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Abstract: Plant phenotyping has been widely studied as an effective and powerful tool for analyzing
crop status and growth. However, the traditional phenotyping (i.e., manual) is time-consuming
and laborious, and the various types of growing structures and limited room for systems hinder
phenotyping on a large and high-throughput scale. In this study, a low-cost high-throughput
phenotyping system that can be flexibly applied to diverse structures of growing beds with reliable
spatial–temporal continuities was developed. The phenotyping system was composed of a low-
cost phenotype sensor network with an integrated Raspberry Pi board and camera module. With
the distributed camera sensors, the system can provide crop imagery information over the entire
growing bed in real time. Furthermore, the modularized image-processing architecture supports the
investigation of several phenotypic indices. The feasibility of the system was evaluated for Batavia
lettuce grown under different light periods in a container-type plant factory. For the growing lettuces
under different light periods, crop characteristics such as fresh weight, leaf length, leaf width, and
leaf number were manually measured and compared with the phenotypic indices from the system.
From the results, the system showed varying phenotypic features of lettuce for the entire growing
period. In addition, the varied growth curves according to the different positions and light conditions
confirmed that the developed system has potential to achieve many plant phenotypic scenarios at
low cost and with spatial versatility. As such, it serves as a valuable development tool for researchers
and cultivators interested in phenotyping.

Keywords: plant phenotyping; phenotypic index; low-cost system; camera network; online monitoring;
plant factory

1. Introduction

Stressful situations cause morphological, physiological, and biochemical changes in
crops. Thus, research on crop phenomics has been conducted to measure and utilize
these changes in order to increase productivity, improve quality, and reduce energy and
resource consumption through optimal control [1]. In the early stage, a specific stimulus
was provided in a controlled environment, such as a smart farm, and response analysis
and growth modeling were performed. In particular, to obtain characteristic information
about crops, direct measurement, observation, or destructive methods are used. However,
although these methods are generally simple and reliable, they require considerable time
and labor because of the small number of activities that can be performed at one time [2,3].
In addition, when destructive methods are applied, the sample is damaged, and subsequent
analysis is difficult.
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To overcome these difficulties, various analyses using non-destructive methods have
been conducted. Data available for analysis include images, environmental (temperature,
humidity, light intensity, and nutrients) values, and physical (length and weight) values
to quantify the genotype and phenotype [4]. Among them, image-based methods are
used to analyze the external characteristics or growth of crops using two- (2D) or three-
dimensional (3D) images or to indirectly explain internal phenomena through spectral
images [5]. As several samples can be easily and automatically obtained using a camera,
the time and cost required to acquire feature information can be reduced [6]. In addition, a
large amount of information can be obtained using several images, broadening the scope
of the analysis. This development coincides with the creation of integrated and mass
crop production facilities; moreover, with the development of information communication
technology (ICT) convergence technology, high-throughput analysis has been developed
into a high-speed, mass-phenotypic method with high efficiency [7]. A high-throughput
phenotyping platform refers to a system that integrates the storage of crop data, data
analysis, robotics, and decision making. Growing demand, along with the development of
numerous types of applicable data and technologies, has led to the requirement of several
research studies for this platform and improvement of standardization, experimental
methods, and analysis [8–10].

The process of stably collecting and analyzing images is important for analyzing the
overall growth of crops through images. The process of acquiring the image should place
no additional stress on the crop, and there should be no other influences such as noise or
color distribution changes on the image. Several cameras can be utilized to acquire images.
In addition, automatically moving and saving the images according to the conditions in a
specific storage space can be advantageous because shooting is conducted over several days
depending on the growth process. A system with continuity in which the characteristics of
crops are automatically analyzed using various image processing and machine learning
algorithms for each image and where model development and updates are performed
is considered ideal. Thus, the entire process from image acquisition to analysis must be
organically connected to enable high-speed mass-phenotypic analysis. However, most of
the previously developed systems are very expensive and use algorithms applicable only to
a specific environment, hindering their broad application. For example, in a previous study,
when examining the number and area of leaves in the growth chamber to investigate the
development of Arabidopsis, there were differences in the absence of various application; in
addition, the study was soil-based [11]. Similarly to this study, in a 2D-based phenotyping
system using a fixed camera, automatic water supply adjustment and area and color
characteristics were analyzed. This study was conducted in a soil environment and applied
to relatively small crops [12]. In some studies, 3D images and spectroscopy were applied
by performing growth monitoring through individual moving ports. However, a limited
number of parameters were used, and there were difficulties in system configuration using
built-in software [13,14].

