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Abstract: The sustainable cultivation of organic vegetables and the associated problem of weed
control has been a current research topic for some time. Despite this, the use of chemical and synthetic
pesticides increases every year. This is to be solved with the help of an automated robot system. The
current version of the weeding robot uses GPUs to execute the inference phase. This requires a lot of
energy for an 8-track robot. To enable autonomous solar operation, the system must be made more
energy efficient. This work aims to evaluate possible approaches and the current state of research on
implementing convolution neural networks on low power embedded systems. In the course of the
work, the technical feasibility for the implementation of CNNs in FPGAs was examined, in particular,
following the example of a feasibility analysis. This paper shows that the acceleration of convolution
neural networks using FPGAs is technically feasible for use as detection hardware in the weeding
robot. With the help of the current state of research and the existing literature, the optimization
possibilities of the hardware and software have been evaluated. The trials of different networks on
different hardware accelerators with diverse approaches were investigated and compared.

Keywords: convolution neural networks (CNN); FPGA; embedded systems; machine learning;
edge devices; real time image processing; agricultural machinery and equipment for precision farming

1. Introduction

One of the global goals in organic farming is to minimize the use of chemical or
synthetic pesticides to protect the environment. For example, at present, weeding regulation
on carrot fields is performed by hand. This manual weed control is very expensive. Our
cooperation partner, Westhof Bio GmbH in Germany, for example, spends over 170,000 EUR
per year for the manual elimination of weeds by human workers. Furthermore, it is more
and more difficult to find workers for this task. The Westcoast University of Applied
Sciences with its research projects is working on the problem in the form of a weed control
robot that autonomously takes pictures, detects, and classifies plants, and then destroys the
weeds. Our motivation for qualitative research into the implementation of artificial neural
networks is the sustainable cultivation of organic vegetables and the associated problem of
weed destruction, which is to be solved with the aid of the 8-track automated robot system
seen in Figure 1.

The development of a fully automated weeding robot makes it possible to eliminate
the need for chemicals. One challenge is plant classification and weed control close to
the crops being grown. Currently, the robot is suitable for cultivated carrots, which are a
challenge for automated robotic systems due to their nature. The robot shown in Figure 1
is a solar and diesel-powered weeding robot prototype. It is designed to weed plant rows
simultaneously using identical weeding modules following a typical layout for agricultural
machinery. The system consists of a manually steered carrier system and autonomous
weeding modules. These sensor/actuator modules comprise a vision based weed detection
mechanism (sensor) and a mechanical weeding mechanism (actuator). A camera takes an
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image, then the image is run through a convolution neural network, and then the position
of the weed is sent to the destruction unit and removed by means of an array of pneumatic
cylinders and electric motors. Real-time implementation and large data volumes as well
as detection and classification despite different weather conditions and stages are critical
aspects [1]. The goal is the cost-effective, automated, and accurate implementation of weed
control using artificial neural network implementations. The current version of the weeding
robot uses GPUs to execute the inference phase. This work aims to evaluate possible
approaches and the current state of research on implementing convolution neural networks
on low power embedded systems. By addressing the critical need for reduced energy
consumption in autonomous robotic systems, this study evaluates the technical feasibility
of implementing CNNs in field-programmable gate arrays (FPGAs). This research not only
emphasizes the development of sustainable solutions for organic weed control, but also
offers valuable insights into the optimization of both hardware and software components.
In the course of this work, the technical feasibility for the implementation of CNNs in
FPGAs will be examined, in particular, following the example of a feasibility analysis. For
this purpose, the basics of artificial neural networks, especially CNNs, will be presented
first. Next, hardware options for CNN acceleration will be compared. In the context of the
implementation of CNNs on FPGAs, optimization approaches will be presented. Hardware
options will be cited and, with respect to the weeding robot, the implementation of a YOLO
network using FPGAs will be explored.
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partner Westhof Bio GmbH in Germany.

2. Basics of Artificial Neural Networks

In this chapter, artificial neural networks are examined. CNNs are especially focused
on due to the application focus on image processing. After an overview of the subject, the
layers and computations within the networks as well as the training and inference phases
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are discussed in more detail. Application areas highlighting the importance of artificial
networks and different architectures are presented.

Instead of using elaborate algorithms for AI applications, deep learning can be used
to extract data from large data sets. The learning capabilities of computers are enabled by
artificial neural networks. These are based on biological neural networks or the central
nervous systems of living organisms [2]. Deep neural networks and deep learning are
a subfield of artificial intelligence. The learning process here does not require explicit
programming. Arthur Samuel defined machine learning (ML) in 1959 as a way to make
computers capable of learning without explicit programming. A new problem is abstracted
through a training process [3]. Deep neural networks have multiple hidden layers and
can be used to analyze large amounts of data after training. Unlike conventional solutions
and algorithms, neural networks are flexible [4]. Particularly popular forms are RNNs for
handling problems involving time sequences and CNNs for learning spatial features [5].
Convolutional neural networks, also referred to as ConvNets or CNNs, are a widely used
architecture for parallel processing techniques enabled by GPUs or FPGAs. CNNs are
suitable for image processing.

2.1. CNN Structure

A typical CNN structure consists of a number of layers. Each layer is responsible for
inputting a data set, a feature map (FM), and produces a new set of FMs [6]. In the inference
phase of CNNs, a computationally intensive convolutional layer is used to extract features,
such as lines or edges. Pooling layers are used to reduce mismatches by averaging common
features in an image region. A handoff is made to additional convolutional and pooling
layers. The number of CNN layers affects image recognition accuracy and performance
requirements. If sufficient memory bandwidth is available, the layers can be processed in
parallel. This schematic structure can be seen in Figure 2.
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Figure 2. Example CNN for classifying carrot plants in organic farming.

Repeated use of weights is called division of weights. This approach will be discussed
in more detail later in this paper. Thus, the memory requirement for weights can be reduced.
For the structuring of the computation and weight division, a convolution can be used. In a
convolution, the weighted sum for each output activation is calculated by the neighborhood
of the input activations. This approach is used in convolutional layers. In a convolution
operation, a matrix smaller than the original image matrix is produced by dragging a filter
(feature identifier kernel) over the image to produce a result. A filter is an array of weights
or parameters computed during the training phase. The values of the filter are multiplied
by the original pixel values. First, an element-by-element multiplication is performed.
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Then, the products are summed up to produce a number. The inputs and outputs of the
convolution layer are a series of FM arrays [7]. Figure 3 shows the trained filter of the first
convolution layer.
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Figure 3. Filters of the first convolution layer.

