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Abstract: Smart management of weather data is an essential step toward implementing sustainability
and precision in agriculture. It represents an important input for numerous tasks, such as crop
growth, development, yield, and irrigation scheduling, to name a few. Advances in technology allow
collecting this weather data from heterogeneous sources with high temporal resolution and at low
cost. Generating and using these data in their raw form makes no sense, and therefore implementing
adequate infrastructure and tools is necessary. For that purpose, this paper presents a smart weather
data management system evaluated using data from a meteorological station installed in our study
area covering the period from 2013 to 2020 at a half-hourly scale. The proposed system makes use of
state-of-the-art statistical methods, machine learning, and deep learning models to derive actionable
insights from these raw data. The general architecture is made up of four layers: data acquisition,
data storage, data processing, and application layers. The data sources include real-time sensors,
IoT devices, reanalysis data, and raw files. The data are then checked for errors and missing values
using a proposed method based on ERA5-Land reanalysis data and deep learning. The resulting
coefficient of determination (R2) and Root Mean Squared Error (RMSE) for this method were 0.96 and
0.04, respectively, for the scaled air temperature estimate. The MongoDB NoSQL database is used for
storage thanks to its ability to deal with real-world big data. The system offers various services such as
(i) weather time series forecasts, (ii) visualization and analysis of meteorological data, and (iii) the use
of machine learning to estimate the reference evapotranspiration (ET0) needed for efficient irrigation.
To this, the platform uses the XGBoost model to achieve the precision of the Penman–Monteith
method while using a limited number of meteorological variables (air temperature and global solar
radiation). Results for this approach give R2 = 0.97 and RMSE = 0.07. This system represents the first
incremental step toward implementing smart and sustainable agriculture in Morocco.

Keywords: artificial intelligence; big data analytics; smart agriculture; evapotranspiration; ERA5-
Land; time series forecasting; anomaly detection; MongoDB

1. Introduction

Advances in technology and industry have helped humanity to increase life quality
and expectancy. This includes delegating laborious processes traditionally performed by
hand to machines that can perform these tasks more efficiently. However, it has brought
with it several problems as well [1] relating to the overexploitation and nonrational use of
Earth’s natural resources, which in turn causes disruption of the natural balance expressed
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by climate change effects, such as global warming and severe climate events (droughts,
flooding, storms, hurricanes, etc.). In response to this alarming situation, humanity is
asked more than ever to rethink and reconsider its way of dealing with the environment,
especially in the context of a world population that grows at a higher rate [2]. This
puts a lot of pressure on our food systems to meet the increasing demand and feed the
planet. Agriculture is the sector that must be addressed, and agricultural management
practices need to be optimized and become more efficient and sustainable to address
these challenges. With water resources as an example, agriculture comes in as the largest
consumer of this resource, with about an average of 70% in use around the world [3]. In this
sector, water resources are used mainly in irrigation activities that still follow unsustainable
methods such as gravity irrigation, the most widely used type of irrigation globally [4,5].
Additionally, even when using modern methods of irrigation, such as drip irrigation, they
can be inefficient in the absence of good management [6]. The crucial step to achieving
an efficient irrigation system, whatever the type of irrigation system used, is to know
the proper amount of water to supply and the time to apply it (when and how much).
To this end, we need to monitor either the soil, the crop, or the weather. Monitoring the
weather enables the estimation of evapotranspiration (ET), which is the sum of transpiration
from plants and soil surface evaporation. Accurately estimating this parameter allows
compensation of the lost water quantity to the atmosphere. There are two methods of
estimating the evapotranspiration of a crop. One uses a single crop coefficient (Kc) that
incorporates all physiological and physical variations between the crops and the second
where the Kc is split into two separate coefficients: Kcb for crop transpiration and Ke for
soil evaporation. The Kc coefficient, then, is multiplied by the reference evapotranspiration
(ET0), which reflects the rate of evapotranspiration for a specific crop (grass). It is obtained
by monitoring various meteorological parameters (air temperature, solar radiation, air
relative humidity, wind speed, etc.). Therefore, weather monitoring is a key step toward
implementing efficient irrigation systems and ensuring sustainable agriculture.

Today, we are able to collect weather data with high spatial and temporal resolution
thanks to advances in science and technology, including advances in remote sensing such as
the availability of Unmanned Aerial Vehicle (UAV) [7] equipped with cutting-edge sensors
with affordable prices, satellite imagery with different spatio-temporal resolutions, open-
access reanalysis data such as European ReAnalysis data [8], MERRA [9], the JRA-55 [10] or
NCEP–DOE AMIP-II Reanalysis data [11]. Additionally, advances in the Internet of Things
(IoT) field have enabled cost-effective sensor data acquisition [12–16]. This huge amount of
data raised issues regarding the efficiency, complexity, interfaces, dynamics, robustness,
and interaction between these new types of peer-to-peer connected systems that need to be
re-examined on a large scale, as discussed in [17]. This unprecedented amount of generated
data is also contributing to what is known as big data, which needs adequate infrastructure
to be stored and gain insights for assisting agricultural decision making.