A plant factory is a mass crop production facility that can provide a more uniform
growth environment than the open field through artificial lighting and complex environ-
mental control in an enclosed space for the year-round production of crops [15]. However,
even within these plant factories, spatial variations exist in micro-environmental conditions,
such as light, temperature, and humidity, resulting in growth differences [3,16]. Moreover,
it is necessary to capture and analyze at minimum hundreds of plant images per day to
follow the rapid and intensive progression of growth in plant factories [4,17]. If the analysis
is not accomplished in a real-time manner, the data will be accumulated and delay the
response to the crop status. In the context, high-speed mass phenotyping approach can
be a practical solution to provide location-specific information on crops growing in the
cultivation bed, thereby allowing precise environmental control and growth management
in plant factories such as yield estimation, crop harvest, or disease treatment.

Methods for acquiring image information according to location include acquiring mul-
tiple images while moving one camera and acquiring multiple data at a time by arranging
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multiple cameras at a certain location. When using a single mobile camera system, it is
possible to use a high-cost camera with good performance rather than purchasing several
cameras. Good performance provides high resolution and facilitates obtaining images of
depth sensors or other wavelength bands rather than simple colors. Because the image
is acquired with one device, there is no need to consider the error of the hardware itself.
However, this method is relatively expensive and has limitations in repeatability, data
acquisition time, and movement section restrictions because the camera position must
be moved manually unless an additional automation device is employed in a situation
where multiple crops need to be photographed. For example, Jiang et al. [18] developed an
on-the-go monitoring platform to measure crop-growth variation according to the location;
however, this system could only be moved for the first applied bed structure, and the
configuration of the system became more complicated as the cultivation area increased.
Yeh et al. [19] created a moving-image monitoring system using a moving arm. Its effec-
tiveness was verified only on a small vertical bed, and rapid analysis was difficult because
the growth information was confirmed via image processing through post-processing.
Rossi et al. [20] reported a low-cost sliding platform for high-resolution plant phenotyping,
but the processing time of more than 1 h would limit the application of the system to the
level of laboratory analysis. A greenhouse-based low-cost phenotyping platform reported
by Yassue et al. [21] is noteworthy since it proved its effectiveness in a greenhouse-level
environment. However, it would not be applicable for vertical plant factories due to height
problems. Bari et al. [22] applied a moving-cart embedded camera to the rails for moni-
toring growing peas in greenhouse, but the large area of the greenhouse meant that it was
necessary to analyze the image via post-processing after the collection of images.

By contrast, as the method using several inexpensive cameras can secure a large
amount of simultaneous image data, it is easy to analyze changes in the same location
without additional correction processes. In addition, it can be flexibly configured for plant
factories with relatively large and diverse production structures. However, there is a non-
uniformity of information depending on the type and quality of images and the use of
various hardware; therefore, it is necessary to develop an image processing technique to
overcome this problem. Although An et al. [23] adopted the calibration of multiple-camera
array and utilized it for plant phenotyping, the post-data collection and -processing made it
difficult to access and analyze data in real time. Thrash et al. [24] also proposed a low-cost
wireless phenotyping system, but it was only developed for a single index and a horizontal
space. Gang et al. [25] developed a novel convolutional neural network-based model
that can estimate various morphologic indices for plants grown in greenhouses, but its
feasibility was not validated in an integrated phenotyping platform.

Considering the aforementioned limitations, it is necessary to develop a low-cost
phenotyping system capable of collecting and processing data in real time while being
structurally more flexible for crop monitoring in vertical plant factories. Furthermore, for
phenotyping modeling aimed at analyzing the behaviors of various crops, it is necessary to
simplify the determination of new indices or code modifications for correlation analysis.

For the purpose, in this study, a multi-camera network using an inexpensive image
sensor and processor was developed. It was designed to have flexible space applicability
through a wireless, miniaturized camera node configuration, and to make it easy to collect
and analyze various phenotypic indices through a modularized image processing algorithm
structure. Based on this, a system capable of performing high-speed mass-phenotypic
analysis was constructed. Specifically, the developed system continuously and stably
collected crop growth images from camera devices installed at different locations, classified
them according to location and time, and stored them in an independent space of the
computer server. The stored images were configured to analyze diverse crop characteristics
through various image processing algorithms and to output the results. Additionally,
the analyzed crop characteristics were used as data for a growth model for a specific
situation, and the model was updated according to the data generation. The feasibility
of the developed system was evaluated by collecting 2D images of lettuces for the entire
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growth cycle at various locations. To verify the applicability of the obtained phenotypic
indices, growth information of lettuces growing under two different photo-environmental
conditions within the plant factory were analyzed and compared.

2. Materials and Methods
2.1. Plant Growth Conditions

The camera system could be applied to any leafy vegetables with low heights, which
are usually cultivated in the commercial plant factories [26]. In this study, Batavia lettuce
(Lactuca sativa L.) was cultivated for the growth experiment, which is a type of lettuce
that originated in Europe. Lettuce is one of the most important leafy vegetables in plant
factories because of its popularity, with the highest consumption and economic importance
throughout the world [27,28]. Individuals with similar weight, size, and shape were
selected by direct sowing, and a monitoring experiment was conducted on the growth of
the entire cycle from the second day after planting.