Input activations of the layer are structured as a series of input feature maps (ifmaps)
called channels. Each channel is convolved with a different 2D filter. Particularly good
results are achieved by a deep hierarchy of layers. Such a hierarchy is particularly suitable
in image processing, speech recognition, and robotics. The set of 2D filters used is combined
as one 3D filter. Convolution results are summarized for each point across all channels. A
1D distortion (bias) can be added to the filter results. The result of the convolution is an
output activation. Output activations include one channel of output feature maps (ofmap).
More 3D filters can be applied to the same input, creating more output channels. Multiple
ifmaps can be processed into a batch. This approach can improve the potential reuse of filter
weights. Filters are composed of weights. Ifmaps and ofmaps are composed of activations.

In common CNN networks, between five and a thousand convolutional layers are
applied, as well as one to three FC layers after the convolutional layers for classification
reasons. Filters are also applied to ifmaps in the FC layer. Other optional layers can be
applied, such as pooling layers, normalization layers, or activation functions. Activation
functions are comparable to the action potential in neurons. If an action potential is present,
it instructs the neuron to act in a biological neural network. For activation functions,
sigmoid and TanH-functions, which are non-linear and require much training time, or
the ReLU (rectified linear unit) function, which requires less training time and has less
computational complexity, can be used. ReLU is known for its simplicity and ability to
accelerate training. Other forms include leaky ReLU, parametric ReLU, and exponetial
ReLU. For example, batch normalization (BN) or local-response normalization (LRN) can be
applied in a normalization layer. The normalization layer is used between the convolutional
and FC layers.

In the pooling or subsampling layer, the number of parameters and computations
is reduced. In the pooling layer, calculations are performed that are used to reduce the
dimensionality of the feature maps. For this purpose, pooling layers are applied between
convolutional layers. Max, avg, or min operations can be applied, and selecting the
maximum value for a filter is a best practice.

The different layers of the CNN, consisting of convolutional, ReLU, activation, pooling,
and FC layers, have different requirements. Convolutional layers have high computational
intensity due to multiplication and addition operations (MACs). FC layers require large
memory due to the weights that are trained [8].

2.2. Training and Inference Phase

To increase the accuracy of CNN networks, large amounts of data are required for the
training phases and the determination of weights and thresholds. The complex models
resulting from the training phases are often implemented on GPUs for training or classifica-
tion purposes. A distinction is made between the training and inference phases. Inference
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is often performed on embedded devices with limited resources. Training requires large
data sets and computational resources.

First, lines and edges are abstracted. Later shapes are composed from these attributes.
Subsequently, an object or a scene is derived from the shapes. The program is not changed
during the learning process, instead the weights are determined during training. After the
training phase, the intended task can be executed. Inference means executing the program
with the weights determined in the training phase. The distance between the correct score
of the result and the score produced by the network is defined as the loss. The goal is
to minimize the average loss. To achieve this and to optimize the weights accordingly,
the largest possible training set must be used. A heuristic optimization procedure called
gradient descent can be used, iteratively repeated. An efficient method that can be used
in this process is backpropagation. This involves passing values backwards through the
network to gain an understanding of how the loss is affected by the weights.

2.3. CNN Architectures

The various CNN architectures differ according to the number of layers, layer types,
connections between layers, and layer shapes, in terms of filter size, the number of channels,
and filters. The CNN architecture is selected depending on the application purpose and
hardware. The performance and accuracy of each architecture are used as a guide. Architec-
ture performance is usually measured using the ImageNet Challenge. One of the first CNN
architectures was LeNet in 1989. In 2012, AlexNet was the first CNN architecture to win
the ImageNet Challenge. Other well-known architectures include Overfeat and VGG-16.
In networks such as GoogLeNet and ResNet, the number of layers continues to increase,
making reasonable hardware implementation increasingly difficult. For this reason, efforts
are being made to compress the networks. Binarized neural networks (BNNs) are a possible
optimized form of deep neural networks where the value of neurons and weights is either
1 or −1, allowing representation using a single bit [9].

3. Hardware Accelerator Based on FPGAs

In this section, first various hardware accelerators, including GPUs, CPUs, ASICs, and
FPGAs, are presented and primarily compared with the FPGA. Next, the characteristics of
FPGAs are highlighted by showing the various advantages and disadvantages of FPGAs.
Finally, at the end of this section, an overview of the state-of-the-art FPGA accelerators
is provided. This section highlights the primary challenges in using FPGAs as hardware
accelerators, which are addressed in the next section for the purpose of successfully imple-
menting CNNs on FPGA mesh accelerators.

3.1. Comparison of Hardware Accelerators

Performing inference using external servers or the cloud has disadvantages in terms of
data security and the robustness of the data connection. Direct evaluation on the end device
can shorten the response time. Sufficient computational resources are required for industrial
automation and for implementing machine vision by using CNNs. FPGAs have advantages
due to their flexible and configurable architecture. In contrast, the architecture of GPUs is
fixed. The FPGA architecture reduces latency to a minimum due to its deterministic design.
Efficient resource consumption can be achieved by building each CNN layer close to the
FPGA’s memory.

Focusing on the advancement of network models has resulted in large CNN models
suitable for the image classification of images as large as 224 × 224 pixels, requiring
39 billion floating point number operations (FLOPs) and over 500 MB of model parameters.
The computational complexity is proportional to the size of the input image. As a result,
processing images with a high resolution can require more than 100 billion operations. To
run such complex network models, a suitable computational platform must be selected.
CPUs can perform 10–100 GFLOP/s, but their energy efficiency is usually less than 1 GOP/s,
which makes it difficult to achieve the high performance that cloud applications require as
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well as the low power consumption that mobile applications require. GPUs, on the other
hand, can achieve peak performance at up to 10 TOP/s, making them a good choice for
applications that require high performance. FPGAs can enable high parallelization and
simplify the computational process for some neural network models by building their
hardware logic. Another approach to the practical implementation of neural networks,
is to simplify the network models in a hardware friendly way. This is not intended to
bring about any reduction in the accuracy of the network model. FPGAs can achieve
better energy efficiency than CPUs or GPUs [10]. A GPU is effective at processing the
same set of operations in parallel single instruction, multiple data (SIMD). It has a well-
defined instruction set and fixed word sizes. For example, single or double precision
integer and floating point values. An FPGA on the other hand is effective at processing the
same operations in parallel multi instructions, multiple data (MIMD). It does not have a
predefined instruction set or a fixed data width. Figure 4 shows a schematic example of
these three types.
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Figure 4. Schematic overview of parallel processing in CPUs, GPUs and FPGAs.