This work aligns with this objective and is intended to provide intelligent ways to deal
with these abundant data by applying the concepts of big data analytics and leveraging
the potential applications of artificial intelligence in agriculture to help farmers minimize
their risks, or at least make them more manageable, which represents a step towards the
development of smart and precision agriculture.

2. State of the Art

Several researchers have tried to leverage the challenges and opportunities of the
big data wave in the agricultural field and how it can be the driver of sustainability and
precision in this sector by gaining insights from massive volumes of data that can be used
to assist decision making.

As surveyed in [18], big data analytics is leading to advances in various industries, but
it has not yet been widely applied in agriculture. The work presents a range of suggested
solutions, tools, algorithms, and data, including how they were used and their impact upon
the sector as a whole. It also emphasizes the enormous potential of big data analytics in
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agriculture for smarter farming, demonstrating how the accessibility of big data analytics
tools, methods, and software, as well as the growing openness of heterogeneous data
sources (the “open data wave”), will encourage more academic research, public sector
initiatives, and business ventures in the agricultural sector. The paper concludes that the
adoption of big data practices in agriculture is still challenging and faces several obstacles
when applied to real-world applications.

In the paper [19], the authors developed a system composed of three components:
(i) hardware to capture crop data, (ii) a web application for crop data and field information
manipulation, and (iii) a mobile application to control irrigation via mobiles. The objective
of this work is to analyze the suitability of crops in terms of air temperature, air relative
humidity, and soil moisture to optimize future plans and strategies.

The authors of the work [20] propose a solution to be adopted in India to help farmers
face the unpredictable nature and variability of climate and weather circumstances. They
built a system for managing local weather stations in real time that would keep farmers
well-informed about the current weather conditions in advance, allowing them to make the
right decisions at the right time and prevent crop loss. High-speed internet infrastructure
available even in rural areas is the main motivation for conducting this work. It facilitates
the communication of collected data to remote servers. Once received and analyzed, the
information derived from these data gives farmers a way to automate their agricultural
management practices (irrigation, fertilization, and harvesting) by triggering the right
action at the right time.

Article [21] also presented a smart weather station management system intended to
be used in agriculture and to manage meteorological stations. It is based on Internet of
Things technology (IoT) to minimize costs. The connected sensors measure air temperature,
humidity, light intensity, air pressure, and wind speed. It then sends the collected data
to the server part of the system through the Global System for Mobile Communications
(GSM) module. The application layer is powered by the ThingSpeak platform, which offers
standard services to the proposed system such as data visualization and data analysis.

In regards to dealing with the challenges related to handling huge amounts of data
generated by sensors, the paper [22] proposed a standard architecture for a data infras-
tructure platform called WALLeSMART, which is a cloud-based solution that provides a
general architecture to handle the difficulties of gathering, processing, storing, and visual-
izing extremely large amounts of data in batch and real-time modes. An initial prototype
has been developed and tested at various farms in the Wallonia region of Belgium, show-
ing prominent results. This proposed system can be used as the basis for developing
customized smart agricultural services to meet our needs.

Our contributions not only propose an architecture containing some of the standard
pipelines used in the literature to build data platforms, namely data acquisition, storing,
visualizing, and analysis, but a complete system with the aim of going from data to decision
making. The proposed system provides services such as weather time series forecasting,
missing values handling using a multisource approach (reanalysis and situ data), and
estimating important parameters needed in the day-to-day life of farmers, such as the
evapotranspiration (ET).

3. Study Area

The study area is situated 40 km east of Marrakesh in the semiarid Haouz plain in
the heart of Morocco (Figure 1). About 2800 ha of this area is irrigated, and it is nearly flat.
Cereal crops such as wheat and barley are the main dominant crops. The region’s climate is
typically Mediterranean semiarid, with an average annual rainfall of about 250 mm [23,24],
temperatures that range from hot in the summer (38 °C in July) to cool in the winter (5 °C
in February), significant daily and monthly variations that are concentrated primarily from
autumn to spring, and an average annual ET0 of 1600 mm [25].
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Figure 1. R3 district study area in Morocco and a Photo of the meteorological station installed.

4. System Architecture

The proposed system is designed to enable the smart management of weather data,
which represents the key to implementing smart agriculture. By monitoring and analyzing
the weather effectively, we can optimize various agricultural management practices such
as irrigation scheduling and choosing the appropriate crop to sow [26].

The design of the platform follows a service-oriented architecture (Figure 2) to offer
services that address each of the four categories of big data analytics. As part of a descriptive
data analysis that tries to understand what happened in the past, a scenario would be:
rainfall declined, and the frequency changed over the last decade. The answer to why this
happened, in turn, is very important, and it takes us to the diagnostic data analysis, where
the focus is to identify anomalies in data to explain the reasons behind events, such as
linking this event with long-term shifts in temperatures and weather patterns observed in
weather evolution charts. The third type covered by the platform is predictive data analysis.
It looks beyond the present and tries to predict the future using statistical methods and
machine learning algorithms that learn from historical data in an iterative approach, trying
to identify the optimal way to predict the future. One such service is weather forecasting.
The output of the forecasting service can be used to support decision making about what
actions to take that aim to prevent severe events from occurring in the future. This is carried
out through the last type, which is prescriptive data analysis.

