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The rapid development of intelligence and automated technologies has provided
new management opportunities for agricultural production. In particular, the progress
of remote sensing equipment has allowed for vast improvements in the spatial, temporal,
and spectral resolutions of optical sensors. Such sensors are key in current agricultural
production management practices, with applications in areas that were previously explored
using field observations, including the monitoring of plant health, growth conditions, and
pest infestations.

The papers published in this Special Issue, “Novel Applications of Optical Sensors
and Machine Learning in Agricultural Monitoring”, present some of the most current
and novel results of scholars’ investigations on the applications of optical sensors and
machine learning in the field of agriculture. Table 1 summarizes the 16 peer-reviewed
articles included in this Special Issue. We found the guest editing for this exercise to be
very inspiring, with contents including:

(1) The application of machine learning techniques to examine the key physiological
development and production variables of crops.

(2) The use of datasets obtained from multiple sources and sensors to enhance crop
mapping.

(38) Advanced target recognition algorithm techniques for weed and disease identification.

The optical sensors used in the presented research include a digital RGB camera,
spectrometers, a 3D TOF sensor, a multispectral imaging sensor, and a satellite-based
multispectral sensor. The machine learning methods include conventional machine learning
techniques such as KNN, RE, SVM, and ANN, and deep learning techniques such as LSTM,
VGG, YOLO, and SSD.

The contributions to this Special Issue are summarized in the following.

Wang et al. [1] employed LAI as the input to four machine learning models (RF, SVR,
PLSR, and XGBOOST) and one deep learning model (LSTM) for winter wheat production
estimates in Henan Province, China, during 2016. The results indicated that the LSTM
performed better than the four traditional machine learning models, exhibiting the optimal
R? and RMSE values. Kumar et al. [9] investigated the canopy cover of sugarcane and its
relationship with dry matter and yield, and analyzed the relationship between (a) canopy
temperature, chlorophyll fluorescence, SPAD index, and (b) yield. Luo et al. [13] fused
vegetation indices determined using a UAV with brightness, greenness, and moisture
indices estimated using tasseled cap transformation (TCT). The proposed approach was
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observed to enhance the accuracy of rice yield predictions and was able to avoid the
saturation phenomenon.

Table 1. Summary of publications featured in this Special Issue.

. Agricultural . . .
Article Activities/Variables Optical Sensors Platforms Machine Learning Methods
. atellite , RE, , , an 0ost
[1] Wmt;rreﬁff(fny‘dd MODIS Satelli LSTM, RE, SVR, PLSR, and XGB
[2] Land 1.15.e/c.over Sentinel-2 MSI Satellite RF
classification
Wheat fusarium Multispectral
[3] head blight imaging sensor UAV KNN, SVM, XGBoost
s . . andsat atellite anket covering metho
[4] Cropland spatial Landsat 8 OLI Satell Blank ing method
[5] Soybean FVC, LCC, SONY DSC-QX100 UAV R, PLSR, GPR, MSR
and maturity
. . . BTC-YOLOv5s, YOLOV5, SSD, R-CNN, Faster
[6] Apple leaf diseases Canon Rebel T5i DSLR Field R-CNN, YOLOvA-tiny, and YOLOx, YOLOx-s
[7] Crop classification Sentinel-2 Satellite 1D-CNNs, LSngO,j\]]DI:SCINI\/II\;%3D—CNNs, and
[8] Dairy herd fatness 3D TOF sensor Field BCS
[9] Sugarcane dry. matter Mobile phone camera Field Two-Way cluster
and cane yield
Peanut southern ASD Field Spec3 .
[10] blight severit VNIR-SWIR sensor Field SVM, DT, and KNN
g y
[11] Corn diseases digital camera Field VGNet, VGG16
. . ASD Field Spec3 .
[12] Soil moisture content P Field PCA, PCR, PLSR, and BP-ANN
VNIR-SWIR sensor ’ ’ ’
[13] Rice yield Mini-MCA 1000 UAV TCT
Weed detection in YOLOv4-Tiny, YOLOv5s, Swin-Transformer,
[14] peanut fields Fuji Finepixs4500 Field Faster-RCNN, YOLOv6-Tiny, and
EM-YOLOv4-Tiny
Vegetation canopy
[15] reflectance angle GOCI Satellite SANM
normalization
[16] Soybean maturity SONY DSC-QX100 UAV SVM, RE InceptionResNetV2, MobileNetV2,

Alexnet, ResNet50, and DS-SoybeanNet

Note: UAV, unmanned aerial vehicle; RF, random forest; TCT, tasseled cap transformation; SANM, synthetic angle
normalization model; PCA, principal component analysis; LSTM, long short-term memory; SVR, support vector
regression; PLSR, partial least squares regression; XGBoost, eXtreme gradient boosting; DT, decision tree; KNN,
K-nearest neighbor; SVM, support vector machine; GPR, Gaussian process regression; MSR, stepwise multiple
linear regression; YOLO, you only look once; SSD, single shot multi-box detector; CNN, convolutional neural
network; R-CNN, regions-convolutional neural network; BCS, body condition scoring; PCA, principal component
analysis; and BP-ANN, back propagation-artificial neural network.

