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Abstract: This research delves into the intricacies of decision-making processes underpinning the
willingness to upgrade technology within the burgeoning domain of intelligent pig farming in China,
employing the UTAUT model to scrutinize how various determinants sway upgrade willingness
and the ensuing behavioral modification. By applying the UTAUT model to intelligent pig farming,
the inquiry evaluates the impact of performance expectations, effort expectations, social influence,
and contributory factors on upgrade willingness and behavior, with data amassed from assorted
novel agricultural management entities in China. The findings unveil that performance and effort
expectations, social influence, and contributory factors have a favorable influence on upgrade willing-
ness, while contributory factors, alongside the augmentation of upgrade willingness, positively affect
upgraded behavior. This inquiry underscores the multifaceted interaction of factors guiding techno-
logical upgrade verdicts in intelligent pig farming, furnishing invaluable insights for comprehending
technology adoption in agriculture. It lays a groundwork for devising strategies to spur technological
advancements, harboring potential for wider applications across varied agricultural vistas.
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1. Introduction

After more than a decade of robust growth, China’s hog farming industry has solidi-
fied a commanding position on the global stage [1]. However, the sector faces numerous
challenges, including inconsistent standards, low automation, and pressing environmental
concerns such as waste management [2–4]. Smart farming represents a shift in agricultural
practice, where traditional methods are augmented or replaced by advanced technolo-
gies, such as the Internet of Things (IoT), Big Data analytics, and Artificial Intelligence
(AI) [5–7]. These technologies enable real-time monitoring, data-driven decision making,
and automated operations, thereby increasing efficiency, reducing costs, and minimizing
environmental impact [8–10]. The adoption of smart farming technologies has the potential
to address various challenges.

Smart farming represents a modern approach to agriculture, melding technology
with traditional farming practices to optimize productivity and sustainability [11,12]. At
its core, smart farming leverages a suite of advanced technologies encompassing the
IoT, drones, robotics, machinery, and AI [13,14]. These technologies are instrumental in
managing farms, plantations, and all associated farming activities with the overarching
aim of achieving predictable farm output [15]. Figure 1 shows the integration of the
Three Pillars of Sustainability—Economic, Social, and Environmental—with smart farming
technologies. Economic aspects focus on productivity and efficiency through IoT, Big Data,
and AI [16,17]. Social aspects aim to improve quality of life via labor-saving tech and
community-building platforms [18,19]. Environmental aspects prioritize planet-friendly
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practices using Biotechnology, Blockchain, and Ecological Integration [20,21]. Overall,
smart farming technologies enhance sustainability in agriculture.
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Our research specifically aims to provide actionable policy recommendations to foster
sustainable development and technological upgrades. These changes will enhance both
the economic efficiency and environmental sustainability of the hog farming industry in
China. The Unified Theory of Acceptance and Use of Technology (UTAUT) serves as a
valuable theoretical framework for exploring technology adoption in the industry, guiding
enterprises towards efficiency and quality in large-scale operations [22,23]. It advocates for
the adoption of user-friendly, intuitive technologies that align with the skill sets of profes-
sional farmers, thus facilitating large-scale adoption and market competitiveness [24–26].
Intelligent hog farming incorporates advanced technologies to improve various aspects of
the industry. These include environmental monitoring, nutrition and feeding management,
disease prevention, and full-chain traceability [27–29]. Such technologies contribute to
enhanced productivity, cost reduction, and ecological balance [30,31]. In addition, they
resonate with broader sustainable development goals [32,33].

In the evolving context of China’s hog farming industry, the UTAUT model serves as
a critical framework for understanding the multifaceted dynamics of technology adoption
and operational efficiency. This model is aligned with broader objectives, such as rural
development and the modernization of agriculture [34]. Adapted for diverse business
configurations—encompassing large professional households, family farms, and profes-
sional farmers’ cooperatives—the UTAUT model offers a comprehensive approach [35–37].
Figure 2 encapsulates the research concept of utilizing the UTAUT model to refine the strate-
gic approach to intelligent hog farming. It focuses on three core constructs: performance
expectations, effort expectations, and social influence [38–40]. Performance expectations
guide enterprises toward achieving operational efficiency and quality and are synergistic
with industry trends toward scaling and competitiveness [41–43]. Effort expectations ad-
vocate for the integration of intuitive, user-friendly technologies, thus facilitating greater
adoption rates among professional farmers [44–46]. Social influence incorporates com-
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munity networking and peer-driven success as catalysts for technology uptake across the
industry [47–49].
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Given the pressing challenges faced by China’s hog farming industry, the insights
gained from applying the UTAUT model to understand the adoption of these smart farming
technologies could prove invaluable. Not only could they lead to more consistent standards
and increased automation, but they may also address critical environmental concerns [50,51].
Thus, the adoption of smart farming, guided by the UTAUT model, presents an opportunity
to modernize and sustainably grow this vital sector.

2. Data and Methods
2.1. Data

The insights and characteristics described in this report were obtained through a com-
prehensive research approach. A total of 200 questionnaires were distributed to managers
and key personnel of New Agricultural Entities involved in pig farming in China. Out of
these, 184 were returned, marking a high return rate of 92%. New Agricultural Entities
in China’s pig farming typically operate on a large scale. With economies of scale, these
entities lower average costs, thereby enhancing profitability. Managers in these entities
are responsible for daily operations, strategic planning, and long-term objectives. They
generally have strong backgrounds in agricultural sciences, business management, and
technology. They handle a broad spectrum of responsibilities, including financial plan-
ning, human resources, technological adoption, and market strategy, aligning with the
multifaceted objectives of the New Agricultural Entities they manage.