The platform can be decomposed into four main layers: the data acquisition layer, the
data storage layer, the processing layer, and the application layer.

4.1. Data Acquisition Layer

Heterogeneous data from a variety of sources, including meteorological station data,
IoT weather sensors, reanalysis data, third-party meteorological services, and raw files
(CSV, Excel, etc.), are used as the input for this layer. The concept of big data is introduced
to the field by the volume, velocity, and variety that characterize these data. Missing values
are handled in this layer using the method developed in Section 4.4.1 prior to being stored
in the NoSQL MongoDB database.
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Figure 2. General architecture of the platform.

4.1.1. Weather Station Data

The weather dataset used in this study was collected from a meteorological station
installed in the study area (Figure 1) at the half-hour scale from 2013 to 2020. The used
tower is equipped with different sensors [27,28] to measure:

• Incoming solar radiation using (Kipp and Zonen CM5 Pyranometer, Delft,
The Netherlands).

• Air temperature in Kelvin, relative humidity (R3_Hr, as a fraction between 0 and 1)
and vapor pressure by using (HMP45C, Vaisala, Helsinki, Finland).

• Wind speed using (A100R Anemometer, R.M. Young Company, Traverse City, MI, USA).
• Rainfall using (FSS500 Tipping Bucket Automatic Rain Gauge, Campbell Scientific

Inc., Logan, UT, USA).

Next, records are stored in data loggers before being collected manually by agents or
sent to a centralized server via a cellular connection.

A full description of these data is shown in Table 1, which also includes statistics for
missing values.

Table 1. Meteorological station data description.

Variables Description Unit Missing Values

R3_Dv Wind direction Degree 2626
R3_Hr Relative air humidity No unit 2626
R3_Rg Global solar radiation W m−2 5169
R3_Tair Air temperature °C 2631
R3_Vv Wind speed m s−1 2626

R3_P30m Rainfall mm 2626

4.1.2. ERA5-Land Reanalysis Data

Advances in measurement technologies have enabled us to use various observation
methods to monitor the Earth’s weather, including weather stations, weather balloons, and
satellite imagery, to name a few. However the distribution of these observation methods
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does not cover the entire globe, they may have overlapping footprints between covered
areas, and fewer of them were available in the past, which makes it challenging to conduct
studies of past years. To deal with this, climate reanalysis emerges as a new way of trying
to deliver a complete picture of the past and of the entire globe by combining the laws of
physics, modern weather models, and available weather sources. Such data, if accurate,
are crucial and will certainly assist decision making in several domains such as smart
cities, smart management of renewable energy stations, sustainable and climate-smart
agriculture [29,30], climate change assessments, hydrology [31], and much more.

In our study, we used the fifth generation of European ReAnalysis (ERA5-Land) [32]
available to be downloaded for free through the Climate Data Store (CDS) web platform [33].
ERA5-Land is the successor to ERA5 [8], which in turn is the successor to ERA-Interim [34].
This new product covers the period from 1950 to the present. ERA5-Land has the benefit
over the predecessors of its high horizontal resolution (9 km against 31 km for ERA5
and 80 km for ERA-Interim). These strengths were achieved thanks to the integration of
the ECMWF land surface model forced by the ERA5 climate reanalysis with corrected
elevation for the thermodynamic near-surface state and then applied to Numerical Weather
Prediction (NWP) models. The data used in this study concern the two pixels that cover
our study area (Figure 3). We downloaded ERA5-Land weather data from 2013 to 2020.
Since the cloud service Climate Data Store API (cdsapi) has a limit of 100,000 records per
request, we downloaded each year separately and combined them all at the end. The
downloaded data were then converted to a pandas dataframe data structure using the
Python language. We also developed a function called “get_era5_land_grib_as_dataframe”,
available as a part of the GIS class of the public library Data Science Toolkit (DST) [35] that
accepts an ERA5-Land grip file as a parameter and returns a pandas dataframe, which is
the most commonly used data structure in the data science field. The full description of the
downloaded parameters is described in Table 2.

Figure 3. The projection of ERA5-Land pixels over the study area.
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Table 2. ERA5-Land downloaded data description.