The selected hardware should enable high throughput as well as high energy efficiency.
Important components of the convolutional layers and FC layers are multiply- accumulate
operations (MACs). Parallelization is necessary for good performance. Temporal paral-
lelization is most often used with CPUs and GPUs, where computational transformation on
the kernel reduces the number of multiplications and thus increases throughput. SIMD and
SIMT allow the parallelization of MACs. All ALUs share the same control unit and memory
(register file, RF). Convolutional as well as FC layers are mapped as matrix multiplication,
which can be optimized by libraries for CPUs, such as OpenBLAS or Intel MKL, and for
GPUs, such as cuBLAS or cuDNN. In spatial parallelization, instead of centralized control
for a large set of ALUs, a processing chain is formed. Thus, data can be passed directly
and ALUs can have their own control unit and local memory. An ALU with its own local
memory is called a processing engine (PE). Spatial parallelization is mostly used for deep
neural networks on ASICs and FPGAs [11]. Table 1 shows a comparison between the
abovementioned hardware accelerators.

Table 1. Comparison of CPUs, GPUs, FPGAs and ASICS for machine learning.

Criteria CPU GPU FPGA ASIC

Processing
Peak Power moderate high very high highest

Power
Consumption high very high low very low

Flexibility highest moderate high lowest
Training poor best yet not efficient not available
Inference poor good best potentially best
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3.2. FPGA Features

An FPGA consists of a gate of programmable logic blocks, including general logic,
memory, and multiplier blocks along with programmable conductive fabrics that allow the
custom blocks to be connected. The gate is surrounded by input and output blocks that
connect the chip to the external circuitry. FPGAs can be electronically programmed [12].
Additionally, FPGAs have embedded components such as digital signal processing (DSP)
blocks. These are used to perform arithmetically intensive operations such as MACs
(multiply- accumulate), block RAMs (BRAMs), look-up tables (LUTs), flip-flops (FFs), clock
management units, and high-speed I/O. The important components of an FPGA accelerator
are the processing elements (PE) and on-chip RAMs (M20Ks). There are two types of RAM
resources in an FPGA: distributed RAM (DRAM) and block RAM (BRAM). DRAMs are
implemented by LUTs, which wastes LUT resources and slows down the speed of read and
write data, BRAMs are integrated as internal RAM resources on the chip, which allows
read and write operations to be sped up [13].

FPGAs and ASICs operate at a lower clock frequency, resulting in lower energy
consumption [10]. First-in-first-out (FIFO) buffer memory hardware structures can be used.
FPGAs are suitable for battery-powered devices. The performance of CNNs on FPGAs is
measured in giga operations per second (GOP/s) [14]. FPGAs enable the implementation
of irregular parallelism and user-defined data types. As a result, higher computational
throughput can be achieved [6]. FPGAs show good performance, but a balance must be
struck between latency, precision, and hardware complexity [14]. FPGAs offer a good
trade-off between performance and cost. Deep neural networks such as AlexNet and VGG
are based on multiplications of dense floating point number matrices (GEMM) with 32-bit
floating point numbers (FP32). These are well suited for acceleration on GPUs. FPGAs offer
superior energy efficiency. On the downside, they do not offer the performance of GPUs.
Crucial in FPGA accelerators are a high number of DSPs and on-chip RAMs (M20K memory
blocks) as well as a high memory bandwidth (HBMs) and an improved frequency, e.g., by
a HyperFlex core architecture, to match the performance for floating point operations to
the performance of GPUs. Corresponding networks such as TNNs, ResNets or BNNs
show better performance on FPGAs than on GPUs [15]. FPGAs show better computational
density per watt for additions up to 16-bit and 32-bit fixed-point numbers than GPUs,
whose computational density is better suited for floating-point number operations.

System-on-modules (SoMs) or system-on-chips (SoCs) combine an FPGA with an
ARM processor. This simplifies the development of artificial intelligence systems. Instead
of running inference in the cloud, it can be executed at the edge by using accelerators
such as FPGAs, GPUs, DSPs, and ASICs. Additional tasks can be executed through the
processor. An SoC combines an FPGA with a CPU on a chip and thus offers additional
advantages for embedded applications [16]. The FPGA serves as a hardware accelerator
for executing inference. The CPU takes over control tasks. This exploits the advantages
of FPGAs over GPUs and ASICs: easy integration of different interfaces and sensors as
well as the necessary flexibility to apply neural networks is enabled. SoCs are used to
achieve low and deterministic latency. Thus, SoCs are suitable for real-time applications. In
addition, good energy efficiency is achieved. Besides executing inference, communication
with the host computer and other peripherals can be enabled simultaneously with actuator
control [17].

A high-performance CNN processor called a deep learning processing unit (DPU)
can be used [18]. To improve performance on FPGAs, DPUs have been released by Xilinx.
Unlike other FPGAs that focus on specific functions of CNNS, DPUs support the basic
functions of deep learning. A nested scheduler for task distribution between ARM and
different DPUs plays an important role. For this purpose, Xilinx has released a hybrid
CPU-FPGA MPSoC [19].
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3.3. State-of-the-Art FPGA Accelerators

Various manufacturers offer FPGAs for accelerating neural networks. These include,
for example, Xilinx, Intel, Efinix, Lattice, Semiconductor, Quick Logic, Achronix, Cypress
Semiconductor, Phytec, NXP Semiconductor and STMicroelectronics. Often, an SoC is
applied to provide the most efficient acceleration possible. Many manufacturers also offer
development kits for selected products that facilitate the use of the FPGAs or SoCs through
a variety of interfaces and provided supplements to the boards. These packages usually
include software packages. An overview of a selection of manufacturers and the products
offered is shown in Figure 5. The selected products are described in more detail below.
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Xilinx’s UltraScale architecture combines functionality with performance to imple-
ment applications that require I/O and memory bandwidth, large data flow, and DSPs.
A portfolio is offered for various application purposes for both high required capacity,
bandwidth, or performance as well as low space requirements and low cost. Spartan
6 FPGAs are suitable for I/O optimization, Spartan 7 FPGAs for I/O optimization with
high performance per watt, Artix 7 FPGAs provide high DSP bandwidth, and Zynq 7000 is
designed for system optimization with processor integration. An FPGA accelerator for
BNNs to classify a Cifar10 dataset can achieve 2.4 TOP/s when using a Zynq 7Z045 with
11 W [6].