These questionnaires were complemented by offline research methods that included
face-to-face interviews. This research was funded by the General Project of Social Science
Planning Fund of Guangdong Province and the Special Fund Project of Guangdong Provin-
cial Finance, adding to the credibility and scope of the data collected. The samples selected
were drawn from random samples taken in the course of conducting research with the
Fund. Table 1 provides the features of the sample. “Technologically Savvy” features a
mean score of 2.994 with a standard deviation of 0.714. The majority of the sample lies
in the “Moderate tech integration” category, making up 29.89% of respondents. The data
shows a moderate degree of dispersion, indicated by the standard deviation, suggesting
varied levels of technological understanding among managers. In the “Business-Oriented”
category, the mean score is 3.217, and the standard deviation is 0.685. A significant 30.43%
of respondents fall under “Good but not optimized”. The data show moderate variability
in business orientation among the sample, as indicated by the standard deviation. For
“Environmentally Conscious”, the mean score stands at 3.065 with a standard deviation
of 0.612. The most populated category is “Moderate sustainability”, capturing 36.96% of
respondents. The lower standard deviation indicates a tighter clustering of responses,
suggesting that the sample generally leans towards being environmentally conscious. The
“Adaptive & Flexible” category exhibits the highest mean score of 3.331 and the lowest
standard deviation of 0.558. A majority, 41.85%, are categorized as “Generally adaptable”.
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The low standard deviation indicates a higher level of agreement or consensus among
respondents in this feature, suggesting that adaptability is a strong characteristic among
the sample.

Table 1. Features of sample.

Features Items Frequency Percentage Mean ST.DEV.

Technologically Savvy

1 (Limited tech
understanding) 27 14.67%

2.994 0.714
2 (Basic tech use) 36 19.57%

3 (Moderate tech integration) 55 29.89%
4 (High tech proficiency) 43 23.37%

5 (Expert tech application) 23 12.50%

Business-Oriented

1 (No business focus) 12 6.52%

3.217 0.685
2 (Basic business awareness) 43 23.37%
3 (Good but not optimized) 56 30.43%

4 (Strong business focus) 39 21.20%
5 (Fully maximizes

profitability) 34 18.48%

Environmentally Conscious

1 (Negligent) 16 8.70%

3.065 0.612
2 (Minimal effort) 35 19.02%

3 (Moderate sustainability) 68 36.96%
4 (Strong eco-focus) 51 27.72%

5 (Fully eco-committed) 14 7.61%

Adaptive and Flexible

1 (Resistant to change) 8 4.35%

3.331 0.558
2 (Slow to adapt) 21 11.41%

3 (Generally adaptable) 77 41.85%
4 (Highly adaptive) 58 31.52%

5 (Exceptionally adaptable) 20 10.87%

A 92% questionnaire return rate enhances data validity, likely reflecting the broader
manager population in China’s New Agricultural Entities. The mixed-method approach,
combining questionnaires with interviews, strengthens data reliability and yields nuanced
insights. Funding from reputable organizations adds credibility. Random sampling miti-
gates selection bias, enhancing generalizability. Variability in key features like technological
savvy and business orientation, as indicated by standard deviations in Table 1, ensures
sample representativeness. Low standard deviation in traits like adaptability suggests
consensus, further corroborating the study’s reliability. Overall, the sample is both robust
and directly aligned with the research objectives, affirming its suitability.

2.2. Variable

In this study, the research variables were measured using a 5-point Likert scale, a quan-
titative survey instrument commonly found in social science research. This scale is used to
gauge respondents’ attitudes or feelings toward a specific issue or statement by assigning
values to abstract concepts and transforming them into concrete numerical expressions.
Within the context of this research, the scale is defined with 1 meaning “strongly disagree”
and 5 representing “strongly agree”. By quantifying these subjective responses, the Likert
scale enables further analysis and interpretation using structural equation modeling (SEM),
thereby providing a robust mechanism to translate complex human emotions and opinions
into actionable data, supporting the study’s broader analytical goals.

2.2.1. Outcome Variables

Upgraded Behavior. Outcome variables encompass escalation behavior, and Table 2
elucidates the questions specifically designed to explore this aspect. The focus of these
questions lies in unraveling the actual behavior and experiences of new agricultural busi-
ness entities engaged in the upgrading of smart hog farming technology. Respondents were
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interrogated regarding their adoption of smart technology within the past year and were
then prompted to provide insights into the specific impacts of this upgrade. This includes
aspects such as the complexity of day-to-day operations, pig health, and growth improve-
ment, as well as potential new challenges or problems that may have arisen as a result of the
technological upgrade. The queries also probed whether respondents had plans to further
invest in or enhance smart farming technology. By delving into the real-world effects and
challenges of upgrading from a multifaceted viewpoint, this questionnaire not only offers
a comprehensive panorama of actual upgrading experiences but also sheds light on the
genuine status of implementation. It serves as an indispensable tool in identifying potential
directions for optimization, thereby forming a crucial component in understanding the
dynamics of smart farming technology in the context of new agricultural enterprises.

Table 2. Problems with the design of upgraded behaviors.

Variable Code Item

Upgraded Behavior

UB1 Have you adopted any smart hog farming techniques
in the past year?

UB2 Have you faced any new challenges or problems since
upgrading to smart farming?

UB3 Do you plan to continue to invest in further upgrades
or improvements in smart pig farming technologies?

2.2.2. Conditional Variables

Table 3 focuses on willingness to upgrade intelligent pig farming technology, assessed
using a five-point Likert scale. This questionnaire examines factors like upgrade timelines,
anticipated benefits, market demands, potential barriers, and collaboration readiness.
Specific questions target perceptions on market trends (UW1), concerns about technical
support and training (UW2), and openness to collaboration with governmental or private
institutions (UW3). The dataset provides valuable insights into the complex motivations
and constraints affecting technology upgrading decisions among new agricultural business
entities. The collected information serves as both an analytical tool and a strategic guide
for implementation, enriching the decision-making context in intelligent agriculture.

Table 3. Problems with the design of upgrade willingness.

Variable Code Item

Upgrade Willingness

UW1
Do you believe that market and consumer trends in

your area are motivating you to upgrade to smart hog
farming technology?

UW2
Are you concerned that the lack of appropriate
technical support and training may hinder the
upgrading of smart hog farming technology?

UW3
Are you willing to cooperate with government or
private organizations to promote your smart hog

farming technology upgrade?

The questionnaire outlined in Table 4 employs a five-point Likert scale to assess new
agricultural operators’ performance expectations for smart farming upgrades. Each ques-
tion offers respondents five options to indicate their level of agreement or disagreement,
typically ranging from “Strongly Disagree” to “Strongly Agree”. This scale allows for a
nuanced evaluation of various dimensions, such as efficiency, quality, cost, competitive-
ness, and sustainability. Respondents’ choices across the scale provide insights into their
anticipations and concerns, thereby facilitating a comprehensive analysis of their needs
and objectives.
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Table 4. Problems with the design of performance expectations.