Variables Name Description Unit

Air temperature t2m Temperature of air at 2 m above the surface of land. K

Surface solar radiation downwards ssrd Amount of solar radiation reaching the surface of Earth.
It comprises both direct and diffuse solar radiation. J m−2

Dewpoint temperature d2m The temperature to which the air, at 2 m above the surface of the Earth,
would have to be cooled for saturation to occur. K

4.2. Data Storage Layer

In our system, most of the collected data are time series (meteorological data, reanalysis
data, satellite data, etc.). This type is characterized mainly by variety (multisource), volume,
and velocity (each half-hour). To deal with this, the system uses MongoDB, a big-data-
driven database for storing and retrieving meteorological data. The choice of using the
MongoDB database comes after several strengths it presents and its suitability for our use
case, including that it was designed to replace or enhance the classic Relational Database
Management Systems (RDBMS), providing it with a variety of additional characteristics
such as scalability being schema-less. It is also powerful at handling large amounts of
real-time data and efficiently handling memory, as it is written using the C++ programming
language. Not to mention the geospatial indexing feature, which makes it perfect for
real-time geospatial data collection and analysis. Figure 4 shows the Entity Relationship
Diagram of the weather data subcomponent.

Figure 4. The Entity Relationship Diagram used in the climate database design; ta: air temperature
(R3_Tair), rg: global solar radiation (R3_Rg), hr: air relative humidity (R3_Hr), p: rainfall (R3_P), ws:
wind speed (R3_Vv), wd: wind direction (R3_Dv).

4.3. Data Processing Layer

The data processing layer takes the data from the data storage layer as input and
applies the statistical, machine learning, and deep learning models to gain insights from
the data and turn that into services (Figure 2).

4.3.1. Statistical Models

Statistical models are used in this platform for forecasting purposes. Initially, the model
Facebook Prophet [36] was used to conduct long-term weather time series forecasting, since
it was tested on the same data in previous work.
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4.3.2. Machine Learning Models

The system also makes use of machine learning models, given the fact that they
can perform well on small datasets, for example, the XGBoost [37] model for reference
evapotranspiration estimation based on stored metrological data [38].

4.3.3. Deep Learning Models

Deep learning models or neural networks have gained success in solving complex tasks
that were previously human-specific and have required some level of human intelligence
to be solved in different fields. They derive their power by trying to mimic the way the
human brain works. They are composed of neurons able to process huge amounts of data in
order to map the output from a set of inputs using internal mathematical operations. These
neurons are organized into groups called layers and, during the propagation of signals
between layers in two senses (Forward and backpropagation), the deep learning network
learns to perform tasks. In our case, this is a regression task, where the input is ERA5-Land
reanalysis data and the output is meteorological station data.

4.4. Application Layer

The application layer contains multiple services related to weather times series.

4.4.1. Time Series Data Imputation Service

It is common in real-world meteorological data to have missing values for various
reasons. Missing values can be due to a network error or due to technical issues with certain
measurement sensors, etc. These missing data can affect the performance of any type of
model (machine learning, numerical, physical, etc.). As such, they need to be identified and
handled efficiently during the exploratory data analysis (EDA) and preprocessing stages.

There are several techniques for dealing with missing data depending on the use case:

• Deletion: Deleting rows or columns with missing values will remove this unwanted
type of data from our dataset, but it may drastically reduce the size of the dataset,
especially in the context of data scarcity.

• Imputation in time series data: In the case of a time series with a trend and seasonality,
missing data can be replaced using seasonal adjustment, such as using the data from
the same period of the previous year, which is the case for most weather data. However,
this method may not be as efficient due to changes in weather patterns around the
world. In contrast, if the time series do not present a trend or a seasonality, it can be
treated the same way as imputation for a normal dataset.

• Imputation in normal datasets: Replacing it using statistical measures of central
tendencies such as the mean, median, or mode of a given window of data that require
some assumptions about the distribution type of the data to be efficient.

This service proposes an approach based on reanalysis data and artificial intelligence
to build models that can learn rules to map ERA5-Land reanalysis data to station meteoro-
logical data, which is also useful for the surrounding regions of our study area (Section 3),
since we are in relatively homogeneous areas in terms of elevation and climate. We use the
ERA5-Land data presented in Section 4.1.2 and two different architectures of deep learning
models. The steps to implement the method workflow are shown in Figure 5.

a. Exploratory data analysis

Before implementing the proposed machine learning approach, exploratory data
analysis (EDA) was the first exercise we conducted. It enabled us to understand our
collected data, as well as to create hypotheses for further analysis and investigation. In
this step, we made no underlying assumptions about the variables, and we were guided
only by the observed data. We first calculated the correlation matrix (Figure 6). This matrix
allowed us to choose potential estimators for each target variable. Table 3 shows in the
second column the potential estimators based on correlation coefficients (|r| > 0.5 means
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high relationships between variables). In the third column are the estimators that are used
in the literature.

Figure 5. The flowchart of the deep learning approach.

Figure 6. The correlation heatmap and hierarchical clustering of the station and ERA5-Land parameters.

Table 3. Potential estimators of meteorological parameters.