Cultivation was conducted in a container environment system located in Yongin,
Gyeonggi-do, Republic of Korea (Figure 1). This container, a system that has an envi-
ronment independent of the outside environment, is suitable for conducting reaction
experiments of crops to a target factor. Crops were grown independently in a sponge
medium serving as artificial soil, and the necessary nutrients were provided through a
closed nutrient film technique system where the electrical conductivity and pH values
without a separate nutrient solution supply device. Generally, EC and pH values below or
above the optimal range can impede water and nutrient uptake in crops, thereby inhibit-
ing growth and potentially inducing diseases [29]. Therefore, the nutrient solution was
manually managed to maintain an appropriate concentration by measuring the EC and pH
values at 2-day intervals through standard sampling. During cultivation, the temperature
inside the container plant factory was maintained at an average of 22.1 ◦C in the range of
21–23 ◦C, and the humidity was maintained at an average of 65% in the range of 50% to
80%. CO2 was maintained at 400–700 ppm as a factor relating to plant respiration.
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Figure 1. Crop-growth container system with controlled environment.

2.2. Photoperiod Condition

Photoperiod is one of the most important variables affecting the plants’ growth process,
thereby inspiring researchers or industries to explore the effective light/dark cycle for
leafy vegetable productivity [30,31]. Specifically, it was reported that differing pulse width
modulation of light would be an important factor in the photosynthesis. Chen and Yang [32]
reported that intermittent light irradiation could enhance the biomass and taste of lettuces.
Therefore, not only to evaluate the applicability of the developed system but also to confirm
the effect of different light/dark cycles on the growth of lettuces, an experiment was
conducted to establish a camera network for two cultivation beds and to check the growth



Agriculture 2023, 13, 1874 5 of 20

difference by varying the photoperiod conditions for each zone. The control (con) group
was irradiated with light for 16 h and maintained in the dark for 8 h; for the pulse (pul)
group, light–dark conditions were set at intervals of 2 h and 1 h, respectively. Accordingly,
the daily light irradiation time of the two groups was 16 h, and the total irradiation time
and the total incident light amount were the same under the two photoperiod conditions.
However, it was expected that improved growth would appear for pul group due to the
different light/dark cycles. A total of 14 Batavia lettuces were cultivated for each group, and
4 lettuces were used for acquiring destructive test data (Figure 2). Specifically, 12 camera
systems were installed for each control and experimental group to acquire images, while
each camera was installed to be located in the center of each target crop. With regard to
the extra two cameras for each group, they were used to validate the phenotypic analysis
during the cultivation. Growth characteristics such as fresh weights of shoots, leaf length,
leaf width, and leaf numbers were measured for four samples every week. Fresh weights of
shoots of lettuces were measured using a digital scale (Si-234, Denver Instrument, Denver,
CO, USA), and the length and the width of leaves were measured using a ruler. The
measured values were used to analyze the differences in data and to compare means
among the treatments, respectively.
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2.3. Low-Cost Camera Network

For high-speed, mass-phenotypic analysis targeting plant factories, the narrow cultiva-
tion interval between crops and the restriction of height should be considered. Accordingly,
the proposed system was configured in the form of a multi-point camera network that
could freely attach and detach small camera modules and provide integrated access to in-
formation on each image collection node through a web connection. Moreover, the building
cost of the camera network system is about 5% level compared to the on-the-go monitoring
system by Jiang, Kim, and Cho [18] (Table 1). Although the cost will be increased as the
number of camera nodes increases, it is still more reasonable than the on-the-go monitoring
system when considering the scan area.
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Table 1. Comparison of the camera network system with the on-the-go monitoring system by Jiang,
Kim, and Cho [18].

Item Camera Network System On-the-Go System

Cost ~USD 50 per node ~USD 2200

Setup Light and compact (~50 g L96 mm ×W71 mm ×
D26 mm per node)

Bulky (~8 kg for conveyer belts, controllers,
motors, and actuators)

Scan area (height of
0.45 m) 0.54 m × 0.4 m 0.94 m × 1.8 m

Plant scan time <1 ms ~127 s

Ease of installation Easy (due to the node’s compact size and
individual modularity)

Difficult (due to the complexity of conveyer belts
and frames)

External equipment Wi-Fi router Linear actuators, a motor servo driver, and step
motors

A Raspberry Pi 3B+ (Raspberry Pi Foundation, Cambridge, UK) was used as a low-
cost microprocessor that can acquire images of crops for the experiment and transmit
them to the server. It was selected because it is small, light, and inexpensive, has good
compatibility with various equipment, and has good accessibility compared to other
commercial products.