Variable Code Item

Performance
Expectation

PE1 How do you think upgrading to the Smart Farming
System will improve pig farming efficiency?

PE2 Do you expect the Smart Farming System to improve
the quality and health of hogs?

PE3 Do you expect that upgrading to the Smarter Hog
Farming System will reduce the cost of hog farming?

PE4
Do you think upgrading to the Smarter Farming
System will increase your competitiveness in the

market?

PE5
Do you think the use of the system will contribute to

environmental protection and sustainable
development?

The questionnaire in Table 5 utilizes a five-point Likert scale to assess respondents’
effort expectations associated with transitioning to smart farming. Each item on the scale
provides a range of responses from “Strongly Disagree” to “Strongly Agree”, enabling
a granular evaluation of anticipated effort, challenges, and complexities. Topics include
perceived difficulty and barriers in technology adoption, expectations for skill mastery,
concerns about operational complexity, and the need for technical support. This structure
allows for a thorough analysis of respondents’ attitudes and expectations, serving as
an actionable guide for identifying potential issues and supports required during the
technology upgrade process.

Table 5. Problems with the design of effort expectations.

Variable Code Item

Effort Expectation

EE1
Do you think the process of upgrading to the Smart

Farming System will be very complex and
time-consuming?

EE2 How difficult do you expect it to be to learn and
master the skills of using the Smart Farming System?

EE3
Are you concerned that upgrading to the Smart

Farming System may make daily operations more
complicated?

EE4
How much time do you expect it will take to adapt to

the new workflow after upgrading to the Smart
Farming System?

EE5
Do you feel that the technical support and training

resources for the Smart Farming System are adequate
to help you transition smoothly to the new system?

Table 6 employs a five-point Likert scale to assess the impact of social influence on
the adoption of smart farming technology. Respondents can select from options ranging
from “Strongly Disagree” to “Strongly Agree” for each item. The questions are designed
to evaluate various facets of social influence, such as peer pressure, expert opinions, and
industry trends. For instance, items like SI1 and SI2 gauge the role of peers in adoption
decisions, while SI3 assesses the influence of expert advice and success stories. SI4 explores
perceptions of industry trends, and SI5 delves into the role of community discussions in
decision making. This structure allows for a nuanced understanding of the social factors
affecting technology adoption among new agricultural operators.
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Table 6. Problems with the design of social influence.

Variable Code Item

Social Influence

SI1 Are your peers already adopting smart farming
techniques?

SI2
Do you think the recommendation and positive feedback
from your peers will influence your decision to upgrade

to the Smart Farming System?

SI3
Do you refer to other successful cases or experts’ opinions

when deciding whether to upgrade to an intelligent
aquaculture system?

SI4 Do you think upgrading to intelligent farming has become
a trend or standard practice in the industry?

SI5
Whether you would discuss the benefits and challenges of
smart farming with your peers or others in the industry to

assist you in your decision-making process

Table 7 uses a five-point Likert scale to evaluate contributory factors affecting the
adoption of smart farming technologies. Respondents can choose from “Strongly Disagree”
to “Strongly Agree” for each question. The items are structured to cover various dimensions
that influence technology adoption, such as resources, policy support, operational ease,
organizational capacity, and strategic alignment. For example, CF1 assesses resource
availability, CF2 explores the role of government policies, CF3 evaluates perceived ease of
operation, CF4 probes into organizational skillsets, and CF5 examines the strategic fit of the
technology. This design offers a comprehensive view of the multiple factors influencing the
decision to upgrade to smart farming technologies among new agricultural entrepreneurs.

Table 7. Problems with the design of contributory factors.

Variable Code Item

Contributory Factor

CF1 Do you have enough resources (e.g., capital, equipment,
training, etc.) to upgrade to Smart Farming Technology?

CF2 Is there any government policy or subsidy in your region
to support upgrading to smart farming technology?

CF3 Do you think that Smart Farming Technology is practical
and convenient in terms of operation and maintenance?

CF4
Do your employees or partners have sufficient skills and

knowledge to implement and manage smart
farming technologies?

CF5
Do you believe that upgrading to smart farming

technology will be in line with your business goals
and strategies?

2.3. Structural Equation Modeling

With its formidable and sophisticated analytical capabilities, SEM emerges as an indis-
pensable tool for investigating the intricate decision-making processes behind the upgrade
to smart farming within the specialized field of hog farming in China. Its flexibility and a
rich assortment of in-depth analytical tools make it the method of choice for this nuanced
study. SEM’s multivariate analysis capability enables it to simultaneously scrutinize the
relationship between multiple independent and dependent variables. This is particularly
relevant for investigating complex causal relationships in the acceptance and promotion of
smart farming technologies, a subject also deeply covered by the UTAUT model.

The handling of latent variables—variables that are not directly observable but repre-
sented by other measurable variables—is another essential feature of SEM. It proves highly
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effective in the measurement of attitudes and perceptions of new agricultural management
entities, facilitating a set of questions that are subsequently analyzed as latent variables
within the SEM framework. This analytical approach aligns closely with the UTAUT
model’s ability to provide theoretical and practical guidance tailored to the attributes and
aims of new agricultural enterprises in China, especially those emphasizing large-scale
operation, intensification, and market competitiveness.

Path analysis, a crucial component of SEM, provides a precise understanding of causal
paths and the intensity of the influence between diverse variables. This facet is critical for
deciphering how new agricultural management entities can refine their decision-making
process for smart farming. Additionally, SEM’s adeptness in handling measurement errors
ensures the precision of estimates, especially when data collection occurs via questionnaires.
This methodological strength corroborates the UTAUT model’s emphasis on performance
and effort expectations as key factors influencing the decision to adopt smart farming
technologies.

Figure 3 delineates the structural equation model for smart farming upgrade deci-
sions based on the UTAUT model. It encapsulates the intricate dynamics influenced by
performance expectation, effort expectation, and social influence. These constructs, consid-
ered major catalysts for upgrading, may influence upgrade behavior indirectly through
a mediating variable—willingness to upgrade. This mediating factor offers an articulate
explanation of the complex relationships between various components and upgrading
behavior, echoing the real-world context and highlighting the UTAUT model’s relevance in
Chinese hog farming.
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The association between performance expectations and the decision to upgrade smart
farming gains additional texture from the SEM analysis. This association extends beyond
a mere connection to provide a robust theoretical framework that augments the accep-
tance and adoption of intelligent farming technologies. It resonates strongly with the
broader objectives of new agricultural enterprises that emphasize efficiency, quality, and
competitiveness. The role of effort expectations in decisions to upgrade smart farming
proves pivotal, significantly affecting the path and pace of technology adoption for new
agricultural enterprises. SEM’s focus on ease of use and intuitive design complements
the UTAUT model’s insights into these aspects, thereby influencing technology adoption
across different levels of expertise within the industry.