Station Parameter Correlation Based Potential Estimators Ground-Truth-Based Potential Estimators

Air temperature (R3_Tair) t2m, R3_Hr and R3_Rg t2m
Global solar radiation (R3_Rg) ssrd, t2m and R3_Tair ssrd
Air relative humidity (R3_Hr) R3_Tair and t2m R3_Tair, t2m and d2m

The variable era5_hr in the matrix is calculated using the rule of thumb (Equation (1)),
which uses both air temperature (t2m) and dewpoint temperature (d2m) to estimate air rel-
ative humidity efficiently for moist air (relative humidity above 50 percent) [39]. According
to the matrix, R3_Hr has a high negative correlation with t2m but a very weak correlation
with d2m. Despite this, using the latter (d2m) combined with t2m gives a correlation of
0.87 for era5_hr instead of −0.77, if we take only t2m into consideration. This motivated
us to take both variables as input to neural networks for the estimation of R3_Hr. This
is also a confirmation for other rule-based (physics-based) approximations that use the
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same variables for air relative humidity estimation derived from the Magnus formula [40]
(Equation (2)).

era5_hr = 100− 5(t2m− d2m) (1)

d2m =
λ(ln( era5_hr

100 )) + β.t2m
λ+t2m

β− (ln( era5_hr
100 ) + β.t2m

λ+t2m )
(2)

Equation (2) is valid for air temperatures ranging from −45 to 60 degrees Celsius, the
Magnus parameters are, in this case, β = 17.62 and λ = 243.12 degrees Celsius.

For global solar radiation (R3_Rg), the study uses the surface solar radiation down-
wards (ssrd) as estimator.

Since the objective is to predict meteorological station data based only on ERA5-Land
data, we evaluated the performance of two deep learning models, namely a Feed Forward
Neural Network (FFNN) and a Long Short-Term Memory (LSTM), to predict R3_Tair given
t2m, R3_Rg given the ssrd, and R3_Hr given t2m and d2m.

b. Feed Forward Neural Network (FFNN):

In this type of neural network, the input signals (ERA5-Land data) are fed into the
input layer composed of 100 neurons. In each neuron, the data are processed, taking the
weighted sum of inputs plus a bias and then applying an activation function (Figure 7),
before forwarding the output to the next layer. The activation function introduces nonlin-
earity to the output. The choice of this function has a real impact on the training process
and performance of models and must be chosen according to the problem at hand. For
example, sigmoid and hyperbolic tangent activation functions (Equations (3) and (4)) can
be used to capture nonlinearity that may exist between inputs and outputs.

For our case, and given the fact that moving from ERA5-Land reanalysis data to
meteorological station data is the inverse of inference in statistics, that is, estimating the
mean of an individual (station data) given the mean of the population (ERA5-Land pixels),
the error with this assumption is supposed to be linear (polynomial of degree one); that
said, we used the Rectified Linear Unit function (ReLU) (Equation (5)) as the activation
function in our neural network layers, which is true for both proposed architectures (FFNN
and LSTM).

y = f (x) =
1

1 + ex (3)

y = f (x) = tanh(x) =
ex − e−x

ex + e−x (4)

y = f (x) = max(0, x) =

{
0, if x < 0
x, if x ≥ 0

(5)

Figure 7. A single neuron model.

c. Long Short-Term Memory (LSTM):

The choice behind using this neural network as a comparison is due to its ability to
deal with data that have long-term dependency, which is the case for climate data. LSTM
belongs to the Recurrent Neural Networks family (RNN), and therefore also has an internal
recurrence, that is, during the learning process, a signal is fed back to a neuron or layer
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that has already received and processed it (Figure 8), as well as its ability to remember
data through gated cells, which are a kind of memory that accept values in the interval
[0, 1] and are used to decide when the flow of a signal passes through the corresponding
neuron. LSTM was first developed to resolve the limitations of the vanishing [41] and
exploding gradient problems that may occur during the training phase. This problem stops
the learning of the neural network because the updates to the various weights become
very small.

Figure 8. Architectures of FFNN and LSTM used in the approach.

These two architectures (Figure 8) are trained using the Mean Squared Error (MSE) as
a loss or cost function that enables calculating the error of a network at the end of a forward
pass. To optimize the network weights, we used the adaptive moment estimation optimiza-
tion algorithm (Adam), which is characterized by fast convergence to the optimal solution
and combines the strengths of other optimization algorithms such as Stochastic Gradient
Descent (SGD) and RMSProp during the training phase. Like most other optimization
algorithms, Adam uses the partial derivative during backward propagation to calculate the
error function with respect to each weight within the network (Equation (6)). The Adam
algorithm then updates the network weights for a minimized loss or cost function using
rules in Equations (7), (8) and (9), respectively.

grad =
∂J
∂θ

(6)

mt = β1mt−1 + (1− β1)grad (7)

vt = β2vt−1 + (1− β2)grad (8)
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θ = θ − α
mt√

vt + ε
(9)

d. Data normalization

Data normalization is performed as part of the data preprocessing step and is the
process of bringing data to a similar scale. The process is also known as feature scaling. In
some cases, such as for statistical machine learning models, it may not be beneficial, but
for deep learning models, it is proven to help models to perform better [42,43] in terms of
faster convergence, reduced training time, and improved stability (preventing models from
oscillating or divergence).