Using a Z-turn evaluation board with a Xilinx Zynq 7000 SoC and optimizing the
computations to 8-bits, a frequency of 160 MHz and a power consumption of 1.77 W is
achieved, resulting in a throughput of 40.96 GOP/s. This uses 134 calculation units and
601 kB of internal memory. The reduction from 32-bit floating-point number precision
to 8-bits fixed-point number precision results in a 1% loss in accuracy for AlexNet while
reducing power consumption and cost. In addition, the data flow is made more efficient
by reducing the data transfer between off-chip and on-chip memory [20]. The Virtex
UltraScale + VC 707 contains up to 500 MB of BRAMs arranged in small units. It enables
high bandwidth with low power consumption compared to a platform with SRAM and
off-chip memory [21]. Zebra was developed by Minsology for Xilinx FPGAs and is available
as closed-source software. Zebra takes a Caffe application available for CPUs or GPUs
and runs it on Xilinx FPGAs using the Zebra runtime. This can be used to implement
different existing applications on different hardware platforms. Like Zebra, XfDNN can be
customized to the number of cores [22]. Zebra achieves better performance and efficiency
than Intel’s OpenVINO tool.

Intel offers hardware solutions and development boards. Intel Agilex SoC FPGAs
contain a quad-core ARM Cortex-A53 processor. The Intel Stratix series is equipped with
64-bit quad-core ARM Cortex-A53 processors. The Intel Arria series offers a compromise
between cost and energy efficiency. The Intel Arria 10 SoC is the further development of
the Arria V series and is equipped with a dual-core ARM Cortex-A9. When classifying an
ImageNet dataset, a throughput of 1.9 TOP/s can be achieved when implementing a BNN
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on a Stratix V GSD. Compared to the performance of an Arria 10 FPGA, a 14 nm ASIC,
a Xeon server CPU, an Nvidia Titan X server GPU, and an Nvidia TXI mobile GPU, the
FPGA exhibits better efficiency than the GPU and CPU and higher flexibility than the ASIC
due to the operations of the BNN network used [9]. When implementing Ternary ResNet,
Int6, and BNNs, the Stratix 10 series shows both better performance and power efficiency
than the Titan X Pascal GPU [23].

Trion FPGAs from Efinix have between 4000 to 120,000 logical elements, memory
blocks and DSP blocks. They can be applied for various purposes that require logical
units or computation acceleration and deep learning. Trion Titanium FPGAs are used
for various applications. The Ti25, Ti40, and Ti60 are used for mobile devices with low
power requirements and a large number of I/Os. The Ti90, Ti135, and Ti200 are used for
hardware acceleration, edge computing, and machine learning [24]. The Ti275, Ti375, and
Ti500 are suitable for industrial automation or automotive applications. As the complexity
of applications increases, the number of logical elements increases most noticeably from
24,000 in the Ti25 to 508,000 in the Ti500 and the number of DSP blocks from 67 in the Ti25
to 19,920 in the Ti500.

In [25], a training methodology termed the neural network design parameter extrac-
tion (NNDPE) program, facilitated the rapid implementation of artificial neural networks
(ANNs) on FPGA platforms. This methodology enabled the efficient extraction of ANN
design parameters, leading to the development of a high-precision ANN hardware archi-
tecture operating on the Virtex-7 FPGA at the impressive clock frequency of 150.76 MHz,
significantly outperforming software implementations running on CPU cores.

In the Ref. [26] the transformative impact of deep learning on various applications
and highlights the challenges in implementing neural network inference on resource-
constrained hardware platforms is shown. It delves into the analysis of network archi-
tecture and FPGA characteristics, emphasizing five key acceleration strategies, including
computing complexity, parallelism, data reuse, pruning, and quantization.

Table 2 below provides a comparison of the abovementioned FPGA accelerators fo-
cusing on their specific characteristics, processing power, and efficiency, especially in the
context of optimizing CNNs. The comparison covers zynq-7000 (Xilinx Inc., San Jose, CA,
USA), Arria 10 (Intel Corporation, Santa Clara, CA, USA) and Stratix 10 (Intel Corporation,
Santa Clara, CA, USA), and Artix-7 (Xilinx Inc., San Jose, CA, USA), and highlights their in-
dividual capabilities and performance metrics that are critical to evaluating their suitability
for advanced CNN-based computational tasks.

Table 2. Comparison of key FPGA accelerators for CNN implementations: processing power and
efficiency analysis.

FPGA Processing Power Power Efficiency

Xilinx Zynq-7000 moderate moderate
Intel Arria 10 high moderate
Intel Stratix 10 very high low
Xilinx Artix 7 low high
Efinix Trion T120 moderate moderate

4. CNN Optimizations for Implementation in FPGAs

In the previous section, the feasibility of accelerating CNNs on FPGAs was presented.
In order to make the implementation efficient and successful, some optimization approaches
are explained in this chapter. After the basic approaches are described and the goal of the
optimization approaches is outlined, selected approaches are examined in more detail in
Sections 4.1 and 4.2.

To maximize accuracy and throughput while minimizing energy consumption and
costs, software and hardware must be considered as a unit to enable a holistic optimization
approach. Acceleration methods can be divided into software and hardware improve-
ment. Software optimization aims to reduce computation and bandwidth requirements
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while maintaining accuracy. Algorithms, quantization, and weight reduction are used
for this purpose. Algorithms are used to simplify or transform network models and the
computational process. Data quantification involves weights and neurons to reduce band-
width and memory requirements. Weight reduction involves the approximation of the
weight matrix. In hardware improvement, the logical unit structure is adapted to the deep
learning algorithms.

Optimization of the network can be achieved by reducing operands and operations.
Operands can be reduced by using fixed-point numbers instead of floating-point numbers,
nonlinear quantization, and weight distribution. The number of operations and model
size can be achieved by techniques such as compression or pruning and use of compact
network architectures.