Finally, SEM’s capabilities in controlling confounding variables enhance the validity
and robustness of results while simultaneously aligning with the UTAUT model’s emphasis
on social influence as a dynamic, multifaceted force within the smart farming sphere. This
underlines how social influence affects decision making, facilitates technology diffusion,
and contributes to community building—elements vital for the broader goals of rural
revitalization and modernization of agriculture in China.

The ensuing hypotheses further delve into specific correlations and causations.

Hypothesis 1. Performance expectations affect the willingness to upgrade.

Hypothesis 2. Effort expectations impact the willingness to promote.

Hypothesis 3. Social influence shapes the willingness to promote.

Hypothesis 4. Social influences directly influence upgrading behavior.

Hypothesis 5. Contributing factors directly affect upgrading behavior.

Hypothesis 6. Upgrading willingness has a tangible influence on upgrading behavior.

These hypotheses provide a comprehensive framework that not only looks at the direct
effects of social influences and contributing factors but also at the direct impact of upgrading
willingness on upgrading behavior. It paints a multifaceted picture that represents the
modernization and intelligence process of pig farming, reflecting the collective influences
of potential benefits, market demand, and cooperation willingness, all of which are likely
to culminate in a decisive action to upgrade.

3. Results
3.1. Descriptive and Relevance

Table 8 unveils the results of the descriptive statistics and correlation analysis, encapsu-
lating the means and standard deviations of six vital variables—performance expectations
(pe), effort expectations (ee), social influences (si), contributing factors (cf), willingness
to promote (uw), and promotion behavior (ub). The means of these variables are tightly
clustered between 3.06 and 3.137, while their standard deviations span from 1.208 to 1.324.
Significantly, the correlations between all these variables are positive and exhibit a sub-
stantial three-star level (***) within the range of 0.775 to 0.869. This pattern underlines a
strong correlation between these variables. Notably, the high correlation of 0.869 between
performance expectation and effort expectation may stem from their combined reflection
of the positive expectation of agricultural operators on the upgrading of smart farming
technology. Similarly, the relatively high correlation of 0.853 between social influence and
contributing factors could potentially elucidate how the social environment and external
conditions conjoin in shaping the decision to upgrade to smart farming. The positive
correlation of 0.775 between upgrading willingness and upgrading behavior strengthens
the assertion that upgrading willingness does indeed play a direct role in the manifestation
of upgrading behavior, aligning with previous theoretical hypotheses. The significant
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positive correlations among all the variables create a harmonious matrix, possibly reflecting
an intricate interaction amongst these factors in the progression of upgrading pig farming
to smart farming. Together, they either facilitate or impede the realization of upgrading
behavior, weaving a complex interplay that resonates with the real-world dynamics of
technological adoption in agriculture.

Table 8. Results of descriptive statistics and correlation analysis.

Variable Mean Std. dev. PE EE SI CF UW UB

PE 3.101 1.220 1.000
EE 3.130 1.249 0.869 *** 1.000
SI 3.129 1.210 0.857 *** 0.862 *** 1.000
CF 3.137 1.208 0.844 *** 0.863 *** 0.853 *** 1.000

UW 3.060 1.282 0.803 *** 0.818 *** 0.81 *** 0.81 *** 1.000
UB 3.082 1.324 0.843 *** 0.820 *** 0.816 *** 0.779 *** 0.775 *** 1.000

*** p < 0.01.

3.2. Reliability and Validity

The reliability and validity analysis are pivotal in affirming the robustness and au-
thenticity of a measurement tool, and Table 9 delineates the results of these critical tests.
Loadings exceeding 0.7 for all variables reflect that each item strongly correlates with its
corresponding latent variable, thus indicating high item–factor agreement. Cronbach’s
Alpha, the metric that gauges the internal coherence of a set of items, also validates this
finding. With values for all variables surpassing the conventional threshold of 0.7, it under-
scores that the measurements are uniform and that individual items precisely gauge the
same concepts. The Average Variance Extracted (AVE), another vital statistic, measures the
extent to which the variables are elucidated. Typically, AVE values should transcend 0.5,
signifying that more than half of the construct’s variance is explainable by the construct
itself. In this specific analysis, the AVE for all variables transcended this bar, substantiating
the validity of the measure. Such results lead to the conclusion that the questionnaire
exhibits admirable statistical reliability and validity. Delving into specifics, upgraded be-
havior, characterized by loadings greater than 0.8, a Cronbach’s Alpha of 0.838, and an AVE
of 0.693, firmly indicates that this measure is trustworthy and valid. Upgrade willingness
resonates with the indicators of upgrade behavior, showcasing strong consistency and inter-
pretive acumen. Additionally, performance expectations and effort expectations manifest
commendable reliability and validity through the overall Cronbach’s Alpha and AVE, even
though some loadings were marginally lower. Similarly, social influence and contributory
factors, aligned with the reliability indicators of the other constructs, validate good internal
coherence and explanatory prowess. Collectively, the reliability and validity analysis of the
questionnaire not only verifies the questionnaire’s soundness and legitimacy but also lays
a robust foundation for ensuing structural equation modeling analysis, thereby reinforcing
confidence in the research framework and findings.

Table 9. Results of reliability and validity tests.

Variable Code Loadings Cronbach’s Alpha AVE

Upgraded Behavior
UB1 0.820

0.838 0.693UB2 0.859
UB3 0.817

Upgrade Willingness
UW1 0.833

0.850 0.689UW2 0.819
UW3 0.838
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Table 9. Cont.