Various cameras, including a USB webcam, can be connected to the Raspberry Pi to
take pictures. The Raspberry Pi Camera v2 (Raspberry Pi Foundation, UK) was selected and
used to compare the stability, convenience, and image quality. This camera is composed
of a module with a resolution of 3280 × 2464 and a performance of approximately eight
megapixels. For the stability of data collection, the board and camera modules were
configured in a one-to-one connection. The Raspberry Pi and camera module used in this
study are not essential parts and can be replaced with other products depending on the
experimental environment conditions.

Because the monitoring of crops is conducted remotely, the information obtained
on the local Raspberry Pi has to be grasped remotely. Moreover, as mentioned above,
an external system is needed to solve the problems associated with the use of multiple
processors and limited local capacity. To this end, a computer acting as a server and
multiple Raspberry Pi devices were connected to form a system to automatically import
data. The computer acting as a server played an overall role in storing and analyzing data.
The computer was configured with a Linux operating system environment of core i7-7700k
CPU @4.2 GHz (Intel Corp., Santa Clara, CA, USA) and 32 GB RAM for continuity with
Raspberry Pi.

Figure 3 shows the network diagram for system setup. This network diagram is an
example for the photoperiod experiment of this study, and it is possible to add or remove a
server, router, Raspberry Pi, etc., depending on the researcher’s experimental environment.
Several Raspberry Pi devices for shooting were connected to a single local router via Wi-
Fi. A port forwarding method replaces the internal IP between the local router and the
Raspberry Pi connected to the lower internal network and creates a new address that can be
accessed remotely. Therefore, it was possible to remotely access the Raspberry Pi containing
the image information for each location and transmit and receive real-time monitoring and
image information. The external server was connected to several Raspberry Pi devices
through the local router and used the secure shell (SSH) protocol to access and issue remote
commands. Thus, the SSH class was implemented, and the image data were transmitted
to the server at a specific period after creating a session using the port forwarding access
address. In the server, there were folders designated for each Raspberry Pi, and images
were saved in each folder with a name set using date and time information.
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2.4. Crop Image Collection

As described in the following passages, image data taken according to time conditions
were saved in the Raspberry Pi and configured to be transmitted to the server at a specific
point in time to enable continuous image shooting. When an image acquisition signal was
transmitted to the Raspberry Pi according to the time condition (20 min intervals), a process
for stabilizing the image sensor was performed, and the image shooting was performed
after acquiring the local time required for phenotypic analysis. To stably acquire image
data, the data transmission operation was interrupted during the acquisition process. Since
it did not take much time to transmit one image, the data were transmitted when a certain
number of images were accumulated in consideration of the system load in the transmission
process. Accordingly, data collection to the server was performed once daily. The code for
image acquisition was written using Python, and camera control was performed with a
Python library called “PiCamera.” The use of crontab provided a reduction in the system
load, as the system was run only when necessary, rather than continuously.

As the images acquired have high resolution, one file has a size of approximately 4 MB.
This is not a problem in short-term monitoring, but in the case of long-term experiments,
there may be a problem of insufficient capacity inside the processor. Accordingly, flags for
the number of consecutive shooting days, or the number of stored files can be configured
to enable continuous monitoring by deleting previous files when the limit is exceeded. In
addition, in the process of transmitting the image to the server, it was implemented to record
and display logs such as connection errors, image errors, and transmission completion of
the local Raspberry Pi to promptly respond to users.

The imaging system consisted of a top-view image acquisition system that could secure
crop-growth images in container environmental conditions. The system was configured so
that only one crop was placed in the center of one image. Camera modules were installed in
the space between the LED lamps to obtain an accurate top-view image and to prevent light
intensity interference. Each camera module was calibrated using a classic color checker
(X-Rite, Grand Rapids, MI, USA) to compensate the spatial variability. Image acquisition
was performed for additional 10 s to stabilize the shooting. Figure 4 shows the multi-camera
network installed for multi-point growth image monitoring.
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2.5. Phenotypic Index Processing Algorithms

An automatic extraction process of the phenotypic index required for analysis was
performed on crop images stored in each folder of the server. Crop images acquired
by our system consisting of a camera network contain various noises depending on the
environmental conditions of the plant factory. Depending on the system configuration
conditions, an image contains only one crop, but the image also includes several types of
surrounding environments, such as planting bed, media, and other modules, as noise. The
image processing steps to counter these issues are shown in Figure 5. Several algorithms
were combined to extract the region of interest (ROI) corresponding to the crop parts
required for analysis. ROI are initially extracted from the acquired images using the
vegetation index and Otsu threshold method. Because small errors appear in these results,
the final binary ROI was extracted through the intersection of colorimetric changes and
small space filling methods. For the extracted ROI, the contour and pixel area were obtained,
the center was found, the shortest and longest lengths were measured, and the average color
information was identified. The extracted index formed a data frame with the structure of
the crop, date, time, index 1, index 2,. . ., index n, which was stored in a comma-separated
values (csv) format. It was also possible to check the image for specific results. The image
processing was configured to be performed on the entire folder when a certain number
of image data were added, including files that were not analyzed. The default value
was set at daily intervals; thus, when the daily data transmission was completed, index
extraction was performed only on new data. The newly created indicator data were stored
cumulatively in the previously saved csv file to enable continuous analysis. For the storage
and management of data, it is possible to consider a method of using a database rather
than a simple csv format storage. In this study, a database was not considered because
a simple configuration was sufficient. However, if the system grows in size, the use of
a database would be necessary. OpenCV and PlantCV libraries were mainly used in the
image processing.