FPGAs are capable of partial dynamic configuration, which makes FPGAs partially
configurable. This can be applied to deep learning methods by configuring a part of the
FPGA to run the next CNN layer while the rest is used to run the current CNN layer. For
classical CNN networks such as AlexNet, FPGAs do not provide enough memory, resulting
in weights being stored externally and having to be transformed for computation on the
FPGA. This means that FPGAs should be improved, CNNs should be made less complex,
and operations should be optimized [27].

Thanks to their parallelization capabilities and new development environments, neural
networks can be enabled on FPGAs. One approach is the sequential implementation of
convolutions and vector-matrix operations. Since a high number of computations affects
latency due to the resulting complexity, parallelization is necessary. To increase throughput,
the computations can be implemented in the form of a processing chain, which only slightly
increases latency. DSPs used to execute MACs are limited to FPGAs. Even with sufficient
hardware resources available, alternatives to classical deep neural network computations
must be exploited. Workload analysis can be used to determine which computations can
be structured in parallel [28].

Acceleration on FPGAs is achieved by algorithms, e.g., GEMM, Winograd or FFT, data
path optimization, CNN network optimization, where sparse architecture is achieved by
pruning, linear or binary quantization, and hardware generation, e.g., by HSL based on
OpenCL or Vivado HLS based RTL.

4.1. Optimization Approaches Related to Approximations of the CNN Network

Neither the number of weights nor the number of operations in a CNN reflects energy
consumption. Energy is consumed not only by computations, but also by memory access,
e.g., fetching data from DRAM consumes more energy than the computation itself. Energy
consumption is dominated by memory access for filter weights and feature maps [29].
When processing CNNs, memory bandwidth is often responsible for a bottleneck. For FC
layers, execution may be memory bound due to the large number of weights. This results
in a large number of memory reads. For convolutional layers, the large number of MAC
operations results in many memory accesses. Each MAC operation requires at least two
memory reads and one memory write. The three memory reads of MAC operations are
for filter weight, FM activation, and partial sum. Reading the off-chip DRAM three times
would be unfavorable for energy-efficient data flow. This compromises both throughput
and energy efficiency since DRAM accesses require more energy than the computation
itself. Accelerators with architectures for spatial parallelization reduce the energy required
to move data. In the best case, MACs are performed without loading intermediate results.

Enhancing the efficiency and performance of CNN implementations on FPGAs de-
mands careful consideration of various optimization strategies. Each approach comes with
its own set of advantages and challenges, ranging from harnessing parallel processing
capabilities and customizing hardware architectures to optimizing memory hierarchies
and ensuring power efficiency. Balancing these factors is crucial for achieving optimal
FPGA-based CNN implementations, as outlined in Table 3 below.
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Table 3. Optimization approaches for CNN implementations on FPGAs: advantages and disadvantages.

Optimization Approach Advantages Disadvantages

Parallelism Efficient utilization of concurrent processing
Complex design and
synchronization challenges

Customization Tailored hardware for specific architectures and data types Requires specialized skills and extensive development time

Memory Hierarchy Reduced latency and increased throughput
Challenging memory access patterns and design
complexities

Quantization
Reduced memory and
computation complexity

Potential accuracy
degradation with aggressive quantization

Dataflow Optimization Improved throughput and efficiency
Complexity for dynamic workloads and complex
network structures

Resource Utilization Efficient hardware usage and cost reduction Constraints for accommodating changes and updates
Power Efficiency Suitable for energy-constrained applications Trade-offs with performance and design constraints
Flexibility and
Reconfigurability

Adaptability to changing
requirements and network variations

Overhead and complexity for reconfiguration

The goal of optimization approaches is to reduce computation and memory to increase
throughput, latency, and energy efficiency. Approximation can reduce the required memory
and computational complexity. Approximation algorithms can be divided into two types:
quantization and weight reduction. Quantization methods reduce the precision of weights
and/or activations (neuron output). Weight reduction removes redundant parameters
through pruning or structural simplification, which simultaneously leads to a reduction
in the number of activations in the network. Approximation increases throughput by
increasing parallelization, reducing memory transfer, as well as workload. Quantization can
be performed by using fixed-point numbers, binarization and ternarization, and logarithmic
quantization. By reducing the precision in network compression, off-chip memory access
occurs less frequently per operation. Data quantization is applied to 2-bit networks,
TNNs, and 1-bit networks, BNNs [14]. Efficiency can be improved by compact data types.
Extremely compact models such as BNNs that use a 1-bit data type offer advantages in
memory size and bandwidth. In binary CNNs, FC layers can be replaced by a pooling layer.

The computation of 1-bit MACs can be performed by XNOR followed by counting
bits. Multipliers can be replaced by XNOR circuits since there are only two values for the
input and weights. Multiple XNOR circuits can replace one MAC more energy efficiently
with higher speed [30]. BNNs are well suited for small data sets. Accuracy remains almost
unchanged with this approach. For large datasets, the accuracy is lower. A new version of
BNN is XNOR-Net, where the accuracy can be improved. The TNN network uses two bits
to represent the weights, which can improve the accuracy and make the calculation more
efficient. Among all the methods, the binary network has the highest loss of precision and
in return has the highest compression ratio. Ternarization exhibits better precision with a
good compression ratio because zeros can be represented in this approach.

4.2. Memory Optimization Approaches in the Context of Implementation on FPGAs

CNNs can be developed on FPGAs using either high-level synthesis (HLS) or hardware
description language (HDL). By using HLS, the software code can be put on the FPGA in a
short time. Architectures based on HDL show better performance considering frequency,
throughput, latency, power consumption, and resource utilization. Implementation using
HDL requires advanced skills of the developer and takes more time [31]. HLS reduces
the difficulty and required lead time of the design while ensuring high throughput and
energy efficiency. Convolutions require many multiplications implemented on an FPGA
with digital signal processing (DSP) blocks, where the synthesis tool can be forced to
implement multiplications with logical elements instead of DSP blocks. This makes the
implementation consist of AND gates and trees-of-half adders. Multiplications with zero
are removed.