Variable Code Loadings Cronbach’s Alpha AVE

Performance Expectation

PE1 0.803

0.830 0.608
PE2 0.792
PE3 0.798
PE4 0.774

PE5 0.728

Effort Expectation

EE1 0.819

0.847 0.626
EE2 0.744
EE3 0.776
EE4 0.795
EE5 0.818

Social Influence

SI1 0.785

0.774 0.595
SI2 0.776
SI3 0.743
SI4 0.741
SI5 0.811

Contributory Factor

CF1 0.768

0.778 0.621
CF2 0.830
CF3 0.772
CF4 0.794
CF5 0.774

3.3. Structural Equation Modeling Analysis
3.3.1. Path Coefficient Analysis

The insights garnered from the structural equation modeling coalesce in Table 10,
which reveals the results of the path coefficient test executed following 5000 iterations
using the Bootstrap method. This comprehensive examination divulges several significant
relationships that shape the understanding of the system. Specifically, performance expec-
tation exerts a significant positive influence on upgrade willingness, as demonstrated by
a coefficient (β) of 0.244 and a p-value less than 0.01. Equally telling is the relationship
between effort expectation and upgrade willingness, where the correlation is found to be
significant and positive, with a β of 0.343 and a p-value less than 0.05. Furthermore, social
influence is also observed to have a noteworthy positive impact on upgrade willingness,
bearing a β of 0.306 and a p-value less than 0.01. Likewise, the contributory factor plays
an instrumental role in influencing upgraded behavior, evidenced by a β of 0.199 and a
p-value less than 0.05. Lastly, the analysis reveals that upgrade willingness significantly
contributes to upgraded behavior with a positive effect, characterized by a β of 0.260 and a
p-value less than 0.01. These results collectively illuminate the intricate interactions and
significant determinants within the study, fostering a comprehensive understanding of
how various factors interplay to shape the decisions related to upgrading, thereby adding
a refined layer of insight into the research investigation.

Table 10. Path coefficients Bootstrap test results.

X → Y Path Coefficients p Values t Values

Performance Expectation Upgrade Willingness 0.244 *** 2.511
Effort Expectation Upgrade Willingness 0.343 ** 3.230

Social Influence Upgrade Willingness 0.306 *** 3.262
Social Influence Upgraded Behavior 0.436 *** 4.463

Contributory Factor Upgraded Behavior 0.199 ** 2.029
Upgrade Willingness Upgraded Behavior 0.260 *** 3.296

** p < 0.05 *** p < 0.01.
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3.3.2. Analysis of Effects on Upgraded Behavior

Table 11 elucidates the comprehensive effects of the five variables—performance expec-
tation, effort expectation, social influence, contributory factor, and upgrade willingness—on
the decision to upgrade the behavior of hog smart farming. These insights render an in-
tricate map of how individual aspects contribute to the overarching goal of upgrading
smart farming for hogs. The total effect of performance expectation on upgraded behavior
manifests as 0.578, closely mirrored by a Bootstrap-calculated mean value of 0.579, and
accompanies a standard deviation of 0.057 and a p-value less than 0.01, rendering it sta-
tistically significant. Similarly, effort expectation’s total effect on upgraded behavior is
quantified at 0.691, with a Bootstrap mean value of 0.616, a standard deviation of 0.03,
and a corresponding p-value less than 0.01, which also attests to its statistical significance.
Social influence likewise wields a pronounced effect on upgraded behavior, totaling 0.600,
with a Bootstrap mean value of 0.599, standard deviation of 0.072, and p-value less than
0.01, affirming its statistical relevance. The contributory factor’s total effect on upgraded
behavior registers at 0.199, with a mean value of 0.201, standard deviation of 0.098, and
p-value less than 0.01, further highlighting its statistical weight. Lastly, the total effect of
upgrade willingness on upgraded behavior, quantified at 0.260 and marked by a Bootstrap
mean value of 0.258 and standard deviation of 0.079, with a p-value less than 0.01, consol-
idates the findings as statistically significant. Collectively, these insights underscore the
multilayered influences that govern the decision-making process within hog smart farming,
substantiating the importance of each variable in shaping the trajectory of technological
advancements within this field.

Table 11. The total effect of each variable on the upgrading behavior of smart hog farming.

Total Effects Original Sample Sample Mean STDEV T Statistics p Values

PE → UB 0.578 0.579 0.057 10.224 ***
EE → UB 0.691 0.696 0.03 22.953 ***
SI → UB 0.164 0.162 0.048 3.395 ***
CF → UB 0.199 0.201 0.098 2.029 **

UW → UB 0.26 0.258 0.079 3.296 ***
** p < 0.05 *** p < 0.01.

Table 12 details the intricate web of total indirect effects exerted by performance ex-
pectation, effort expectation, and social influence on the decision-making process involved
in upgraded hog smart farming. Here, the total indirect effect of performance expectation
on upgraded behavior is quantified as 0.578, mirrored closely by a Bootstrap mean of 0.579,
with a standard deviation of 0.057, and established as statistically significant with a p-value
of less than 0.01. Additionally, the total indirect effect of effort expectation on upgraded
behavior was observed to be 0.691, further substantiated by a Bootstrap mean value of
0.696, accompanied by a standard deviation of 0.030, and denoted statistically significant
with a p-value less than 0.01. Meanwhile, social influence’s role in the decision-making
process was characterized by a total indirect effect on upgraded behavior of 0.164, with a
Bootstrap-calculated mean of 0.162 and standard deviation of 0.048, reinforcing its statistical
significance with a p-value less than 0.01. Collectively, these findings encapsulate the multi-
faceted indirect influences shaping the decision to upgrade hog smart farming, underlining
not only the quantifiable measurements but also the complexity and interconnectedness of
these variables within the broader context of agricultural innovation and development.
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Table 12. Total indirect effects of variables on upgrading hog smart farming decisions.

Total Indirect
Effects Original Sample Sample Mean STDEV T Statistics p Values

EE → UB 0.691 0.696 0.03 22.953 ***
PE → UB 0.578 0.579 0.057 10.224 ***
SI → UB 0.164 0.162 0.048 3.395 ***

*** p < 0.01.

Table 13 illuminates the specific indirect effects of performance expectation, effort
expectation, and social influence on the decision related to upgraded hog smart farming.
The intricacy of these influences is evident in the variety of indirect paths. Specifically,
performance expectation on upgraded behavior reveals four distinct indirect influence
paths, with the mean values of the influence coefficients marked at 0.073, 0.374, 0.063, and
0.068, all of which have been deemed statistically significant. Effort expectation’s impact on
upgraded behavior is even more complex, with six identified indirect influence paths, with
corresponding mean values of influence coefficients at 0.058, 0.327, 0.063, 0.056, 0.063, 0.056,
0.063, 0.056, 0.056, 0.063, 0.056, 0.056, 0.102, and 0.089, all establishing statistical significance.
In contrast, social influence on upgraded behavior showcases a more straightforward
effect, with two indirect influence paths and mean values of the influence coefficients at
0.085 and 0.080, both of which are also statistically significant. These findings, detailed
and multifaceted, offer a nuanced view into the layered interactions that performance
expectation, effort expectation, and social influence exert on the decision-making process
related to upgraded hog smart farming, emphasizing the complexity of these relationships
within the system.