For accurate analysis of crop image phenotypic indices, some aspects were considered
on the images obtained. First, image distortion was considered [33]. Usually, in the case of
an image containing several crops, errors occur in the center and edges of the image owing
to the hardware characteristics of the camera lens. This phenomenon is called distortion. In
the case of the configured system, only one crop was placed in the center of one camera
to avoid distortion. Second, even by precisely positioning the camera and crop, physical
skew occurs [34]. This can cause problems in image tracking because movement may occur
as the crop grows; in addition, it depends on the characteristics of hydroponics. In this
regard, an analysis method not affected by skew was used. Specifically, two methods were
applied to avoid the effect of skew: first, one camera was placed for each crop so that the
crop was located in the center of the image, thereby minimizing the effects of skew, which
typically occurs in the corners of the image. Second, the projected area viewed from the
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top instead of the actual leaf area to extract phenotyping features because it could reduce
skew interference caused by leaves growing in various directions. Lastly, because multiple
cameras were used, the colors appeared slightly different for each camera, even when
shooting the same subject. This was solved by performing a calibration process using a
separate color panel as a hardware characteristic.
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The first step of the analysis of crops is the extraction of a ROI through background sep-
aration. If ROI extraction is not performed adequately, values calculated in the subsequent
process become useless. Accordingly, several algorithms were combined and utilized. The
target part was a crop, and the image to be analyzed was in the form of 2D red–green–blue
(RGB). Thus, Excess Green (ExG), an image extraction method [35], was applied among the
available vegetation indices [36]. As shown in Equation (1), R, G, and B color channels were
used, normalized values divided by the maximum values (Rm, Gm, Bm) of each channel
were employed, and the equation was derived by assigning weights to the green part.

R* = R
Rm

, G* = G
Gm

, B* = B
Bm

r = R*

R*+G*+B* , g = G*

R*+G*+B* , b = B*

R*+G*+B*

ExG = 2g− r− b
(1)

ExG uses only RGB colors and is an index affected by green; therefore, large and small
noises could be included, as shown in Figure 6. Although the noise of small particles is also
an issue, the artificial medium, which is usually used in plant factories, has a larger role
in noises. The artificial medium is artificial soil constructed to enable crops to absorb and
support the nutrient solution. In commercial plant factories, an empty artificial medium is
sometimes placed to control the planting distance, but it could be recognized as a crop part
in the image and included as noise. These noises cannot be distinguished by using ExG, so
additional image processing is required.

In this study, the hydroponic system in plant factory was considered as the target field.
Therefore, noise filtering for plant factory condition was established to extract the crop parts,
excluding noise from the image extracted through the vegetation index. After converting
the image masked with ExG to the Lab color system, the green-magenta and blue-yellow
channels were extracted, and a threshold value determined based on the trial-and-error
method was set to remove the noise. Since the lab color space reflects the uniformity of
colors, thereby allowing more robustness for the illumination effect [37,38]. Relating to
binarization for crop segmentation, by combining the two methods and performing an
additional fill process on a small part, a sophisticated binary image of the ROI was extracted.
The final target image was obtained by masking the original image on the binary image
(Figure 7).
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Figure 7. Additional image processing to acquire images of the ROI: (A,B) noise removal through
Lab color system, (C) binary image, and (D) mask image.

Although more sophisticated segmentation techniques such as a multilevel thresh-
olding or combination of other color spaces such as hue–saturation–value (HSV), and
hue–saturation–intensity (HSI) used for detecting the diseased leaf area could be used, the
techniques require more processing time for one image, thereby inducing considerable
delay for entire growing bed monitoring [37–39]. Therefore, in this study, the proposed
image processing algorithm was simply constructed to achieve the real-time analysis of the
morphological growth characteristics.

A process was performed to determine a phenotypic index that could be used for
analysis with respect to the extracted ROI image. The center, contour, length, central axis,
color space distribution, growth distortion, and color histogram were selected by referring
to the useful phenotypic indices related to crop morphology in previous studies [19,40–42].
Table 2 shows a description of each indicator and the automatic acquisition algorithm.