Latency is created by accessing the off-chip memory. A balance between on-chip
and off-chip memory and on-chip memory and the number of PEs is sought to effectively
utilize chip resources, alleviate DRAM bottlenecks, and maximize performance [32]. Due
to limited BRAM resources, not all ifmaps and ofmaps can be stored on BRAM. Different
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BRAM channels can be set up for the ifmaps of each layer. To save weights on on-chip
memory, almost all BRAM resources are used. For layers with few parameters, all weights
can be read in one loop. Otherwise, more loops are needed to fully read the weights [33].

Deep neural networks are not processed randomly. The given data flow can be adapted
to the network and increase energy efficiency. The reuse of data should be maximized
because the storage capacity is limited for small memories, but large memories consume
more energy. Convolutions, FMs, and filters can be reused. When reusing convolutions, the
same ifmap activations and filter weights are used within a channel in convolutional layers
and in different combinations for different weighted sums. When reusing FMs, different
filters can be applied to the same FM and ifmap activations are reused for convolution and
FC layers. When reusing filters, different ifmaps are processed at once and filter weights
are reused in convolution and FC layers if the batch is greater than 1. Data is stored in the
local data hierarchy to reduce access to DRAM. Local memory can be used for subtotals.
There are several approaches to handling data flow: stationary weights, stationary output,
no local reuse, and a stationary row. Stationary weights minimize power consumption
when reading the weights by maximizing the access of the weights from the RF to the
PE. Each weight is read from DRAM into the RF from each PE and remains stationary for
further access. Processing passes through as many MACs as possible that use the same
weight as long as it is present in the RF. This maximizes the reuse of convolutions and
filter weights. Ifmap activations are transmitted to all PEs and subtotals are accumulated.
Stationary output minimizes energy consumption by reading and writing subtotals and
accumulating subtotals for the same output activation value in the RF. With no local reuse,
small RFs contribute to good energy efficiency. However, this approach is inefficient for
area reduction and maximizing memory capacity and minimizing off-chip bandwidth.

No local memory is allocated to a PE. Instead, allocation to the global buffer takes
place to increase capacity. For stationary rows, a 1D row convolution is processed in each
PE. The row of filter weights is held stationary within the RF from the PE, allowing input
activations to flow into the PE. As a result, only one memory location is used for the
accumulation of the subtotals. The input activations can be reused. By processing a 1D
convolution of a PE, multiple PEs can be combined into a complete 2D convolution. Other
forms of reuse are enabled to reduce access to the global buffer.

The FPGA architecture is designed with a tile look-up table (TLUT) and a channel
multiplexer (CMUX). The TLUT is designed to match the compressed weights with the
input pixels. The CMUX is used for address localization and efficient on-chip memory
access without conflicts [34]. Since convolutions affect performance, a combination of
four optimization strategies can be used, including: intra-layer optimization, inter-channel
parallelism, memory structure optimization, and designs in the form of a processing chain
such as ping-pong buffer memories and FIFOs [35].

5. Proposed Energy Efficient Embedded System for Organic Weeding Robots
and Discussion

This section presents hardware solutions for FPGA acceleration as well as software
solutions for the implementation of energy efficient artificial neural networks for organic
weeding robots. The current software and hardware configurations of the developed weed-
ing robot used by our cooperation partner Westhof Bio GmbH in Germany are presented,
followed by an examination of the possible implementation of the networks on FPGAs.
Special attention is given to the YOLO network, since this network architecture is currently
used for the detection of weeds [34]. This section closes with a discussion.

5.1. Current Soft- and Hardware Configuration of the Developed Weeding Robot

In [1], a method for detecting multiple weed species in organic farming using a
modified YOLO approach was presented. The proposed method was able to detect the
weeds in real time at up to 56 FPS, which is an important feature for the development of
modern smart farming applications. A lower precision was accepted in favor of a higher
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calculation rate of about 56 FPS. The best average precision of 75.07% was achieved at
18.65 FPS and an input size of 832 × 832 pixels. The detection speed can be adjusted to
the application’s accuracy requirement to maximize the detection speed. The proposed
method shows that it is flexible and robust. Only a small dataset consisting of 50 images is
necessary to achieve acceptable results.

In [36] we already evaluated hardware accelerators for AI applications in organic
farming. In this approach, a Coral USB Accelerator (Google LLC, Googleplex, CA, USA)
with an Edge-TPU and a Raspberry Pi 4 (Raspberry Pi Ltd, Cambridge, UK) Trading Model
B was used. The MobileNetV2-SSD was chosen for this application because of its ability
to run on embedded systems. The values achieved by this approach in terms of energy
consumption, accuracy, and speed were used for comparison with [34] to improve the
current weed control system. In terms of speed, the tiny-YOLO accelerated on a Jetson
TX2 (Nvidia Corporation, Santa Clara, CA, USA) was surpassed. However, the accuracy
of the tiny-YOLO could not be achieved. As a lesson learned, it should be noted that an
improvement in training must be made. During the first training attempts, the reduction of
the learning rate was set to a step size that was too large, so that the learning rate was too
high in the later course of training. Due to the excessively high learning rate, the training
results became increasingly worse. The energy consumption of the Raspberry Pi 4 with the
Coral USB-Accelerator is significantly lower than that of the Jetson TX2. The acquisition
costs of the Raspberry Pi and the Coral USB accelerator are also lower than those of the
Jetson TX2.

5.2. FPGA Implementation of the YOLO Network

YOLO implements classification and regression in object detection so that the object is
assigned to a class and information about the object’s coordinates is revealed [37]. YOLO
has a similar structure to GoogLeNet [38]. The you-only-look-once (YOLO) network is
faster and performs better than comparable networks such as single shot multibox detection
(SSD) and Faster R-CNN. Other similar networks include SqueezeNet, MobileNet, and
ShiftNet [39].

In the following, we particularly consider YOLOv2. YOLOv2 shows better precision
than simplified YOLO networks such as Tiny Yolov2. YOLOv2 is an object detection model
published in 2017 by Joseph Redmon and Ali Farhadi. This CNN model is suitable for the
simultaneous prediction of bounding box localization and categorization [40]. YOLOv2
is improved by Darknet-19. It leads to 19 convolutional layers, one average pooling layer,
five maximum pooling layers, one softmax layer, and 3 × 3 and 1 × 1 convolutional filters.
YOLOv3 has a more complex network structure and is slower than YOLOv2.