There are multiple methods for data normalization:

• Min–max standardization: Min–max scales the feature values between [0, 1], with 0
being the feature’s minimum value and 1 being its maximum value, while maintaining
the original distribution (Equation (10)).

xnew =
x−min(x)

max(x)−min(x)
(10)

• Decimal scaling: This form of scaling is used where values of different decimal ranges
are present. For example, two features with different bounds can be brought to a
similar scale using decimal scaling (Equation (11))

xnew =
x

10n (11)

Such that n is an integer representing the order of the scalings.

• Z-score: This transformation scales the value toward a normal distribution with a zero
mean and unit variance using the z-score formula (Equation (12)).

xnew =
x− µ

σ
(12)

such that µ is the mean and σ is the standard deviation of the features’ distribution.
This method is very efficient for datasets with a Gaussian distribution.

In our case, we applied the min–max method (Equation (10)). Next, we initialize the
hyperparameters of the two proposed architectures (Table 4). These parameters are not
updated during the learning phase.

Table 4. Hyperparameters used during the training of FFNN and LSTM models.

Hyperparameter or Layer FFNN LSTM

Epochs 20 20
Learning rate 0.0001 0.0001

Batch size 64 64
Layer 1 100 neurons 100 LSTM unit
Layer 2 0.1 for dropout probability 0.1 for dropout probability
Layer 3 100 neurons 100 LSTM unit
Layer 4 100 neurons 1 neuron
Layer 5 100 neurons __
Layer 6 1 neuron __

e. Dataset splitting

Before training begins, we split our dataset into three sets: training, validation, and
test sets. The validation set is used to assess the performance of the model during each
epoch of the training phase. Next, the test set is used to evaluate the final trained model.
We used 80–20% splitting for the training–test sets, respectively, and took 20% of the 80%
for the validation set.



Agriculture 2023, 13, 95 13 of 22

f. Evaluation Metrics

To evaluate the trained deep learning models’ performance on the test dataset, we
employed the most commonly used metrics for regression tasks (Equations (13)–(16)):

• Training time: The time it takes for the model to complete 20 epochs.
• R2 score or R2: The coefficient of determination informs about how well the unknown

samples will be predicted by our model. It ranges between 0 and 1, but it can be
negative as well (Equation (13)).

R2 = 1− ∑n
1 (yi − ŷi)

2

∑n
1 (yi − ȳi)2 (13)

• The Pearson correlation coefficient (R): It measures the linear relationship between
two normal distributed variables (Equation (14)).

R =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2(yi − y)2
(14)

• Root Mean Squared Error (RMSE): The average of the squares of the errors between
real and predicted values by the model (Equation (15)).

RMSE =

√
1
n

n

∑
1
(yi − ŷi)2 (15)

• Mean Absolute Error (MAE): This is the average of absolute errors between real and
predicted values (Equation (16)).

MAE =
∑n

1 |yi − ŷi|
n

(16)

Given the fact that we applied the scaling in our data using the formula in Equation (10),
all metrics (from Equations (13) to (16)) are unitless.

4.4.2. Forecasting Service

The forecasting service helps make projections of the future state of the atmosphere
(air temperature, air relative humidity, global solar radiation, etc.) by performing a uni-
variate time series forecasting task. The Facebook Prophet model is used according on the
performance it has provided when trained and evaluated using the same meteorological
dataset to perform long-term weather forecasting tasks.

4.4.3. Climatic Parameters Calculation and Estimation Service

One of the most important agricultural practices in the day-to-day life of a farmer is
irrigation. To achieve efficiency, we need to accurately estimate crops’ water needs at each
phase of crop growth throughout the agricultural season. This can be performed through
several methods, among others is the estimation of the evapotranspiration (ET). It indicates
the amount of water loss caused by transpiration from the crop and soil surface evaporation.
We can obtain the ET of a crop (ETc) by multiplying the reference evapotranspiration (ET0)
and crop coefficient Kc, which holds all the physical and physiological differences of
a given crop. This service proposes to estimate the ET0 using machine learning, namely the
XGBoost model constrained by the physical model FAO Penman–Monteith. The proposed
approach follows the steps presented in Figure 9. First, we resampled the air temperature,
global solar radiation, air relative humidity, and wind speed to the daily average, and
precipitation to the cumulative daily values, and then the missing values were deleted.

To select the most important contributor variables to the ET0 estimate, the method
uses a random-forest-based technique that ranks the importance of features based on their
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occurrences in nodes across all trees: the bar chart (Figure 10) shows sorted meteorological
variables’ importance scores. Next, the dataset containing meteorological data and the
corresponding FAO Penman–Monteith ET0 estimated values are split and fed into the
XGBoost model, and the model is then evaluated.

Figure 9. The flowchart of the proposed method.

Figure 10. The features’ importance bar chart of meteorological parameters.

The objective of this service is to provide an alternative to the FAO Penman–Monteith
calculation procedure by learning the behavior of this procedure using a limited number
of climatic variables (Figure 11). It is either suitable for stations that lack the necessary
hardware and sensors to provide the entire set of meteorological data required for FAO
Penman–Monteith or in the case of technical problems with sensors, among other things.