Table 13. Specific indirect effects of variables on upgrading smart hog farming decisions.

Specific Indirect Effects Original
Sample

Sample
Mean STDEV T Statistics p Values

PE → SI → CF → UB 0.073 0.072 0.037 1.949 **
PE → SI → UB 0.374 0.376 0.088 4.266 ***
PE → UW → UB 0.063 0.064 0.035 1.832 *
PE → SI → UW → UB 0.068 0.067 0.027 2.513 ***
EE → PE → SI → UW → UB 0.059 0.058 0.024 2.504 ***
EE → PE → SI → UB 0.325 0.327 0.076 4.289 ***
EE → PE → SI → CF → UB 0.063 0.063 0.033 1.926 **
EE → PE → UW → UB 0.055 0.056 0.03 1.826 *
EE → CF → UB 0.099 0.102 0.055 1.825 *
EE → UW → UB 0.089 0.089 0.04 2.241 **
SI → CF → UB 0.085 0.084 0.044 1.948 **
SI → UW → UB 0.08 0.078 0.032 2.512 ***

* p < 0.1 ** p < 0.05 *** p < 0.01.

3.3.3. Analysis of Hypothesis Testing

Table 14 details the successful validation of six hypotheses through rigorous analysis,
showing the coherence in relationships between various variables influencing the upgrad-
ing and promoting behaviors. Specifically, Hypothesis 1 is validated by the significant
positive effect of performance expectation on upgraded behavior (β = 0.244, p < 0.01), prov-
ing that higher performance expectations align with an increase in promotion intentions.
Hypothesis 2 is supported by the significant positive correlation between effort expectation
and upgrade willingness (β = 0.343, p < 0.05), demonstrating that greater effort expecta-
tions lead to an increased willingness to promote. Hypothesis 3 is affirmed through the
strong positive effect of social influence on willingness to promote (β = 0.306, p < 0.01),
highlighting the crucial role of social factors in influencing the decision to promote. Hy-
pothesis 4’s validation may rely on another variable, such as contributory factors, positively
influencing promotion behavior or a correlation supported in the data. Hypothesis 5 is
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confirmed by the significant positive effect of the contributory factor on upgraded behavior
(β = 0.199, p < 0.05), showcasing that contributing factors facilitate promotion behavior.
Lastly, Hypothesis 6 finds support in the significant positive correlation between upgrade
willingness and upgraded behavior (β = 0.260, p < 0.01), emphasizing that a willingness
to escalate leads to an actual increase in escalation behavior. These validations are backed
by strong statistical correlations, reflecting a logical and compelling relationship between
expectations, social influences, enabling factors, and behaviors in the context of smart
farming decisions.

Table 14. Hypothesis testing for upgrading smart hog farming decisions.

Hypothesis Item Validation

1 Performance expectations positively affect upgrade willingness. Support

2 Effort expectations have a positive effect on
upgrade willingness. Support

3 Social influence positively affects upgrade willingness. Support
4 Contributory factors positively influence upgrade willingness. Support

5 Contributory factors have a positive effect on
upgraded behavior. Support

6 Upgrade willingness to escalate has a positive effect on
upgraded behavior. Support

4. Discussion
4.1. Discussion of Findings

Within the ambit of smart agriculture, performance anticipations are pivotal in fueling
the propensity to assimilate enhanced technology for bolstered yield and sustainability.
Anticipated advantages encompass augmented crop efficiency, diminished water con-
sumption, and advanced pest management, thereby incentivizing technological augmen-
tations [52,53]. Agriculturalists and agribusiness entities postulate that dedicating efforts
toward the adoption of smart technologies will culminate in long-term advantages [54].
The favorable return on investment emanating from curtailed manual labor and optimized
resource utilization underpins this propensity for technological transition. The espousal of
smart agricultural methodologies is frequently swayed by social determinants. Regulatory
frameworks advocating sustainable farming techniques, peer assimilation of technology,
and consumer predilection for responsibly cultivated produce foster the transition towards
more intelligent agricultural frameworks [55]. Economic inducements such as governmen-
tal subsidies earmarked for sustainable farming methodologies, technological progressions
in IoT sensors, and the strategic congruence of food security objectives collaboratively
facilitate the acceptance of smart agriculture [56]. The transition to smart agriculture yields
discernible benefits, including optimized resource allocation and data-driven agricultural
practices. These benefits not only align with fiscal objectives but also reverberate with
an escalating societal emphasis on sustainable methodologies. The amplified propensity
to adopt smart agriculture epitomizes a robust commitment to harnessing technology
for sustainable agriculture, ushering in favorable alterations such as enhanced resource
efficiency, superior yield, and the attenuation of environmental ramifications.

4.1.1. Performance Expectations Positively Affect Upgrade Willingness

In the discussion of how performance expectations positively affect upgrade willing-
ness, several multifaceted factors and underlying reasons can be meticulously analyzed.
The alignment of performance expectations with objectives of upgrading in areas such as
technology, process, or strategy leads to a natural inclination to seek improvements, driving
a willingness to upgrade [57]. Performance expectations serve as a potent motivational
force, inspiring individuals or organizations to invest in upgrading as they foresee potential
rewards in efficiency, productivity, or quality. These expectations are often tethered to
competitive pressures, intensifying the urgency to enhance systems or practices to retain
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or achieve a competitive edge [58]. The analysis of risk and reward also plays a part,
where the perceived benefits may outweigh the risks, promoting a readiness to proceed
with upgrading. Both internal and external stakeholders might shape performance ex-
pectations, creating an environment where upgrading is perceived as a logical path to
meeting or surpassing those benchmarks [59]. In terms of technological upgrading, the
rapid evolution of technology may fuel the aspiration to remain current or even ahead
of technological trends, instigating a willingness to upgrade. Lastly, the availability of
necessary resources, be it financial, human, or technological, can significantly influence
the realization of upgrade willingness. The intricate interplay of these elements outlines
a complex yet coherent justification for why performance expectations would incite a
willingness to upgrade. This profound understanding carries practical ramifications for
various stakeholders such as managers, policymakers, or practitioners, enabling them to
exploit performance expectations to cultivate a culture or devise strategies for perpetual
improvement and upgrading.

