
algorithm based on the Kalman filter into the wheat ear detection model under study. This
integration enables the model to accurately estimate the motion of wheat ear targets in UAV
video sequences. By assigning a unique identification number (ID) to each wheat ear target,
we achieved non-repetitive and high-precision counting. Farm owners only need to plan
the drone’s flight path based on real-world conditions to automatically obtain the desired
wheat ear count information for a better preliminary assessment and decision-making
regarding their wheat fields.

Secondly, we recognized the critical importance of GPU resource allocation in our
approach. While ensuring sufficient GPU resources for effective YOLO operation, allocating
a processing layer for tracking is a key consideration. In extensive tests, we found that the
tracking algorithm typically consumes fewer resources than YOLO. The fast and lightweight
nature of Wheat-FasterYOLO allows it to operate on a variety of devices, reducing hardware
costs and enabling real-time counting in diverse environments. However, for optimal
results and to prevent processing delays during counting, we recommend using a GTX
1050 or higher image processor to ensure the quality of wheat ear detection and tracking in
various scenarios.

Moreover, understanding the growth stages of wheat is crucial for making informed
agricultural decisions. Wheat growth can be divided into six distinct phases: germination,
vegetative growth, heading, flowering, grain filling, and maturation. Our model, trained
on a diverse dataset, is capable of effectively counting wheat heads during the flowering
stage and beyond. This feature provides valuable insights for farmers during the mid to
late stages of wheat growth, contributing to improved crop management and planning.

Finally, although our model can perform real-time counting for different wheat vari-
eties in general, there are limitations. In some cases, wheat ears may be empty, and since
our model was not trained on samples of empty wheat ears, it cannot effectively handle
this specific situation. To address this limitation, we plan to collect more samples in future
research and continuously enhance our model to make it more versatile.

4. Conclusions

In this study, we utilized the path planning and constant-speed cruising functions
of UAV to automatically collect video sequences of wheat ears and achieved real-time
tracking and counting of wheat ears in the field environment using the proposed Wheat-
FasterYOLO. Compared to target detection and counting methods focused solely on static
images, our approach circumvented the complexities associated with the operation, time-
consuming, and low efficiency associated with data collection processes. Compared to
existing real-time wheat ear counting models, our approach has fewer parameters, faster
speed, and can achieve good results. In practical applications, it significantly enhanced the
level of automation in wheat ear counting.

In the wheat ear detection method, we trained the Wheat-FasterYOLO model based
on the GWHD dataset. Its mAP, F1 score, parameter count, GFLOPs, and FPS are 94.01%,
90.8%, 1.34 × 106, 3.9, and 185, respectively. This model combines lightweight design with
speed and accuracy, demonstrating better overall performance than many popular object
detection models and showing great potential for wheat ear detection tasks.

For wheat ear tracking and counting tasks, this study integrated the Kalman filter-
based object tracking algorithm OC-SORT with the wheat ear detection model. We collected
video sequences of three different wheat varieties using the DJI Mavic 3 and annotated them
frame by frame. In multi-object tracking tests, the average HOTA reaches 60.52%, and the
FPS is 92. In actual wheat ear counting scenarios, the average RMSE is 10.35, R2 is 99.08%,
and the counting accuracy is 91.88%. The lightweight design of Wheat-FasterYOLO makes
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it suitable for mobile edge terminals such as drones, allowing for rapid completion of wheat
ear counting tasks in field environments and further advancing agricultural automation.

The effectiveness of the tracking algorithm is influenced by the detection model, as
well as factors such as motion blur, image distortion generated during the drone flight, and
the mutual occlusion of wheat ears, all of which can introduce certain interference into the
counting results. In future research, we will continuously improve the quality of the wheat
ear detection model and explore more stable counting methods to achieve efficient and
accurate detection and counting of wheat ears in high-density wheat field scenarios. This
will provide strong support for field management, grain trade, and agricultural production.
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