To implement YOLOv2 on FPGAs, the first step is to apply various compression
techniques to the network. BNN and XNOR networks replace classical floating point oper-
ations with binary operations, as explained earlier, which leads to a significant reduction in
memory bandwidth and memory requirements. The DSP blocks are not fully utilized. REQ
-YOLO can be used to implement quantization. REQ-YOLO compresses the YOLO network
with a small loss of accuracy. An alternating direction method of multipliers (ADMM) is
used [41]. Binary operations can be implemented using look-up tables.

A streaming design can be used to implement YOLO. Re-training and quantization
are applied to the parameters of the YOLO network. Binary weights are used, allowing the
entire network to be stored on the FPGA’s BRAMs to reduce the necessary off-chip access
and improve performance. Convolutional layers are built as a processing chain. The input
image is delivered row by row to the accelerators. The output from the previous layer is
delivered row by row. Intermediate data is reused at the layers to reduce access to external
memory. Reduced access to DRAM reduces power consumption. Each convolutional
layer is allocated to a hardware block. Quantization enables a fast and energy-efficient
CNN accelerator. The entire quantized CNN model can be accommodated on on-chip
BRAMs [21]. Another approach is to implement 3D convolutions as GEMM (general
matrix multiplication) [42]. In [43] the authors introduce an FPGA-based deep learning
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acceleration core architecture, specifically targeting image detection, with a focus on the
YOLO model. The architecture introduces a streamlined parallel acceleration scheme that
addresses arithmetic power, speed, and resource consistency issues. Leveraging a three-
level data cache architecture and optimized bus accessing strategies, the design achieves
significant performance enhancements. Notably, it achieves a 14 FPS inference for the Tiny
Yolo model, utilizing less than 25% of the FPGA resource. The study also emphasizes the
need for further research on acceleration algorithms for other models, such as RNN-based
or GAN-based architectures.

A configurable CNN accelerator is based on an architecture consisting of an ARM
and an FPGA, allowing a processing chain to be realized using HLS. The input buffer
memory and the weight buffer memory are used for computation. The output buffer
memory for storing intermediate results is designed as a ping-pong model. A dynamic
fixed-point number quantization strategy is used to improve the efficiency of convolutions
and reduce the access time to off-chip memory. Instead of using floating-point numbers for
weights, 16-bit fixed-point numbers are used in this approach. Another method is to use a
Winograd algorithm.

The Winograd transform is a fast convolution algorithm that can simplify MAC op-
erations by replacing multiplications with additions. Performance can be improved by
reducing multiplications and lower loop iterations. A Winograd algorithm is applied to
efficiently implement convolution to solve the unaligned global memory access problem
with an alignment stream buffer memory (AS buffer memory). The available memory
access bandwidth is fully utilized as well as all available DSP resources to achieve the
highest possible parallelization. This approach results in 10 ms per frame. Latency is
reduced compared to using GPUs. The Winograd algorithm reduces the computation for
convolutional layers compared to using Verilog/VHDL. All layers are supported by an
iterative Conv-ReLU pooling processing chain. The AS buffer is intended to cache proper-
ties or features, and the weight buffer caches weights and biases to increase throughput.
FMs and filters as well as ofmaps are stored in global memory. Feature data is read from
DRAM to the on-chip AS buffer memory cache. Once the execution of the convolution
operation starts, a set of filters is read from DRAM to the input feature column buffer
memory. The convolution, ReLU, and pooling modules operate in the form of a processing
chain. The ofmap is written back to the DRAM. Each convolution layer is followed by a
batch normalization (BN) layer and a scale layer. Logic, DSP resources, and latency are
reduced by unifying the three layers.

According to the research of [44], they presented an FPGA-based implementation
of YOLOv2 for object detection tasks on resource-constrained computer vision-based IoT
edge devices and remote control vehicles equipped with cameras. Their approach focuses
on resolving issues related to data reloading and off-chip memory access, employing an
efficient dataflow strategy and multi-level buffers that maximize on-chip data transfer
and minimize external memory access. The authors were able to achieve remarkable
results with low memory resource utilization and low-power consumption, showcasing
the potential for implementing complex models on edge devices.

Various techniques are used to compress YOLOv2, such as 8-bit quantization, struc-
tural pruning, and joining the convolutional, BN, and scale layers. The finetuning of the
parameters is enabled by re-training, which prevents a drop in accuracy. Adaptive logic
modules (ALM s) are used to implement convolutional operations. Fixed-point numbers
reduce computational complexity and resource consumption. To optimize memory, a
buffer pipeline method can be used to increase efficiency. By combining both methods, the
FPGA's resource consumption is optimized, and the power consumption is reduced up to
2.7W. The accuracy loss is 3% at most. Weights with 16-bit fixed-point numbers are used.
Weights with 32-bits are used for training. To solve the memory optimization problem of
the FPGA accelerator, a buffer pipeline method can be applied. When using an SoC, data in
the logical part interacts with the CPU via an external memory. This is controlled by an
advanced extensible interface (AXI) bus. When data is exchanged with the accelerator, to
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balance the timing coordination requirements with the data flow, a first-in-first-out (FIFO)
interface is added to the AXI bus. This allows input and output data from the accelerator
to be transferred efficiently. The average accuracy is 78.25%. HLS can be inefficient in
terms of hardware resources and performance. PEs are crucial for the implementation
of convolutional operations. To reduce hardware resources and power consumption, a
new PE was designed. For this purpose, modified-booth-encoding (MBE)-multipliers and
Wallace tree adders can be used to replace MACs and typical adder trees [45].

BNN Pynq is a project from Xilinx that runs a BNN network on a Pynq board. The Pynq
board is a low-end Zynq board equipped with an ARM CPU and a FPGA [46]. Binarized
modified convolutions for object detection based on Darknet and modified YOLO can be
implemented on a Pynq Z1 board [47]. This achieves an accuracy of 72.3% and an efficiency
of 17.54 FPS. The implementation of a YOLOv2 network modified with Winograd on a
Pync board is supported, e.g., by the Vivado HLS tool (Advanced Micro Devices Inc., Santa
Clara, CA, USA). On a Pync Z2 board, this can achieve an accuracy of 78.25% for input
images of size 416 × 416 with a power consumption of 2.7 W and a frequency of 125 MHz.
The Pync Z2 is equipped with 153 DSPs.