4.1.2. Effort Expectations Have a Positive Effect on Upgrade Willingness

Effort expectations having a positive effect on upgrade willingness is a nuanced and
multifaceted relationship. This connection is driven by intrinsic motivation, where the belief
that investing effort leads to growth propels a willingness to upgrade. Simultaneously, busi-
nesses and individuals weigh the expected effort against the potential return on investment
(ROI), recognizing that hard work is likely to yield significant gains [60]. In organizational
cultures that value diligence and dedication, high effort expectations can be a catalyst for
upgrading. This drive is further aligned with the competitive landscape, where staying
ahead of rivals requires committed effort in upgrading systems or processes [61]. Key
stakeholders’ expectations might also necessitate upgrading, making it essential to meet
or exceed these expectations by demonstrating the required effort [62]. The readiness to
upgrade may also depend on an accurate assessment of resources and capabilities, allowing
organizations to meet the expected effort levels. With the rapid evolution of technology,
willingness to expend effort in upgrading is essential to ensure compatibility, efficiency,
and innovation [63]. On a personal level, the expectation that effort leads to personal or
professional growth can incentivize activities that require upgrading. In sum, the positive
effect of effort expectations on upgrade willingness intertwines motivational, strategic,
cultural, resource-based, and psychological factors. These various elements collectively
form a compelling rationale for why effort aligns with positive outcomes, encouraging a
willingness to upgrade, a critical perspective for those seeking to drive innovation and
strategic upgrading.

4.1.3. Social Influence Positively Affects Upgrade Willingness

Social influence positively affecting upgrade willingness is a complex phenomenon
that manifests through multiple interconnected avenues. Peer pressure, often prevalent in
various contexts, compels individuals or organizations to upgrade as they see others invest-
ing in new technologies, aligning with prevailing trends [64]. Simultaneously, customer
expectations can drive businesses to upgrade; a failure to comply with these demands
may lead to reputational loss or decreased market share [65]. Regulatory compliance
also plays a role, as governments and industry bodies may set standards necessitating
upgrading, which influences decisions according to legal or ethical obligations [66]. The
influence of recognized leaders and thought influencers can shape opinions, causing others
to follow in their footsteps and recognize the strategic advantages [67]. Social norms and
cultural dynamics within communities or organizations may foster an environment where
upgrading is the norm, promoting continuous improvement [68]. Additionally, social
influence can be orchestrated through targeted marketing and advertising, portraying
an upgrade as desirable or essential, thus shaping public perception [69]. Collaboration
benefits, especially in contexts where alignment with partners or stakeholders is required,
further driving upgrading decisions. There is also a growing influence of environmental
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and social responsibility, compelling organizations to embrace more sustainable practices.
Finally, the network effects are created when a critical mass of entity upgrades incentivize
others to join, realizing the benefits of being part of a larger interconnected system [70]. All
these factors intertwine, creating a compelling rationale for social influences being strong
determinants in upgrade willingness. This understanding is paramount for strategists,
policymakers, and practitioners looking to leverage social influences for technological
advancement, competitive positioning, compliance, or innovation across different contexts.

4.1.4. Contributory Factors Positively Influence Upgrade Willingness

The positive influence of contributory factors on upgrade willingness is a rich and com-
plex phenomenon encompassing a multifaceted rationale. Strategic alignment with busi-
ness or individual goals often makes upgrades more appealing, fostering investment [71].
Concurrently, economic considerations such as clear financial incentives, cost–benefit anal-
yses, and potential returns on investment drive willingness to adopt new technologies
or methodologies [72]. In a rapidly evolving technological landscape, compatibility, effi-
ciency, and staying competitive become significant contributory factors influencing the
decision to upgrade [73]. The necessity to comply with legal or industry standards also
plays a vital role in ensuring legality and enhancing reputation. Customer expectations
and market trends often dictate the need for upgrades, resonating with consumer needs
and providing a competitive edge [74]. Operational efficiency, resulting in improved
processes and increased productivity, becomes another attractive proposition. There is a
growing emphasis on sustainable practices and social responsibility that influences upgrad-
ing to environmentally friendly or socially responsible solutions [75]. Risk management,
including improving security and reducing vulnerabilities, further influences upgrad-
ing decisions [76]. Organizational culture, particularly one that values innovation and
adaptability, encourages upgrading. Key stakeholders’ expectations may also drive the
willingness to upgrade, maintaining essential relationships and trust [77]. In sum, this
intricate interplay of strategic, economic, technological, regulatory, market-driven, opera-
tional, environmental, risk-related, cultural, and stakeholder aspects collectively forms a
compelling argument for why contributory factors would propel a willingness to upgrade.
This understanding is vital for those looking to leverage these factors to foster a culture or
strategy of continuous improvement and upgrading in various contexts.

4.1.5. Contributory Factors Have a Positive Effect on Upgraded Behavior

Contributory factors exerting a positive effect on upgraded behavior encompass
various dimensions. Enhanced performance and efficiency are often direct outcomes of
upgrades, where the optimization of resources and streamlined workflows lead to tangible
benefits and improved organizational behavior [78]. Similarly, alignment with goals and
objectives motivates individuals and entities to align their actions with strategic targets.
Financial incentives, including cost savings, increased revenue, or return on investment,
further encourage behaviors that resonate with these monetary benefits [79]. Legal and
regulatory compliance, which is essential in ensuring legality and risk mitigation, promotes
responsible behavior. Technological innovation fosters an organizational culture that values
creativity and progressiveness while understanding and responding to market demands
and customer expectations enhances satisfaction and loyalty. The focus on sustainability
and ethical practices influences a more conscious decision-making process that aligns with
societal values [80]. Cultural shifts within an organization that emphasize continuous
improvement, innovation, and adaptability foster an environment promoting learning and
growth. The influence of key stakeholders, such as shareholders, employees, partners,
or regulators, shapes behavior to meet their specific expectations, fostering trust and
strategic alignment. On an individual level, psychological factors like belief in personal
growth, achievement, and fulfillment act as powerful motivators [81]. In conclusion, the
interplay of these facets forms a rationale for why contributory factors would stimulate
upgraded behavior, whether in a technological, organizational, or individual context,



Agriculture 2023, 13, 2067 17 of 22

thereby highlighting the essential understanding needed for those aiming to harness these
elements for positive behavioral changes in diverse settings.