All processes such as image acquisition, save, image processing, and phenotypic index
extraction were modularized through classes and functions. Modularity facilitated the
modification and addition of content. Although some parameters needed to be modified
according to the experimental environment conditions, it was possible to easily change them
according to the user environment through the modularization of the image processing
algorithm. Since it was possible to remove only a specific part and add a sub-list of
new functions and classes, it could be flexibly applied according to various experimental
purposes and growing environments.

Although these various phenotypic indices can have meaning by themselves, they
enable further analysis through correlation with actual crop characteristics or addition of an
algorithm. To check this possibility, the manually measured values were used for analysis. In
the process of conducting the experiment, crop characteristics such as fresh weight, leaf length,
leaf width, and leaf number were manually measured and compared with the extracted
phenotypic indices. After identifying the correlation, a trend line was drawn through a
regression equation, and the coefficient of determination and root mean square error (RMSE)
were obtained to verify the indices.
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Table 2. Phenotypic index description and computation method.

Phenotypic Index Description Equation Equation
Number
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Center

• Obtained by using the moment value to find the coordinates of the
center of mass pcm

• Reference point for radius and growth skew calculation

mji = ∑
x,y

(
array(x, y)·xj·yi

)
x = m10

m00
, y = m01

m00

(2)
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lcontour = ∑

∣∣∣∣∣−−−−−⇀pc i−pc i−1

∣∣∣∣∣
pc

i: i-th point of the contour

(3)
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lmax radius = max

{∣∣∣∣∣−−−−⇀pcm−pc i

∣∣∣∣∣
}
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{∣∣∣∣∣−−−−⇀pcm−pc i

∣∣∣∣∣
}
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(4)
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j

∣∣∣∣∣
}
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3. Results
3.1. Evaluation of Camera Network

It was confirmed that the developed system can easily identify and solve various
problems that may occur in the process of image acquisition and processing through
the log generated during the image transmission process. This detected several errors
in the artificially generated data port, capturing data, and in the transmission process.
Accordingly, it was possible to respond appropriately to the problems that arose, and the
validity of subsequent analysis of the transmitted data could be secured.

The phenotypic index extraction algorithm was evaluated by performing the analy-
sis on nine items, including center, contour, minimum radius, maximum radius, spatial
vertical axis, maximum growth axis, color space distribution, growth distortion, and color
histogram. As a result of performing automatic index extraction on a total of 35,000 image
data, the total analysis time was approximately 2.43 s per image and included index values
and image result output. The time required for analysis may vary depending on the number
and type of indicators to be analyzed.

Figure 8 shows the analysis results using the phenotypic indices selected by the devel-
oped system for one crop. ROI extraction was performed through background separation,
and the phenotypic index was automatically extracted according to a previously defined
algorithm. The background was adequately removed using the vegetation index, color sys-
tem conversion, and additional algorithms and by providing visualization information for
all indices such as center, contour, and maximum/minimum radius. As a result of applying
the original image and the phenotypic index, the entire growth cycle can be analyzed for
approximately two weeks with an interval of two days for the image. This can provide a
better understanding of the acquired information, such as the growth level of crops, growth
status, and product quality. In addition, it is possible to access the saved analysis result
and analyze it in the form of a data frame. In the developed system environment, the data
frame can access each index value by using a “key” corresponding to the column, and
it is possible to separate data for each crop by specifying a “value” condition of the key.
Accordingly, it is possible to analyze individual crops to perform intensive analysis on
crops of different growth by location.
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3.2. Growth Analysis for Lettuces under Different Light Conditions

Figure 9 shows the area index changes for the pul group with a change in the photope-
riod and for the “con group” with no change. In the pul group, as the light period during
image acquisition and the dark period when acquisition was interrupted were short, the
data appeared continuously, whereas the con group showed a step-like graph because the
dark period was long. The two groups had the same duration of the entire light period;
thus, the total number of images acquired in one day was the same, even though there were
differences in the acquisition time. That is, the data of the two groups were compared for
each day, not for the point value corresponding to the x-axis value of the graph.
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(B) pulse group (pul).

In the growth curve, the growth pattern according to the growth location was different
in both groups, indicating that there was spatial variation. Approximately 13 days after
transplantation, the maximum area of lettuce was approximately 18% larger than the mini-
mum area in the control group, whereas in the pulse group, it was 38% larger, confirming
that the spatial variation was larger in the pulse group.

Among the ten phenotypic indices that can be extracted from our system, the indices
that can be analyzed meaningfully in light condition experiments include contour, length,
minimum radius, and maximum radius in addition to area. These phenotypic indices were
closely analyzed to examine the growth difference according to the light period (Figure 10).
Thus, a new data frame was created by calculating the average value and standard deviation
of each indicator in the developed system interface, and it was expressed as a graph. In the
graph, there was no significant difference in the minimum and maximum radius, but the
growth was higher in the control group in both area and contour length.