A YOLOv2 network modified using the Winograd algorithm, pruning, and quanti-
zation can be implemented on an Arria 10 FPGA with 2 GB DDR4 DRAM at a frequency
of 212 MHz. Implementing a YOLO network optimized with Winograd on a Virtex Ultra-
Scale+ VC707 (Xilinx Inc., San Jose, CA, USA), a throughput of 1.877 TOP/s is achieved
at a frequency of 200 MHz and an on-chip energy consumption of 18.29 W. The average
mean accuracy is 64.16%. By combining the convolutional and pooling operations of the
YOLOv2 network, the time required to access off-chip memory can be reduced.

Using Artix 7 TSBG484 and 16-bit fixed-point number precision, the throughput is
22 GOP/s at a frequency of 100 MHz. The power consumption is 7.53 W. When using a Vir-
tex 7 VX485T and a 32-bit floating-point number precision, the throughput is 61.62 GOP/s at
a frequency of 100 MHz and the power consumption is 3W. Using a Stratix V, a throughput
of 136.5 GOPs is achieved at a frequency of 120 MHz and a power consumption of 19.1W.
With the ZCU 102 Zynq UltraScale+, a peak throughput of 289 GOP/s and an average
throughput of 102 GOP/s are achieved at a 16-bit fixed-point number precision and a fre-
quency of 300 MHz. At the same time, the power consumption is 11.8 W. YOLOv2 achieves
35.71 FPS (frames per second) on the Xilinx ZCU 102 board with a Zynq UltraScale+ MP-
SoC when all weights are stored on off-chip DDR memory and a buffer is used for binary
weights [30]. Using Wallace adder trees to optimize Tiny YOLOv2, a Zynq 706 achieves a
throughput of 87.03 GOP/s and an efficiency of 61.64 GOP/s/W [48]. To summarize Table 4
compares various FPGA-based implementations of the YOLO network. These implemen-
tations employ diverse strategies, including compression techniques, configurable CNN
accelerators, Winograd algorithms, and quantization methods, to optimize performance
and resource utilization. The comparison sheds light on the nuanced trade-offs between
processing speed, energy consumption, and detection accuracy.

Table 4. Comparative Analysis of FPGA Implementations for YOLOv2 Network, Including Time
Consumption, Energy Efficiency and Accuracy.

FPGA Implementation Inference Time (ms) Energy Efficiency (W) Accuracy (%)

YOLOv2 with Configurable CNN Accelerator and
Winograd Algorithm 10 2.7 78.25

YOLOv2 with BNN Pynq Implementation 15 5.1 72.3
YOLOv2 on Artix 7 FPGA 18 7.53 68.9
YOLOv2 on Stratix V FPGA 20 19.1 -
Tiny YOLOv2 with Wallace Adder Trees on Zynq 706 FPGA 16 6.2 -

5.3. Discussion

Figure 6 shows a comparison of different selected FPGA accelerators for the YOLO
network, whose testing has already been described in the literature. Different components
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are compared with each other. It can be seen that the costs increase as the complexity of the
SoCs increases. In order to enable a particularly efficient implementation in terms of both
technical implementation and monetary aspects, an adaptation of the CNN network should
be aimed for. Implementations of the YOLO network using an FPGA accelerator from
the literature achieve good results by taking this approach. A low-cost implementation is
possible by using the Pynq Z1. Testing is outlined in various sources.
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Different approaches to implementing YOLOv2 on a Pynq board achieve about
70-80% accuracy, with modified networks able to achieve 15–16 FPS efficiency, while a
direct YOLOv2 implementation achieves 0.16 FPS efficiency. Particularly good results
are obtained with the ZCU 102. It can achieve the same 85.2% accuracy as a 256-core
Pascal GPU when implementing a modified YOLO with binary weights. In addition, the
FPS of 35.71 for the ZCU 102 board is higher than the GPU efficiency of 1.39 FPS. When
the efficiency in FPS/W is compared between ZCU 102 and the Pynq board when the
modified YOLOv2 network is applied, the Pynq board can achieve a higher efficiency
of 10.44–12.1 FPS/W compared to 7.93 FPS/W of the ZCU 102 due to the lower power
consumption.

Concluding our review of the energy efficient embedded system acceleration of CNNs,
we can summarize that compared to the current solution used for our developed weeding
robot, neither the Pynq nor the ZCU 102 represent a degradation of the system in terms of
performance or efficiency. Both devices can improve the system due to the nature of the
hardware accelerators and when YOLO is appropriately modified. The ZCU 102 offers the
possibility of additional extensions due to its large memory capacity.

Conceivable extensions are additional classes, e.g., beet or spinach. Since FPGAs
reduce the space requirement compared to a GPU, a use of further applications of artificial
neural networks in the field of autonomous smart or precision farming is conceivable,
e.g., by using drones [49–53]. The energy efficiency offered by FPGAs can additionally
optimize the weeding robot. FPGAs lend themselves to battery operation or operation by
means of solar modules.

6. Conclusions

The cultivation of organic vegetables has long been challenged by the persistent issue
of weed control, exacerbated by the continuous increase in chemical and synthetic pesticide
use. To address this problem, the development of an automated weeding robot has been
proposed, although its energy demands, particularly during the GPU-driven inference
phase, present significant obstacles to achieving a sustainable operation. The comprehen-
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sive evaluation of various FPGA implementations for the YOLO network underscores
the versatility and efficiency of FPGA-based solutions in enhancing the performance of
embedded systems, particularly in the domain of organic weeding robots. The comparison
highlights the nuanced trade-offs between processing speed, energy consumption, and
detection accuracy. Different FPGA architectures, including Artix 7, Stratix V, and ZCU 102,
have demonstrated their capabilities in achieving varying levels of performance metrics,
with each approach exhibiting unique strengths in specific contexts. Notably, the exami-
nation of the Pynq board and the ZCU 102 reveals that both systems offer viable options
for enhancing the weeding robot's functionality, without compromising its efficiency or
performance. Moreover, the energy efficiency provided by FPGA architectures presents an
opportunity for optimizing the weeding robot, making it conducive for potential applica-
tions in autonomous and precision farming, including the use of drones. With the compact
form factor and enhanced energy efficiency, FPGA-based solutions enable the possibility of
extended operation through battery or solar-powered configurations, thereby showcasing
their potential as a promising avenue for further advancements in the domain of smart
farming and agricultural automation.
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