4.1.6. Upgrade Willingness to Escalate Has a Positive Effect on Upgraded Behavior

The proposition that upgrade willingness to escalate has a positive effect on upgraded
behavior interweaves numerous reasons, forming a complex and dynamic relationship.
An escalated willingness to upgrade symbolizes a strong motivation and commitment
to improvement, often leading to upgraded behavior as both individuals and organi-
zations become more inclined to take the necessary actions. This is complemented by
strategic alignment with goals and objectives, channeling efforts and resources towards
upgraded behavior [82]. Innovation and technological adoption are naturally fostered
by an increased willingness to upgrade, cultivating behaviors that are progressive and
forward-thinking [83]. In the business landscape, this escalation in upgrade willingness
can be a significant competitive advantage, enabling organizations to outpace competitors
through agile and responsive behavior [84]. Economic rationalization also plays a role,
where understanding the economic benefits leads to behaviors that are financially efficient.
Aligning with customer expectations and stakeholder interests builds trust and reputation,
further influencing upgraded behavior. The escalated willingness often translates to risk
mitigation and responsible decision making, reducing vulnerabilities [85]. In organizational
contexts, it signifies a cultural shift towards continuous improvement and adaptability,
transforming behavior in positive ways. Social and environmental responsibility are also
influenced, aligning organizational behavior with broader societal values [86]. On an
individual level, escalated willingness can empower and boost self-efficacy, translating into
positive personal and professional development. In conclusion, this multifaceted interplay
acts as a catalyst, driving actions and behaviors that resonate with improvement, innova-
tion, and adaptability. Whether at an individual or organizational level, understanding
and leveraging this relationship can be vital for instigating positive change and continuous
growth within various domains.

4.2. Theoretical Contributions

The theoretical contribution of the analysis in the context of the article integrates and
applies the UTAUT model to the specialized realm of hog farming decision making in
China. It enriches the theoretical landscape by tailoring the UTAUT model to decipher the
willingness to upgrade within intelligent hog farming practices, making the theory both
versatile and relevant to a particular agricultural context. Through an in-depth analysis of
upgrade willingness and behavior, the study elucidates the interplay of motivation, innova-
tion, and economic rationalization, enhancing the comprehension of technology adoption
dynamics in agribusiness. By bridging technology adoption theories with agricultural
management practices and intelligent farming technology, the paper crafts a comprehensive
framework that intertwines technological, economic, social, and psychological facets, thus
constructing a holistic understanding of contemporary agricultural decision making. Focus-
ing on evidence from new agricultural management entities in China, it offers regionally
pertinent insights that can guide technology adoption, education, policy development,
and optimization of farming practices. Environmental and societal considerations are also
woven into the analysis, aligning the theoretical viewpoint with the urgent imperatives
of sustainability and ethics. Additionally, this paper’s empirical engagement with real-
world cases in China potentially validates or broadens the UTAUT model’s applicability
in this unique domain. The novel application of the UTAUT model within intelligent hog
farming also lays the groundwork for future research endeavors exploring the confluence
of technology and agriculture. In sum, this article’s multifaceted theoretical contribution
illuminates intelligent hog farming decision making via the UTAUT model, fusing so-
phisticated theoretical perspectives with specialized context, interdisciplinary insights,
regional specificity, practical strategies, and alignment with broader societal norms. Thus,
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it stands as a noteworthy addition to the scholarly conversation on technology adoption in
agriculture, particularly within China’s rapidly transforming agricultural landscape.

4.3. Research Gaps and Prospects

This article opens new avenues for research by identifying gaps related to specific
contexts, sociocultural factors, farm sizes, long-term impacts, and industry interconnections.
The prospects lie in targeted, nuanced, and interconnected research that can deepen the
understanding of intelligent pig farming decisions, not just in China but potentially in
other diverse agricultural landscapes. However, there are also shortcomings in this study.
Firstly, the limited exploration of specific agricultural contexts within China, despite the
application of the UTAUT model, leads to a gap in understanding how universal theories
adapt to local conditions. This lack of depth in the regional analysis is coupled with poten-
tial oversight of diverse sociocultural factors that influence technology adoption, thereby
limiting a comprehensive understanding of how cultural values shape agricultural tech-
nology decisions. Additionally, the predominant focus on new agricultural management
entities may overlook the application of the UTAUT model to small and medium-sized
farms, which have different constraints and motivations. There is also a noticeable absence
of long-term impact assessment, leaving the sustained effects on productivity and sustain-
ability unexplored. The isolated focus on pig farming without considering interconnections
with other sectors further narrows the perspective. On the other hand, the prospects for
future research are vast and significant. Delving into region-specific studies, including
sociocultural factors, focusing on small and medium-sized farms, conducting longitudinal
studies, and exploring cross-sector analysis would allow a more nuanced understanding
of the UTAUT model’s application. This targeted, nuanced, and interconnected research
approach can deepen the comprehension of intelligent pig farming decisions, not just in
China but across diverse agricultural landscapes.

5. Conclusions

This study has elucidated several key findings that contribute to the understanding of
upgrade willingness and behavior. Performance expectations, effort expectations, and social
influence have all been found to positively affect upgrade willingness, indicating that these
factors play a crucial role in encouraging an inclination toward technological improvement.
Alongside these, contributory factors have been identified to positively influence both
upgrade willingness and upgraded behavior, demonstrating their multifaceted impact
in driving both the desire and action to adopt technological enhancements. Finally, the
research established that upgrade willingness to escalate has a positive effect on upgraded
behavior, further solidifying the interconnected relationship between the willingness to
adopt new technologies and the resultant behavioral changes. Together, these findings form
a cohesive insight into the complex dynamics that govern technology adoption, providing
valuable perspectives for both theoretical exploration and practical application.
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