Figure 10 shows the index change for one crop during the experimental period. As
observed, it is possible to monitor the growth status, including the phenotypic indices
selected for the crop growth of the entire period, using the developed system. However,
based on the indices, additional considerations were identified in the analysis. In the case
of the contour, it was possible to find a part showing a difference due to the complexity
expressed in the growing process of the crop or the change in the crop shape according to
the light/dark period. Accordingly, the maximum length from the center was measured
by moving the position according to a specific period rather than a single point according
to the passage of time. Although it was shown continuously on the graph, the actual
measurement position changed significantly. The minimum length was considerably
affected even by slight differences in these morphological characteristics; thus, this index
showed the greatest change.
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Figure 10. Analysis of phenotypic indices for Batavia lettuces in different light periods: (A) area,
(B) contour length, (C) minimum radius, and (D) maximum length. The colored area indicates the
standard deviations.

In order to verify the phenotypic index, the analysis was performed using the area
index as a representative. Figure 11 shows the results of performing predictions using area
index for the four characteristics of manually measured crops. Each regression formula
was set to have the highest coefficient of determination. The area index showed the best
correlation with fresh weight (R2 = 0.9602 and RMSE = 2.23 g) (Figure 11A). In the early
stages of small size, it was small with RMSE = 0.83 g, but it was confirmed that the error
also increased as the size increased (Figure 11B–D). A comparison with the other three
characteristics showed a low coefficient of determination compared to the fresh weight,
and no specific characteristics were found.
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4. Discussion

Among the phenotypic indices, the area that was the most intuitive index for crop
growth was a part of the projected pixel points obtained from the top view. Although
the area index would be different from the actual area because the index was calculated
based on the top projection image without considering the lateral information, it can be
used to provide spatial–temporal information of growing lettuces. Specifically, the site-
specific growth monitoring might be feasible for the small number of plants because the
variations in growth are displayed from the images for all growth periods [19,42]. In fact,
this index enabled us to clearly identify both spatial variation in growth and differences in
the photoperiods (Figures 9 and 10). In particular, looking at the control condition graph in
Figure 10A, it can be seen that the y-axis value decreases at the beginning of the change
from the dark period to the light period, and then it gradually increases thereafter. This is
considered to be a phenomenon that occurs because the leaf area is expanded due to the
horizontal decrease in the leaf during the dark period [31,43]. It can be seen from the graph
that it decreases again as the light period begins, but it gradually increases again with plant
growth. Meanwhile, another analysis was possible. Under the experimental conditions,
when the light period was twice that of the dark stage, and considering the length of the
x-axis expressed in the graph, it can be judged that the growth of the crop mainly occurred
during the dark stage (Figure 10A). At the beginning of the experiment, the difference was
less than two times, but on day 7, the difference in area was slightly larger. Initially, the
control group showed similar or slightly smaller values, but 7 days after planting, it showed
a larger value than the pulse group. In fact, even in the destruction data, the group with a
change in the photoperiod had poor growth, and the final weight showed a difference of
13.89 g when comparing the average value based on the fresh weight of the above-ground
part; thus, it was interpreted that this part was revealed by the area index. The initial
hypothesis was that the efficiency could be increased by changing the photoperiod, but it
was judged that the efficiency was rather low due to the short light period. The length of
the contour was similar to that of the area, indicating a difference between the two groups.
However, unlike the area index, where the difference gradually increased, the length of
the contour showed an initial large difference, which gradually decreased (Figure 10B).
As the crop grew, the edge of the leaf flattened, and the curvature seemed to disappear
due to overlapping. Therefore, a different tendency from the continuously increasing area
index was observed. In particular, a relatively fast saturation phenomenon was observed in
the control group. The minimum and maximum radii from the center were also projected
values, and the minimum length index was not suitable for analysis of the photoperiod
(Figure 10C,D). This was because the minimum radius showed a large change depending on
the growth of new leaves and the effect of the light period. The maximum radius showed a
tendency similar to that of the area at the beginning, but with saturation at a relatively early
period, and the two groups reached the same value in the second half of the experiment.
Unlike the area and contour length indices that could increase in various directions on the
image, the maximum radius index could not be measured beyond the measurable range;
therefore, this point is shown in the graph. Moreover, researchers or growers can add new
phenotypic indices based on the camera network system. Then, the system could be used
for building a new phenotyping model by building a new model between the phenotypic
indices and plant physiological behaviors such as nutrient deficiencies, diseases, or pests.

When referring to studies relating to fresh weight, it was found that the analysis using
the area index extracted from this study has explanatory power, and it can be said that
the low error shows the accuracy of the measurement (Figure 11A) [3,44]. Similarly, it was
confirmed that the maximum radius index and the contour index had a high coefficient
of determination in each leaf length and leaf width (Figure 11B,C). The results show
the usefulness of the system for monitoring and determining the phenotypic indices of
growing plants.