4.4.4. Weather Data Analysis and Visualization Service

It is well-known that data in their raw form are useless, but the information, knowl-
edge, and wisdom derived from them are not. Moving from one state of data to another is
known as Knowledge Discovery in Databases (KDD), which is a subset of the modern data
science field and can be performed using various methods, such as CRISP-DM [44], which
stands for CRoss-Industry Standard Process for Data Mining, or the proposed standard
method in [45]. One example of insights data visualization and analysis which can be given
in our use case is shown in Figure 12. This is achieved by following a hybrid methodol-
ogy that includes the following steps: collecting, storing, cleaning, visualizing, analyzing,
and mining.
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Figure 11. The logic of the Evapotranspiration estimation component.

Figure 12. An example of the data analysis scenario.

The first three steps are common for all other services available on the platform. The
added value of this service is providing different types of visualization options, including
comparison plots (line charts of weather time series), relationship plots (scatter plot of
weather data), and automatically generating correlation heat maps, which are important
steps in the data analysis phase to study how one variable affects another.

4.4.5. Custom Early Warning Alerts Service

This service is classified as an outlier or anomaly detection problem. These special
types of data can be detected in time series by using, among others, rule-based methods, in
which case the service alerts administrators via SMS and email once the given condition
is satisfied. An example of such a condition is a threshold of temperature or rainfall. The
second method of sending warnings is to identify sequences that are notably different from
the rest of the historical time series data. These sequences can be the result of measurement
error or noise and can inform administrators about the status of the different sensors
installed in the meteorological station and inform them about events that could require
urgent action. To perform this, we use unsupervised machine learning methods that
do not require an annotated series of anomalies to be trained, in contrast to supervised
machine learning algorithms. The unsupervised method we used is Local Outlier Factor
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(LOF) [46]. It uses the KNN algorithm principle to calculate the distance of a point with
respect to its neighbors. This distance is used, in turn, to obtain the Reachability Density
(RD) (Equation (17)).

RD(xi, xj) = max(K− distance(xj), distance(xi, xj)) (17)

Next is measuring the local deviation of the density of a given point using Local
Reachability Density (LRD) (Equation (18)), which tells us how far the point is from the
nearest dense cluster of points.

LRDk(x) =
1

∑xj∈Nk(x)
RD(x,xj)

||Nk(x)||

(18)

where Nk(x) is the number of neighbors of x whose distance from x is not greater than the
k-distance. As a final step, the algorithm calculates the LOF (Equation (19)). Conventionally
the points that have a higher anomaly score than their neighbors LOF > 1) will be considered
as potential outliers, but that is not always true, since in anomaly detection there is no clear
and standard validation approach, and the final decision must relies on domain expertise to
consider the detected point as an outlier or not, and the role of the service ends by notifying
the administrators and letting them decide.

LOFk(x) =
∑xj∈Nk

LRD(xj)

||Nk(x)|| × 1
LRDk(x)

(19)

5. Results and Discussions
5.1. Time Series Data Imputation

As a result, for handling missing data using deep learning, Figure 13 shows the curves
for the loss function (MSE) and R2 in both training and validation sets during each epoch.
For both architectures (FFNN and LSTM), the learning curves indicate a good fit of the
model represented by an initially high training loss that steadily decreases as more training
instances are added and flattens over time (0.04 for air temperature, 0.098 for global solar
radiation, and 0.116 for air relative humidity), and the same way for R2, which begins with
nonoptimal values in training and validation and converges to stable change (0.96 for air
temperature, 0.84 for global solar radiation, and 0.77 for air relative humidity). Table 5
shows the performance comparisons between the two deep learning architectures used in
the test set.

Table 5 shows the performance comparisons between the two deep learning models
used in the test set.

Table 5. Performance of deep learning models.

Metric/Model
FFNN LSTM

R3_Tair R3_Rg R3_Hr R3_Tair R3_Rg R3_Hr

Training time (s) 68.371 34.943 60.639 138.193 65.574 178.503
R2 0.957 0.838 0.768 0.957 0.839 0.812
R 0.978 0.916 0.877 0.978 0.916 0.901
RMSE 0.037 0.098 0.116 0.037 0.097 0.105
MAE 0.029 0.069 0.094 0.029 0.066 0.081

Once trained, the final deep learning model will be ready for deployment in the
production environment and used to make inferences about meteorological station data
given the ERA5-Land data.

In contrast to Numerical Methods for Weather Prediction (NWP), which take consider-
able time to run [47], predictions based on our model are made instantly.
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Figure 13. Monitoring of MSE and R2 during training and validation phases: air temperature:
(a) FFNN, (b) LSTM, global solar radiation: (c) FFNN, (d) LSTM, air relative humidity: (e) FFNN,
(f) LSTM.