In order to enhance the estimation accuracy of LULC models, Ibrahim [2] performed
RF-based feature selection using data obtained from Sentinel-1, -2, and the Shuttle Radar
Topographic Mission. The author revealed that integrating optical, radar, and elevation
information is key to increasing the precision of LULC models for agriculturally dominated
landscapes. Wang et al. [4] developed an information extraction method for the accurate
determination of the spatial distribution of crops by integrating spatiotemporal image
information using a fractal model. The authors demonstrated the ability of their approach
to determine key cropland variables for the effective monitoring, conservation, and de-
velopment of black soil. Li et al. [7] developed a 3D-CNN and ConvLSTM2D method
for the classification of crops across time. Five deep learning models were tested, namely
1D-CNNs, LSTM, 2D-CNNs, 3D-CNNs, and ConvLSTM2D. 3D-CNN and ConvLSTM2D,
which combine temporal, spectral, and spatial information, outperformed the other models
in terms of crop classification using time series images.
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Gao et al. [3] developed an approach based on UAV and multispectral imagery that
integrated the spectral and textural features of images to examine wheat fusarium head
blight (FHB) and estimate several Vis and Tis. The VlIs, TIs, and combined VIs and TIs were
adopted as the inputs to KNN, PSO-SVM, and XGBoost to develop wheat FHB monitoring
models. The proposed approach was revealed to have potential for fast and nonintrusive
observations of wheat FHB. Guo et al. [10] proposed the Peanut Southern Blight Severity
method by combining hyperspectral data, continuous wavelet transform, and machine
learning. The machine learning methods SVM, DT, and KNN were tested and compared.
Fan et al. [11] developed a VGNet with the backbone set as VGG16, with the ability to
improve the recognition of corn with poor health in fields. In particular, there was a 3.5%
enhancement in the accuracy of the proposed VGNet compared to its predecessor VGG16.

Hu et al. [5] developed a soybean maturity recognition approach that combined UAV-
based LCC and FVC maps with an anomaly detection method, exhibiting total monitoring
accuracies greater than 98%. Zhang et al. [16] designed the novel CNN DS-SoybeanNet to
enhance UAV-based soybean maturity observations, with the ability to extract and employ
shallow and deep image features. The authors compared it with the widely used Alexnet,
InceptionResNetV2, MobileNetV2, ResNet50, SVM, and RF, revealing the high accuracy of
DS-SoybeanNet in soybean maturity classification.

Yurochka et al. [8] developed an approach for the automatic evaluation of dairy herd
fatness using a 3D TOF sensor and the body condition score (BCS). The proposed approach
was able to perform nonintrusive BCS evaluations of dairy herds throughout the lifetime of
the herd while meeting the requirements of the farm. The overall accuracy of the system
was estimated at 93.4%.

Jiang et al. [12] proposed an SMC estimation approach for mixed soil types based on
PCA and machine learning, with hyperspectral data as the input. The R? and RMSE of the
optimal model were determined as 0.932 and <2%, respectively. This approach proved to
be valuable in extracting data on farm entropy prior to the sowing of crops on agricultural
land, and provides a basis for the use of hyperspectral imagery to calculate SMC.

Geostationary satellites are able to extract information on the daily variations in crop
canopy reflectance based on high-temporal-resolution imagery. Lin et al. [15] proposed the
synthetic angle normalization model (SANM), which uses vegetation canopy reflectance
as its input. The SANM makes use of the advantages of GSS imaging and is able to
quantitatively compare spatiotemporal remote sensing data.

Advanced target recognition algorithm techniques, such as YOLO-, Swin-Transformer-
, and Faster-RCNN-based models, have also been developed to identify weeds and diseases
for farmland management.

For example, Zhang et al. [14] introduced EM-YOLOv4-Tiny to identify weeds and
compared it with six other weed recognition deep learning models, namely YOLOv4-Tiny,
YOLOv4, YOLOv5s, Swin-Transformer, and Faster-RCNN. The proposed approach was
observed to outperform the majority of the models, with an mAP of 94.54%.

Li et al. [6] developed BTC-YOLOv5s based on YOLOv5s for the detection of apple leaf
disease. In particular, the inclusion of the transformer and convolutional block attention
modules decreased the background noise.

Intelligent agriculture can achieve information perception, quantitative decision-
making, and intelligent control throughout agricultural production by integrating infor-
mation technologies such as the Internet of Things, big data, artificial intelligence, and
intelligent equipment with agriculture. Therefore, interdisciplinary cooperation is nec-
essary for deepening the application of deep learning in intelligent agriculture. These
collaborations include expert-assisted data annotation, machine learning methods, the
design of agricultural-specific sensors, intelligent drones, intelligent robots, and more.
Optical sensors and deep learning are fundamental in data collection, information per-
ception, and decision analyses. Research on their combinations is crucial for promoting
the development of intelligent agriculture. Therefore, we hope this work can attract the
attention of the agricultural, electronic, and computer communities and promote more
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research on optical sensors and machine learning. The research published in this Special
Issue focus on a variety of machine learning methods, optical sensors, and platforms for
agricultural monitoring. The novel results and progress made by the papers will hopefully
stimulate further research in these areas.
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