From the index, the growth of different light/dark cycle were observed and compared.
The growth of the pul group was lower than that of the con group, indicating the longer



Agriculture 2023, 13, 1874 17 of 20

light/dark cycle would be more beneficial for vegetative growth of lettuces. Specifically,
lettuce biomass did not change unidirectionally with the extension or shortening of the
light/dark cycle, but only specific light/dark cycle can strengthen root growth and water
absorption of lettuces [32,45]. Therefore, it is important to find the optimal cycle of the
illumination on growing lettuces. The results show the developed system would provide
the continuous monitoring of growing lettuces, thereby allowing more effective and rapid
analysis on such variables.

Table 3 shows the comparison of the high-throughput plant phenotyping system
developed in this study with other existing systems. The most expensive system using
a 3D camera array showed a highly accurate measurement performance with a slope of
1.01 and R2 of 0.99 in the comparison with the actual values [46]. The automated growth
measurement system using a conveyer also showed a highly linear predictability for the
fresh weight, with a slope near 1.0 and R2 of 0.95 [18]. Although the predictability of the
developed system is lower than those systems (Figure 11), it is comparable to other systems
with R2 of 0.6–0.8 [20,21]. Considering the performance, a total cost of USD 1200 is quite
reasonable. The system also can measure various phenotypic characteristics and has a
high degree of freedom in analysis compared to other systems. Moreover, the use of other
devices might be limited due to their high costs or spatial reasons in densely growing
environment such as plant factories. In contrast, the proposed system has excellent space
efficiency through a small-sized camera module and a network-based multi-connection
protocol. Continuous monitoring of phenotypic indices relating to height, leaf area, volume
and biomass are effective parameters that could allow farmers to conduct better fertilizer
and water management as well as scheduling of their harvest [47,48]. In plant factories,
leafy vegetables are usually harvested when the leaves reach full vegetative growth; thus, it
is important to monitor the growth during the vegetative stage. Accordingly, in this paper,
lettuce observation was continued from two days after transplantation until the end of the
first harvest, and usable phenotypic indices were successfully presented.

Table 3. Comparison of the camera network system with the on-the-go monitoring system by Jiang,
Kim and Cho [18].

System Plant No. of
Plants

Phenotypic
Characteristics

Code
Availability Cost Ref.

Camera array HTPP * Arabidopsis 1050 3 Commercial +
Not open

~USD 43,200 (including
camera) [46]

Greenhouse-based
HTPP * Maize 756 3 Open ~USD 5000 (including

camera) [21]

An automated growth
measurement system Boston lettuce 45 4 Not open ~USD 2200 (including

camera) [18]

Sliding phenotyping
platform

Maize, Tomato,
Olive 1 8 Commercial ~USD 1300 (without

camera) [20]

Our system Batavia lettuce 24 10 Open ~USD 1200 (including
camera) -

* HTPP: high-throughput plant phenotyping.

From the above results, it is demonstrated that the developed system can be applied to
the real-time analysis of growth differences by group for various growth condition changes
in plant factories, as well as spatial variation analyses according to the visualization of
growth distribution. In future research, we will improve the measurement performance
of the system by adding a side-view camera to collect information about crop height and
areas that cannot be observed from the top view. In particular, we intend to apply a
machine learning algorithm to the various phenotypic indices collected from the system to
understand more complex crop-growth information and to develop a web-based interface,
such that users can freely select and modify functions for each process.



Agriculture 2023, 13, 1874 18 of 20

5. Conclusions

In this study, we developed an analysis system for high-speed mass phenotyping based
on a multi-point camera network using low-cost cameras and processor boards. To ensure
its applicability to various cultivation structures and environments, a server computer was
configured for several image collection modules to automatically import data from multiple
points. Transmission stabilization conditions were applied for data collection stability, and
a large amount of image information was transmitted from the local to the main server
at daily intervals. When the transmission was completed, an ROI image was obtained
through background separation, and 10 phenotypic indices were calculated using an image
processing algorithm. The processing time of approximately 2.43 s per image confirmed
the real-time analysis performance of the developed system. By applying the system to a
commercial plant factory environment, it was possible to determine the growth distribution
information and the influence of the growth environment for each individual based on
various phenotypic indices through the data frame, confirming its feasible application. The
projected area index-based estimation for fresh weight, leaf length, leaf width, and the
number of leaves shows a high R2 over than 0.9, indicating the system would be feasible for
monitoring the growth information of growing lettuces. In addition, the high scalability of
easily removing or adding programming parts through modularization of the calculation
and analysis structure of the phenotypic index can be useful for growers or researchers
who are concerned. In future research, we intend to introduce a side-view camera for crop
height analysis and strengthen the field usability by adding machine learning algorithms.
Overall, the developed system is expected to effectively help crop-growth management, as
it can respond to changes in the dense plant factory cultivation environment and structural
changes through low-cost camera installation and network connection configuration.
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