5.2. Climatic Parameters Calculation and Estimation

We split our dataset into five randomly shuffled parts (five folds). We used one fold
for model evaluation and the remaining four to train it. Finally, we assess the model’s
performance by calculating the regression metrics across the five folds of the dataset (Root
Mean Squared Error RMSE and the coefficient of determination R2). According to the results
of Table 6, the main point is not the perfect results obtained by using all parameters as
estimators but using only air temperature and global solar radiation (average RMSE = 0.27
and average R2 = 0.93), which gave promising results. This represents a practical data-
driven approach for accurately estimating ET0 by combining two criteria: accuracy of the
FAO Penman–Monteith method and using limited and simple-to-obtain meteorological
variables (air temperature with global solar radiation or only air temperature).
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Table 6. Cross-validation results for the three scenarios.

Fold
All Variables R3_Tair and R3_Rg Only R3_Tair

R2 RMSE R2 RMSE R2 RMSE

1 0.976094 0.080174 0.922928 0.258481 0.727668 0.913333
2 0.978442 0.092729 0.922629 0.332801 0.759759 1.033369
3 0.981453 0.066742 0.942489 0.206956 0.760640 0.861347
4 0.978672 0.085282 0.938638 0.245365 0.770725 0.916799
5 0.979803 0.081603 0.930292 0.281652 0.757509 0.979770

According to the results, the proposed method represents a practical data-driven
approach for accurately estimating ET0 by combining two criteria: accuracy of the FAO
Penman–Monteith method and using limited and simple-to-obtain meteorological variables
(air temperature with global solar radiation or only air temperature).

The results obtained are in agreement with the approach followed in [48] for the
most contributing variables for ET0 estimation, but it outperforms it in terms of RMSE
(0.19). In addition, the XGboost model used in this study outperforms [49] when using all
meteorological variables to train a neural network (RMSE = 0.19).

5.3. Prototype of the System

The platform is named “FLA7A”, which means agriculture in Arabic. Figure 14 shows
a screenshot of the platform’s dashboard. By default, it contains the real-time visualization
of the last three days of hourly weather data (line charts). However, the user can customize
the period according to their needs.

Figure 14 shows a screenshot of the dashboard that visualizes the last three days of
hourly weather data.

Figure 14. A screenshot of the platform’s real-time weather time series visualization service. The
black dots represent the original measurements, while the black line represents the linear interpolation
of the dots.

Figure 15 shows the interface of the forecasting service. By default, the forecasting
period is set to one year. However, the user can change this parameter and also customize
the number of years it will take into consideration when training the model. As mentioned
in Section 4.4.2, the service initially uses the statistical model Facebook Prophet, which is
powerful in long-term forecasting. In future work, the platform will integrate more models,
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especially those known for their performance in the task of short-term and mid-term
weather forecasting, as surveyed in [50].

Figure 15. A screenshot of the platform’s forecast service. The light blue is the uncertainty bounds of
the uncertainty interval around the final predictions (upper and lower), while the dark blue is the
predicted values, and the black dots represent our original data.

This platform is the first incremental step towards our goal of creating a decision
support system intended to implement smart agriculture in Morocco by using artificial
intelligence and data science to solve real-life problems facing farmers. More studies will
be performed to add and optimize different parts of this system. For example, for data
storage, we used MongoDB as a database to deal with real-time big data, however, in
terms of system scalability or dealing with batch processing or long-running ETL (Extract,
Transform, and Load) jobs, other technologies should be considered. A potential candidate
for this could be other NoSQL databases [51] or the Hadoop ecosystem (Spark, MapReduce,
Hive, etc.) [52,53]. Additionally, MongoDB has fault tolerance issues, which is true of
practically all distributed databases. Moreover, in the proposed deep learning method to
deal with missing data, we do not cover hyperparameter fine-tuning [54], which is one of
the biggest drawbacks to using deep neural networks. This task can be performed using
GridSearch [55] or other optimization algorithms such as Genetic Algorithms or the Monte
Carlo method, which can lead to better results. Despite this, we found promising results,
confirming the reliability of the ERA5-Land reanalysis data for our study area, which could
lead to the application of this method using several stations in regions with challenging
conditions. Finally, for the anomaly detection part, we presented an unsupervised machine
learning method that is based on how isolated a measure is with respect to the surrounding
neighborhood to alert administrators via SMS and emails, but other efficient methods can
be investigated, such as Conformal Anomaly Detection (CAP) [56,57].

6. Conclusions

The work conducted in this paper makes use of artificial intelligence and big data
analytics to develop a platform intended for intelligent weather data management, which
is essential to implementing smart and sustainable agriculture in Morocco. The platform
exploits huge amounts of generated data to gain insights and help assist decision making.
The proposed platform offers a number of weather-data-related services such as handling
missing data, visualization, analysis, estimation, and forecasting. Combining ERA5-Land
reanalysis data and deep learning algorithms to learn the relationship between the two
data sources gave promising results (R2 = 0.96 and RMSE = 0.04) for the air temperature
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variable. The same is true for the estimation of the reference evapotranspiration using
XGBoost (R2 = 0.97 and RMSE = 0.07). The platform is designed to be service-oriented and
will incorporate other services and solutions to help farmers and policymakers.
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